Fluctuations in Extractable Work and Bounds on the Charging Power of Quantum Batteries
Abstract
:1. Introduction
2. Free Energy Operator
3. Closed-System Analysis
4. Open-System Analysis
5. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Badwal, S.P.S.; Giddey, S.S.; Munnings, C.; Bhatt, A.I.; Hollenkamp, A.F. Emerging electrochemical energy conversion and storage technologies. Front. Chem. 2014, 2, 79. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Alicki, R.; Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 2013, 87, 042123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, F.C.; Vinjanampathy, S.; Modi, K.; Goold, J. Quantacell: Powerful charging of quantum batteries. New J. Phys. 2015, 17, 075015. [Google Scholar] [CrossRef] [Green Version]
- Campaioli, F.; Pollock, F.A.; Binder, F.C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K. Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 2017, 118, 150601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, D.; Campisi, M.; Andolina, G.M.; Pellegrini, V.; Polini, M. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 2018, 120, 117702. [Google Scholar] [CrossRef] [Green Version]
- Le, T.P.; Levinsen, J.; Modi, K.; Parish, M.M.; Pollock, F.A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 2018, 97, 022106. [Google Scholar] [CrossRef] [Green Version]
- Andolina, G.M.; Keck, M.; Mari, A.; Giovannetti, V.; Polini, M. Quantum versus classical many-body batteries. Phys. Rev. B 2019, 99, 205437. [Google Scholar] [CrossRef] [Green Version]
- Crescente, A.; Carrega, M.; Sassetti, M.; Ferraro, D. Charging and energy fluctuations of a driven quantum battery. New J. Phys. 2020, 22, 063057. [Google Scholar] [CrossRef]
- Rossini, D.; Andolina, G.M.; Rosa, D.; Carrega, M.; Polini, M. Quantum advantage in the charging process of Sachdev-Ye-Kitaev batteries. Phys. Rev. Lett. 2020, 125, 236402. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C. Quantum advantage of two-level batteries in the self-discharging process. Phys. Rev. E 2021, 103, 042118. [Google Scholar] [CrossRef]
- Monsel, J.; Fellous-Asiani, M.; Huard, B.; Auffèves, A. The energetic cost of work extraction. Phys. Rev. Lett. 2020, 124, 130601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andolina, G.M.; Keck, M.; Mari, A.; Campisi, M.; Giovannetti, V.; Polini, M. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett. 2019, 122, 047702. [Google Scholar] [CrossRef] [Green Version]
- Crescente, A.; Carrega, M.; Sassetti, M.; Ferraro, D. Ultrafast charging in a two-photon Dicke quantum battery. Phys. Rev. B 2020, 102, 245407. [Google Scholar] [CrossRef]
- Huangfu, Y.; Jing, J. High-capacity and high-power collective charging with spin chargers. Phys. Rev. E 2021, 104, 024129. [Google Scholar] [CrossRef] [PubMed]
- Julià-Farré, S.; Salamon, T.; Riera, A.; Bera, M.N.; Lewenstein, M. Bounds on the capacity and power of quantum batteries. Phys. Rev. Res. 2020, 2, 023113. [Google Scholar] [CrossRef]
- García-Pintos, L.P.; Hamma, A.; del Campo, A. Fluctuations in extractable work bound the charging power of quantum batteries. Phys. Rev. Lett. 2020, 125, 040601. [Google Scholar] [CrossRef] [PubMed]
- Zakavati, S.; Tabesh, F.T.; Salimi, S. Bounds on charging power of open quantum batteries. arXiv 2003, arXiv:2003.09814 [quant-ph]. [Google Scholar]
- Campaioli, F.; Pollock, F.A.; Vinjanampathy, S. Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions; Binder, F., Correa, L.A., Gogolin, C., Anders, J., Adesso, G., Eds.; Springer: New York, NY, USA, 2018. [Google Scholar]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505. [Google Scholar] [CrossRef] [Green Version]
- Jurcevic, P.; Javadi-Abhari, A.; Bishop, L.S.; Lauer, I.; Bogorin, D.F.; Brink, M.; Capelluto, L.; Günlük, O.; Itoko, T.; Kanazawa, N.; et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. arXiv 2008, arXiv:2008.08571 [quant-ph]. [Google Scholar]
- Cusumano, S.; Rudnicki, L. Comment on “Fluctuations in extractable work bound the charging power of quantum batteries”. Phys. Rev. Lett. 2021, 127, 028901. [Google Scholar] [CrossRef]
- García-Pintos, L.P.; Hamma, A.; del Campo, A. Reply to Comment on “Fluctuations in extractable work bound the charging power of quantum batteries”. Phys. Rev. Lett. 2021, 127, 028902. [Google Scholar] [CrossRef] [PubMed]
- Brandão, F.G.S.L.; Horodecki, M.; Oppenheim, J.; Renes, J.M.; Spekkens, R.W. Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 2013, 111, 250404. [Google Scholar] [CrossRef]
- Horodecki, M.; Oppenheim, J. Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 2013, 4, 2059. [Google Scholar] [CrossRef] [PubMed]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal work extraction from finite quantum systems. Europhys. Lett. 2004, 67, 565. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, J.S.; Kok, P. Geometric perspective on quantum parameter estimation. AVS Quantum Sci. 2020, 2, 014701. [Google Scholar] [CrossRef] [Green Version]
- Šafránek, D. Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 2017, 95, 052320. [Google Scholar] [CrossRef] [Green Version]
- Seveso, L.; Albarelli, F.; Genoni, M.G.; Paris, M.G.A. On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank. J. Phys. A 2019, 53, 02LT01. [Google Scholar] [CrossRef] [Green Version]
- Higham, N.J. Functions of Matrices: Theory and Computation; SIAM: Philadelphia, PA, USA, 2008. [Google Scholar]
- Van den Broeck, C. Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 2005, 95, 190602. [Google Scholar] [CrossRef] [PubMed]
- Cavina, V.; Mari, A.; Giovannetti, V. Slow dynamics and thermodynamics of open quantum systems. Phys. Rev. Lett. 2017, 119, 050601. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-Y. Fluctuations in Extractable Work and Bounds on the Charging Power of Quantum Batteries. Entropy 2021, 23, 1455. https://doi.org/10.3390/e23111455
Wang S-Y. Fluctuations in Extractable Work and Bounds on the Charging Power of Quantum Batteries. Entropy. 2021; 23(11):1455. https://doi.org/10.3390/e23111455
Chicago/Turabian StyleWang, Shang-Yung. 2021. "Fluctuations in Extractable Work and Bounds on the Charging Power of Quantum Batteries" Entropy 23, no. 11: 1455. https://doi.org/10.3390/e23111455
APA StyleWang, S.-Y. (2021). Fluctuations in Extractable Work and Bounds on the Charging Power of Quantum Batteries. Entropy, 23(11), 1455. https://doi.org/10.3390/e23111455