Medium Entropy Reduction and Instability in Stochastic Systems with Distributed Delay
Abstract
:1. Introduction
2. Model
- (i)
- By changing n, we can model various common types of delay with distinct characteristics, see Figure 2. For , the kernel is a simple exponential decay. For , is peaked around , with peaks becoming sharper upon increasing n. In the limit , it reaches a delta-distribution, [41]. Thus the ansatz Equation (3) includes the case of a discrete (single) delay.
- (ii)
- The weight of K, which defines the feedback gain k, is identical for all n: .
- (iii)
- The mean delay time τ is identical for all n:
- (iv)
2.1. Markovian Representation
2.2. Colored Noise
2.3. Limit of Infinitely Large System
2.4. Alternative Choice of
3. Stability for Different n
4. Delay-Induced Heat Flow
5. The Total Entropy Production
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LE | Langevin equation |
FDR | Fluctuation-dissipation relation |
ODE | Ordinary differential equation |
DDE | Delay differential equation |
EP | Entropy production |
Appendix A. Memory Kernel and Noise Correlations
Appendix A.1. Physical Motivation for the Dynamics of X j>0
Appendix B. Analytical Solutions for Correlations
Appendix C. Path Probabilities with Onsager–Machlup Action
Appendix D. Limit of the Heat Flow
Appendix E. Entropy Distributions for Different Types of Delay Distributions
References
- Schöll, E.; Klapp, S.H.L.; Hövel, P. (Eds.) Control of Self-Organizing Nonlinear Systems; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bechhoefer, J. Feedback for physicists: A tutorial essay on control. Rev. Mod. Phys. 2005, 77, 783. [Google Scholar] [CrossRef] [Green Version]
- Schöll, E.; Schuster, H.G. (Eds.) Handbook of Chaos Control; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Német, N.; Parkins, S. Enhanced optical squeezing from a degenerate parametric amplifier via time-delayed coherent feedback. Phys. Rev. A 2016, 94, 023809. [Google Scholar] [CrossRef] [Green Version]
- Mijalkov, M.; McDaniel, A.; Wehr, J.; Volpe, G. Engineering sensorial delay to control phototaxis and emergent collective behaviors. Phys. Rev. X 2016, 6, 011008. [Google Scholar] [CrossRef] [Green Version]
- Bruot, N.; Damet, L.; Kotar, J.; Cicuta, P.; Lagomarsino, M.C. Noise and synchronization of a single active colloid. Phys. Rev. Lett. 2011, 107, 094101. [Google Scholar] [CrossRef] [Green Version]
- Masoller, C. Noise-Induced Resonance in Delayed Feedback Systems. Phys. Rev. Lett. 2002, 88, 034102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, X.; Wolkenhauer, O.; Vera, J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res. 2016, 44, 6019–6035. [Google Scholar] [CrossRef] [Green Version]
- Josić, K.; López, J.M.; Ott, W.; Shiau, L.; Bennett, M.R. Stochastic delay accelerates signaling in gene networks. PLoS Comput. Biol. 2011, 7, e1002264. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.; López, J.M.; Ott, W.; Josić, K.; Bennett, M.R. Transcriptional Delay Stabilizes Bistable Gene Networks. Phys. Rev. Lett. 2013, 111, 058104. [Google Scholar] [CrossRef] [Green Version]
- Rateitschak, K.; Wolkenhauer, O. Intracellular delay limits cyclic changes in gene expression. Math. Biosci. 2007, 205, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Bratsun, D.; Volfson, D.; Tsimring, L.S.; Hasty, J. Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. USA 2005, 102, 14593–14598. [Google Scholar] [CrossRef] [Green Version]
- Parmar, K.; Blyuss, K.B.; Kyrychko, Y.N.; Hogan, S.J. Time-delayed models of gene regulatory networks. Comput. Math. Meth. M. 2015, 2015, 347273. [Google Scholar] [CrossRef] [Green Version]
