Quantum and Classical Ergotropy from Relative Entropies
Abstract
:1. Introduction
2. Quantum Ergotropy
3. Ergotropy from Quantum Coherence
4. Classical Ergotropy from Inhomogeneity
5. Ergotropy in Geometric Quantum Mechanics
6. Ergotropy from Conditional Thermal States
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Equation (5)
Appendix B. Proof of Equation (7)
Appendix C. Non-Negativity of Divergence-like Quantity in Thermodynamic Scenario
Appendix D. Proof of Equation (19)
References
- Gellhorn, E. The emotions and the ergotropic and trophotropic systems. Psychol. Forsch. 1970, 34, 67–94. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal work extraction from finite quantum systems. EPL (Europhys. Lett.) 2004, 67, 565. [Google Scholar] [CrossRef] [Green Version]
- Pusz, W.; Woronowicz, S.L. Passive states and KMS states for general quantum systems. Commun. Math. Phys. 1978, 58, 273–290. [Google Scholar] [CrossRef]
- Koukoulekidis, N.; Alexander, R.; Hebdige, T.; Jennings, D. The geometry of passivity for quantum systems and a novel elementary derivation of the Gibbs state. Quantum 2021, 5, 411. [Google Scholar] [CrossRef]
- Górecki, J.; Pusz, W. Passive states for finite classical systems. Lett. Math. Phys. 1980, 4, 433. [Google Scholar] [CrossRef]
- Daniëls, H.A.M. Passivity and equilibrium for classical Hamiltonian systems. J. Math. Phys. 1981, 22, 843. [Google Scholar] [CrossRef] [Green Version]
- Deffner, S.; Campbell, S. Quantum Thermodynamics; Morgan and Claypool Publishers: San Rafael, CA, USA, 2019. [Google Scholar]
- Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics—A topical review. J. Phys. A Math. Theor. 2016, 49, 143001. [Google Scholar] [CrossRef]
- Perarnau-Llobet, M.; Bäumer, E.; Hovhannisyan, K.V.; Huber, M.; Acin, A. No-Go Theorem for the Characterization of Work Fluctuations in Coherent Quantum Systems. Phys. Rev. Lett. 2017, 118, 070601. [Google Scholar] [CrossRef] [Green Version]
- Levy, A.; Lostaglio, M. A quasiprobability distribution for heat fluctuations in the quantum regime. Phys. Rev. X Quantum 2020, 1, 010309. [Google Scholar] [CrossRef]
- Santos, J.P.; Céleri, L.C.; Landi, G.T.; Paternostro, M. The role of quantum coherence in non-equilibrium entropy production. NPJ Quantum Inf. 2019, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Niedenzu, W.; Mukherjee, V.; Ghosh, A.; Kofman, A.G.; Kurizki, G. Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 2018, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherubim, C.; Brito, F.; Deffner, S. Non-Thermal Quantum Engine in Transmon Qubits. Entropy 2019, 21, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francica, G.; Binder, F.; Guarnieri, G.; Mitchison, M.; Goold, J.; Plastina, F. Quantum Coherence and Ergotropy. Phys. Rev. Lett. 2020, 125, 180603. [Google Scholar] [CrossRef]
- Çakmak, B. Ergotropy from coherences in an open quantum system. Phys. Rev. E 2020, 102, 042111. [Google Scholar] [CrossRef]
- Francica, G.; Goold, J.; Plastina, F.; Paternostro, M. Daemonic ergotropy: Enhanced work extraction from quantum correlations. NPJ Quantum Inf. 2017, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Touil, A.; Çakmak, B.; Deffner, S. Second law of thermodynamics for quantum correlations. arXiv 2021, arXiv:2102.13606. [Google Scholar]
- Smith, A.M. Studies in Nonequilibrium Quantum Thermodynamics. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2019. [Google Scholar]
- Smith, A.; Sinha, K.; Jarzynski, C. (to be published).
- Anza, F.; Crutchfield, J.P. Geometric Quantum State Estimation. arXiv 2020, arXiv:2008.08679. [Google Scholar]
- Anza, F.; Crutchfield, J.P. Beyond Density Matrices: Geometric Quantum States. arXiv 2020, arXiv:2008.08682. [Google Scholar]
- Anza, F.; Crutchfield, J.P. Geometric Quantum Thermodynamics. arXiv 2020, arXiv:2008.08683. [Google Scholar]
- Deffner, S.; Paz, J.P.; Zurek, W.H. Quantum work and the thermodynamic cost of quantum measurements. Phys. Rev. E 2016, 94, 010103(R). [Google Scholar] [CrossRef] [Green Version]
- Beyer, K.; Luoma, K.; Strunz, W.T. Work as an external quantum observable and an operational quantum work fluctuation theorem. Phys. Rev. Res. 2020, 2, 033508. [Google Scholar] [CrossRef]
- Sone, A.; Liu, Y.X.; Cappellaro, P. Quantum Jarzynski Equality in Open Quantum Systems from the One-Time Measurement Scheme. Phys. Rev. Lett. 2020, 125, 060602. [Google Scholar] [CrossRef] [PubMed]
- Sone, A.; Deffner, S. Jarzynski equality for stochastic conditional work. J. Stat. Phys 2021, 183, 11. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Nieuwenhuizen, T.M. Fluctuations of work from quantum subensembles: The case against quantum work-fluctuation theorems. Phys. Rev. E 2005, 71, 066102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurchan, J. A Quantum Fluctuation Theorem. arXiv 2001, arXiv:cond-mat/0007360. [Google Scholar]