- Friedman, N.; Cai, L.; Xie, X.S. Linking stochastic dynamics to population distribution: An analytical framework of gene expression. Phys. Rev. Lett. 2006, 97, 168302. [Google Scholar] [CrossRef] [Green Version]
- Schiering, C.; Wincent, E.; Metidji, A.; Iseppon, A.; Li, Y.; Potocnik, A.J.; Omenetti, S.; Henderson, C.J.; Wolf, C.R.; Nebert, D.W.; et al. Feedback control of AHR signalling regulates intestinal immunity. Nature 2017, 542, 242. [Google Scholar] [CrossRef] [Green Version]
- Pardee, A.B. Regulation of Cell Metabolism; J. and A. Churchill LTD: London, UK, 1959; p. 295. [Google Scholar]
- Ito, S.; Sagawa, T. Maxwell’s demon in biochemical signal transduction with feedback loop. Nat. Commun. 2015, 6, 7498. [Google Scholar] [CrossRef] [Green Version]
- Yi, T.M.; Huang, Y.; Simon, M.I.; Doyle, J. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. USA 2000, 97, 4649–4653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micali, G.; Endres, R.G. Bacterial chemotaxis: Information processing, thermodynamics, and behavior. Curr. Opin. Microbiol. 2016, 30, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [Google Scholar] [CrossRef] [Green Version]
- Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. Thermodynamics of quantum-jump-conditioned feedback control. Phys. Rev. E 2013, 88, 062107. [Google Scholar] [CrossRef] [Green Version]
- Carmele, A.; Kabuss, J.; Schulze, F.; Reitzenstein, S.; Knorr, A. Single photon delayed feedback: A way to stabilize intrinsic quantum cavity electrodynamics. Phys. Rev. Lett. 2013, 110, 013601. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.; Bechhoefer, J. Virtual potentials for feedback traps. Phys. Rev. E 2012, 86, 061106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, Y.; Gavrilov, M.; Bechhoefer, J. High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 2014, 113, 190601. [Google Scholar] [CrossRef] [Green Version]
- Khadka, U.; Holubec, V.; Yang, H.; Cichos, F. Active Particles Bound by Information Flows. Nat. Commun. 2018, 9, 3864. [Google Scholar] [CrossRef]
- Lavergne, F.A.; Wendehenne, H.; Bäuerle, T.; Bechinger, C. Group formation and cohesion of active particles with visual perception—Dependent motility. Science 2019, 364, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Debiossac, M.; Grass, D.; Alonso, J.J.; Lutz, E.; Kiesel, N. Thermodynamics of continuous non-Markovian feedback control. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wallin, A.E.; Ojala, H.; Hæggström, E.; Tuma, R. Stiffer optical tweezers through real-time feedback control. Appl. Phys. Lett. 2008, 92, 224104. [Google Scholar] [CrossRef] [Green Version]
- Balijepalli, A.; Gorman, J.J.; Gupta, S.K.; LeBrun, T.W. Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control. Nano Lett. 2012, 12, 2347–2351. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Kadambari, K. Neuronal model with distributed delay: Analysis and simulation study for gamma distribution memory kernel. Biol. Cybern. 2011, 104, 369–383. [Google Scholar]
- Longtin, A. Complex Time-Delay Systems: Theory and Applications; Atay, F.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–195. [Google Scholar]
- Küchler, U.; Mensch, B. Langevins stochastic differential equation extended by a time-delayed term. Stoch. Stoch. Rep. 1992, 40, 23–42. [Google Scholar] [CrossRef]
- Driver, R.D. Ordinary and Delay Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 20. [Google Scholar]
- Forgoston, E.; Schwartz, I.B. Delay-induced instabilities in self-propelling swarms. Phys. Rev. E 2008, 77, 035203(R). [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Ghosh, P.; Riaz, S.S.; Ray, D.S. Time-delay-induced instabilities in reaction-diffusion systems. Phys. Rev. E 2009, 80, 046212. [Google Scholar] [CrossRef] [PubMed]
- Grawitter, J.; van Buel, R.; Schaaf, C.; Stark, H. Dissipative systems with nonlocal delayed feedback control. New J. Phys. 2018, 20, 113010. [Google Scholar] [CrossRef]
- Mackey, M.C.; Tyran-Kamińska, M. How can we describe density evolution under delayed dynamics? Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 043114. [Google Scholar] [CrossRef]
- Mackey, M.C.; Nechaeva, I.G. Noise and stability in differential delay equations. J. Dyn. Diff. Equat. 1994, 6, 395–426. [Google Scholar] [CrossRef]
- Safonov, L.; Tomer, E.; Strygin, V.; Ashkenazy, Y.; Havlin, S. Delay-induced chaos with multifractal attractor in a traffic flow model. EPL (Europhys. Lett.) 2002, 57, 151. [Google Scholar] [CrossRef] [Green Version]
- Khrustova, N.; Veser, G.; Mikhailov, A.; Imbihl, R. Delay-induced chaos in catalytic surface reactions: No reduction on Pt (100). Phys. Rev. Lett. 1995, 75, 3564. [Google Scholar] [CrossRef] [PubMed]
- Loos, S.A.M.; Klapp, S.H.L. Fokker-Planck equations for time-delayed systems via Markovian Embedding. J. Stat. Phys. 2019, 177, 95–118. [Google Scholar] [CrossRef] [Green Version]
- Munakata, T.; Rosinberg, M.L. Entropy production and fluctuation theorems for Langevin processes under continuous non-Markovian feedback control. Phys. Rev. Lett. 2014, 112, 180601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loos, S.A.M.; Klapp, S.H.L. Heat flow due to time-delayed feedback. Sci. Rep. 2019, 9, 2491. [Google Scholar] [CrossRef]
- Pyragas, K. Continuous control of chaos by self-controlling feedback. Phys. Lett. A 1992, 170, 421–428. [Google Scholar] [CrossRef]
- Pyragas, K. Control of chaos via extended delay feedback. Phys. Lett. A 1995, 206, 323–330. [Google Scholar] [CrossRef]
- Fiedler, B.; Nieto, A.L.; Rand, R.H.; Sah, S.M.; Schneider, I.; de Wolff, B. Coexistence of infinitely many large, stable, rapidly oscillating periodic solutions in time-delayed Duffing oscillators. J. Differ. Equ. 2020, 268, 5969–5995. [Google Scholar] [CrossRef] [Green Version]
- Tsimring, L.S.; Pikovsky, A. Noise-Induced Dynamics in Bistable Systems with Delay. Phys. Rev. Lett. 2001, 87, 250602. [Google Scholar] [CrossRef] [Green Version]
- Khadem, S.M.J.; Klapp, S.H. Delayed feedback control of active particles: A controlled journey towards the destination. Phys. Chem. Chem. Phys. 2019, 21, 13776. [Google Scholar] [CrossRef] [Green Version]
- Schneider, I.; Bosewitz, M. Eliminating restrictions of time-delayed feedback control using equivariance. Disc. Cont. Dyn. Syst. A 2016, 36, 451–467. [Google Scholar] [CrossRef] [Green Version]
- Rosinberg, M.L.; Munakata, T.; Tarjus, G. Stochastic thermodynamics of Langevin systems under time-delayed feedback control: Second-law-like inequalities. Phys. Rev. E 2015, 91, 042114. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Qian, H. Entropy production of Brownian macromolecules with inertia. Phys. Rev. Lett. 2004, 93, 120602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.H.; Qian, H. Fluctuation theorems for a molecular refrigerator. Phys. Rev. E 2007, 75, 022102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Sano, M. Effects of error on fluctuations under feedback control. Phys. Rev. E 2011, 84, 021123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, A. Nonequilibrium fluctuation theorem for system under discrete and continuous feedback control. Phys. Rev. E 2012, 86, 021107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munakata, T.; Rosinberg, M. Entropy production and fluctuation theorems under feedback control: The molecular refrigerator model revisited. J. Stat. Mech. Theory Exp. 2012, 2012, P05010. [Google Scholar] [CrossRef] [Green Version]