- Tasaki, H. Jarzynski Relations for Quantum Systems and Some Applications. arXiv 2000, arXiv:cond-mat/0009244. [Google Scholar]
- Talkner, P.; Lutz, E.; Hänggi, P. Fluctuation theorems: Work is not an observable. Phys. Rev. E. 2007, 75, 050102(R). [Google Scholar] [CrossRef] [Green Version]
- Huber, G.; Schmidt-Kaler, F.; Deffner, S.; Lutz, E. Employing Trapped Cold Ions to Verify the Quantum Jarzynski Equality. Phys. Rev. Lett. 2008, 101, 070403. [Google Scholar] [CrossRef] [Green Version]
- Campisi, M.; Hänggi, P.; Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 2011, 83, 771. [Google Scholar] [CrossRef] [Green Version]
- Deffner, S.; Lutz, E. Nonequilibrium Entropy Production for Open Quantum Systems. Phys. Rev. Lett. 2011, 107, 140404. [Google Scholar] [CrossRef] [Green Version]
- Kafri, D.; Deffner, S. Holevo’s bound from a general quantum fluctuation theorem. Phys. Rev. A 2012, 86, 044302. [Google Scholar] [CrossRef] [Green Version]
- Mazzola, L.; De Chiara, G.; Paternostro, M. Measuring the Characteristic Function of the Work Distribution. Phys. Rev. Lett. 2013, 110, 230602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorner, R.; Clark, S.R.; Heaney, L.; Fazio, R.; Goold, J.; Vedral, V. Extracting Quantum Work Statistics and Fluctuation Theorems by Single-Qubit Interferometry. Phys. Rev. Lett. 2013, 110, 230601. [Google Scholar] [CrossRef] [Green Version]
- Roncaglia, A.J.; Cerisola, F.; Paz, J.P. Work Measurement as a Generalized Quantum Measurement. Phys. Rev. Lett. 2014, 113, 250601. [Google Scholar] [CrossRef] [Green Version]
- Batalhão, T.B.; Souza, A.M.; Mazzola, L.; Auccaise, R.; Sarthour, R.S.; Oliveira, I.S.; Goold, J.; De Chiara, G.; Paternostro, M.; Serra, R.M. Experimental Reconstruction of Work Distribution and Study of Fluctuation Relations in a Closed Quantum System. Phys. Rev. Lett. 2014, 113, 140601. [Google Scholar] [CrossRef] [Green Version]
- An, S.; Zhang, J.N.; Um, M.; Lv, D.; Lu, Y.; Zhang, J.; Yin, Z.Q.; Quan, H.T.; Kim, K. Experimental test of the quantum Jarzynski equality with a trapped-ion system. Nat. Phys. 2015, 11, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Deffner, S.; Saxena, A. Jarzynski Equality in PT-Symmetric Quantum Mechanics. Phys. Rev. Lett. 2015, 114, 150601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deffner, S.; Saxena, A. Quantum work statistics of charged Dirac particles in time-dependent fields. Phys. Rev. E 2015, 92, 032137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talkner, P.; Hänggi, P. Aspects of quantum work. Phys. Rev. E 2016, 93, 022131. [Google Scholar] [CrossRef] [Green Version]
- Gardas, B.; Deffner, S.; Saxena, A. Non-hermitian quantum thermodynamics. Sci. Rep. 2016, 6, 23408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartolotta, A.; Deffner, S. Jarzynski Equality for Driven Quantum Field Theories. Phys. Rev. X 2018, 8, 011033. [Google Scholar] [CrossRef] [Green Version]
- Gardas, B.; Deffner, S. Quantum fluctuation theorem for error diagnostics in quantum annealers. Sci. Rep. 2018, 8, 17191. [Google Scholar] [CrossRef] [PubMed]
- Touil, A.; Deffner, S. Information Scrambling versus Decoherence—Two Competing Sinks for Entropy. PRX Quantum 2021, 2, 010306. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed.; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Łobejko, M. The tight Second Law inequality for coherent quantum systems and finite-size heat baths. Nat. Commun. 2021, 12, 918. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Schilling, T.A. Geometrical Formulation of Quantum Mechanics. In On Einstein’s Path; Springer: New York, NY, USA, 1999; pp. 23–65. [Google Scholar]
- Bengtsson, I.; Zyczkowski, K. Geometry of Quantum States; Cambridge University Press: New York, NY, USA, 2017. [Google Scholar]
- Cariñena, J.F.; Clemente-Gallardo, J.; Marmo, G. Geometrization of quantum mechanics. Theor. Math. Phys. 2007, 152, 894. [Google Scholar] [CrossRef] [Green Version]
- Anza, F.; Crutchfield, J. in preparation.
- Deffner, S.; Lutz, E. Generalized Clausius Inequality for Nonequilibrium Quantum Processes. Phys. Rev. Lett. 2010, 105, 170402. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sone, A.; Deffner, S. Quantum and Classical Ergotropy from Relative Entropies. Entropy 2021, 23, 1107. https://doi.org/10.3390/e23091107
Sone A, Deffner S. Quantum and Classical Ergotropy from Relative Entropies. Entropy. 2021; 23(9):1107. https://doi.org/10.3390/e23091107
Chicago/Turabian StyleSone, Akira, and Sebastian Deffner. 2021. "Quantum and Classical Ergotropy from Relative Entropies" Entropy 23, no. 9: 1107. https://doi.org/10.3390/e23091107
APA StyleSone, A., & Deffner, S. (2021). Quantum and Classical Ergotropy from Relative Entropies. Entropy, 23(9), 1107. https://doi.org/10.3390/e23091107