- Munakata, T.; Rosinberg, M. Feedback cooling, measurement errors, and entropy production. J. Stat. Mech. Theory Exp. 2013, 2013, P06014. [Google Scholar] [CrossRef] [Green Version]
- Loos, S.A.M.; Klapp, S.H.L. Irreversibility, heat and information flows induced by non-reciprocal interactions. NJP 2020, 123051. [Google Scholar] [CrossRef]
- Melnyk, S.; Usatenko, O.; Yampol’skii, V. Memory-dependent noise-induced resonance and diffusion in non-Markovian systems. Phys. Rev. 2021, 103, 032139. [Google Scholar]
- Kotar, J.; Leoni, M.; Bassetti, B.; Lagomarsino, M.C.; Cicuta, P. Hydrodynamic synchronization of colloidal oscillators. Proc. Natl. Acad. Sci. USA 2010, 107, 7669–7673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahnel, M.; Behrndt, M.; Jannasch, A.; Schäffer, E.; Grill, S.W. Measuring the complete force field of an optical trap. Opt. Lett. 2011, 36, 1260–1262. [Google Scholar] [CrossRef]
- MacDonald, N.; Lags, T. Lecture Notes in Biomathematics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 17, pp. 1059–1062. [Google Scholar]
- Smith, H.L. An Introduction to Delay Differential Equations with Applications to the Life Sciences; Chapter Distributed Delay Equations and the Linear Chain Trick; Springer: New York, NY, USA, 2011; Volume 57. [Google Scholar]
- Zwanzig, R. Nonlinear generalized Langevin equations. J. Stat. Phys. 1973, 9, 215–220. [Google Scholar] [CrossRef]
- MacDonald, N.; MacDonald, N. Biological Delay Systems: Linear Stability Theory; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Boese, F. Stability conditions for the general linear difference-differential equation with constant coefficients and one constant delay. J. Math. Anal. Appl. 1989, 140, 136–176. [Google Scholar] [CrossRef] [Green Version]
- Crauste, F. Complex Time-Delay Systems: Theory and Applications, Atay, F.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 263–296. [Google Scholar]
- Giuggioli, L.; McKetterick, T.J.; Kenkre, V.M.; Chase, M. Fokker–Planck description for a linear delayed Langevin equation with additive Gaussian noise. J. Phys. A 2016, 49, 384002. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Nelson, P.W.; Ulsoy, A.G. Time-Delay Systems: Analysis and Control Using the Lambert W Function; World Scientific: Singapore, 2010. [Google Scholar]
- Schöll, E.; Hövel, P.; Flunkert, V.; Dahlem, M.A. Time-delayed feedback control: From simple models to lasers and neural systems. In Complex Time-Delay Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 85–150. [Google Scholar]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [Green Version]
- Sekimoto, K. Stochastic Energetics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 799. [Google Scholar]
- Crisanti, A.; Puglisi, A.; Villamaina, D. Nonequilibrium and information: The role of cross correlations. Phys. Rev. E 2012, 85, 061127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosinberg, M.L.; Tarjus, G.; Munakata, T. Stochastic thermodynamics of Langevin systems under time-delayed feedback control. II. Nonequilibrium steady-state fluctuations. Phys. Rev. E 2017, 95, 022123. [Google Scholar] [CrossRef] [Green Version]
- Lebowitz, J.L.; Spohn, H. A Gallavotti—Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 1999, 95, 333–365. [Google Scholar] [CrossRef] [Green Version]
- Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. Thermodynamics of a physical model implementing a Maxwell demon. Phys. Rev. Lett. 2013, 110, 040601. [Google Scholar] [CrossRef] [Green Version]
- Vishen, A.S. Heat dissipation rate in a nonequilibrium viscoelastic medium. J. Stat. Mech. Theory Exp. 2020, 2020, 063201. [Google Scholar] [CrossRef]
- Caprini, L.; Marconi, U.M.B.; Puglisi, A.; Vulpiani, A. The entropy production of Ornstein—Uhlenbeck active particles: A path integral method for correlations. J. Stat. Mech. Theor. Exp. 2019, 2019, 053203. [Google Scholar] [CrossRef] [Green Version]
- Sarracino, A.; Villamaina, D.; Gradenigo, G.; Puglisi, A. Irreversible dynamics of a massive intruder in dense granular fluids. EPL (Europhys. Lett.) 2010, 92, 34001. [Google Scholar] [CrossRef] [Green Version]
- Doerries, T.; Loos, S.A.M.; Klapp, S.H.L. Correlation functions of non-Markovian systems out of equilibrium: Analytical expressions beyond single-exponential memory. J. Stat. Mech. Theory Exp. 2021, 3, 033202. [Google Scholar] [CrossRef]
- Dabelow, L.; Bo, S.; Eichhorn, R. Irreversibility in active matter systems: Fluctuation theorem and mutual information. Phys. Rev. X 2019, 9, 021009. [Google Scholar] [CrossRef] [Green Version]
- Ohkuma, T.; Ohta, T. Fluctuation theorems for non-linear generalized Langevin systems. J. Stat. Mech. Theory Exp. 2007, 2007, P10010. [Google Scholar] [CrossRef]
- Speck, T.; Seifert, U. The Jarzynski relation, fluctuation theorems, and stochastic thermodynamics for non-Markovian processes. J. Stat. Mech. Theory Exp. 2007, 2007, L09002. [Google Scholar] [CrossRef]
- Horowitz, J.M.; Gingrich, T.R. Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat. Phys. 2020, 16, 15–20. [Google Scholar] [CrossRef]
- Barato, A.C.; Seifert, U. Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 2015, 114, 158101. [Google Scholar] [CrossRef] [Green Version]
- Di Terlizzi, I.; Baiesi, M. A thermodynamic uncertainty relation for a system with memory. J. Phys. Math. Theor. 2020, 53, 474002. [Google Scholar] [CrossRef]
- Rosinberg, M.; Tarjus, G. Comment on Thermodynamic uncertainty relation for time-delayed Langevin systems. arXiv 2018, arXiv:1810.12467. [Google Scholar]
- Horowitz, J.M.; Sandberg, H. Second-law-like inequalities with information and their interpretations. New J. Phys. 2014, 16, 125007. [Google Scholar] [CrossRef]
- Hänggi, P.; Thomas, H. Stochastic processes: Time evolution, symmetries and linear response. Phys. Rep. 1982, 88, 207–319. [Google Scholar] [CrossRef]
- Geiss, D.; Kroy, K.; Holubec, V. Brownian molecules formed by delayed harmonic interactions. New J. Phys. 2019, 21, 093014. [Google Scholar] [CrossRef]
- Puglisi, A.; Villamaina, D. Irreversible effects of memory. EPL 2009, 88, 30004. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loos, S.A.M.; Hermann, S.; Klapp, S.H.L. Medium Entropy Reduction and Instability in Stochastic Systems with Distributed Delay. Entropy 2021, 23, 696. https://doi.org/10.3390/e23060696
Loos SAM, Hermann S, Klapp SHL. Medium Entropy Reduction and Instability in Stochastic Systems with Distributed Delay. Entropy. 2021; 23(6):696. https://doi.org/10.3390/e23060696
Chicago/Turabian StyleLoos, Sarah A. M., Simon Hermann, and Sabine H. L. Klapp. 2021. "Medium Entropy Reduction and Instability in Stochastic Systems with Distributed Delay" Entropy 23, no. 6: 696. https://doi.org/10.3390/e23060696