# Measuring Causal Invariance Formally

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

Minimal Criterion: C is a cause of E if there is at least one ideal intervention on C that changes the value of E

## 2. Mutual Causal Information and Range of Influence

## 3. Measuring Invariance

## 4. Example

## 5. Invariance and Non-Nominal Variables

## 6. Conclusions

## Funding

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

## Appendix B

## References

- Bourrat, P. Variation of Information as a Measure of One-to-One Causal Specificity. Eur. J. Philos. Sci.
**2019**, 9, 11. [Google Scholar] [CrossRef] - Woodward, J. Making Things Happen: A Theory of Causal Explanation; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Woodward, J. Causation in Biology: Stability, Specificity, and the Choice of Levels of Explanation. Biol. Philos.
**2010**, 25, 287–318. [Google Scholar] [CrossRef] - Griffiths, P.E.; Pocheville, A.; Calcott, B.; Stotz, K.; Kim, H.; Knight, R. Measuring Causal Specificity. Philos. Sci.
**2015**, 82, 529–555. [Google Scholar] [CrossRef][Green Version] - Pocheville, A.; Griffiths, P.E.; Stotz, K. Comparing Causes – an Information-Theoretic Approach to Specificity, Proportionality and Stability. In Proceedings of the 15th Congress of Logic, Methodology and Philosophy of Science, Helsinki, Finland, 3–10 August 2015; Leitgeb, H., Niiniluoto, I., Sober, E., Seppälä, P., Eds.; College Publications: London, UK, 2015; pp. 260–275. [Google Scholar]
- Woodward, J. Explanation and Invariance in the Special Sciences. Br. J. Philos. Sci.
**2000**, 51, 197–254. [Google Scholar] [CrossRef][Green Version] - Weber, M. The Central Dogma as a Thesis of Causal Specificity. Hist. Philos. Life Sci.
**2006**, 28, 595–609. [Google Scholar] - Waters, C.K. Causes That Make a Difference. J. Philos.
**2007**, 104, 551–579. [Google Scholar] [CrossRef][Green Version] - Lean, O.M. Binding Specificity and Causal Selection in Drug Design. Philos. Sci.
**2020**, 87, 70–90. [Google Scholar] [CrossRef] - Bourrat, P. Causation and Single Nucleotide Polymorphism Heritability. Philos. Sci.
**2020**, 87, 1073–1083. [Google Scholar] [CrossRef] - Griffiths, P.E.; Stotz, K. Genetics and Philosophy: An Introduction; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Weber, M. Causal Selection versus Causal Parity in Biology: Relevant Counterfactuals and Biologically Normal Interventions. In Philosophical Perspectives on Causal Reasoning in Biology; Waters, C.K., Woodward, J., Eds.; Number XXI in Minnesota Studies in Philosophy of Science; University of Minnesota Press: Minneapolis, MN, USA, in press.
- Calcott, B. Causal Specificity and the Instructive–Permissive Distinction. Biol. Philos.
**2017**, 32, 481–505. [Google Scholar] [CrossRef] - Bourrat, P. On Calcott’s Permissive and Instructive Cause Distinction. Biol. Philos.
**2019**, 34, 1. [Google Scholar] [CrossRef] - Lynch, K.E.; Bourrat, P. Interpreting Heritability Causally. Philos. Sci.
**2017**, 84, 14–34. [Google Scholar] [CrossRef][Green Version] - Bourrat, P. Heritability, Causal Influence and Locality. Synthese
**2019**, in press. [Google Scholar] [CrossRef] - Bourrat, P. Have Causal Claims About the Gut Microbiome Been Over-Hyped? BioEssays
**2018**, 40, 1800178. [Google Scholar] [CrossRef] - Ross, L.N.; Woodward, J.F. Koch’s Postulates: An Interventionist Perspective. Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Biol. Biomed. Sci.
**2016**, 59, 35–46. [Google Scholar] [CrossRef][Green Version] - Garner, W.R.; McGill, W.J. The Relation between Information and Variance Analyses. Psychometrika
**1956**, 21, 219–228. [Google Scholar] [CrossRef] - Korb, K.B.; Nyberg, E.P.; Hope, L. A New Causal Power Theory. In Causality in the Sciences; Illari, P.M., Russo, F., Williamson, J., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 628–652. [Google Scholar]
- Tononi, G.; Sporns, O.; Edelman, G.M. Measures of Degeneracy and Redundancy in Biological Networks. Proc. Natl. Acad. Sci. USA
**1999**, 96, 3257–3262. [Google Scholar] [CrossRef][Green Version] - Collier, J.D. Causation Is the Transfer of Information. In Causation and Laws of Nature; Australasian Studies in History and Philosophy of Science; Springer: Dordrecht, The Netherlands, 1999; pp. 215–245. [Google Scholar]
- Collier, J.D. Information, Causation and Computation. In Information and Computation: Essays on Scientific and Philosophical Understanding of Foundations of Information and Computation; Dodig-Crnkovic, G., Burgin, B., Eds.; World Scientific: Singapore, 2011; Volume 2, pp. 89–106. [Google Scholar]
- Andersen, H.K. Pattens, Information, and Causation. J. Philos.
**2017**, 114, 592–622. [Google Scholar] [CrossRef] - Shannon, C. A Mathematical Theory of Communication. Bell Syst. Tech. J.
**1948**, 27, 379–423. [Google Scholar] [CrossRef][Green Version] - Pearl, J. Causality: Models, Reasoning, and Inference, 2nd ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Fano, R.M. Transmission of Information—A Statistical Theory of Communication; The MIT Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Pearl, J. A Probabilistic Calculus of Actions. In Uncertainty Proceedings 1994, Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence, Washington DC, USA, 29–31 July 1994; Morgan Kaufmann Publishers: San Francisco, CA, USA, 1994; pp. 454–462. [Google Scholar] [CrossRef][Green Version]
- Medland, S.E.; Nyholt, D.R.; Painter, J.N.; McEvoy, B.P.; McRae, A.F.; Zhu, G.; Gordon, S.D.; Ferreira, M.A.; Wright, M.J.; Henders, A.K.; et al. Common Variants in the Trichohyalin Gene Are Associated with Straight Hair in Europeans. Am. J. Hum. Genet.
**2009**, 85, 750–755. [Google Scholar] [CrossRef][Green Version] - Fujimoto, A.; Kimura, R.; Ohashi, J.; Omi, K.; Yuliwulandari, R.; Batubara, L.; Mustofa, M.S.; Samakkarn, U.; Settheetham-Ishida, W.; Ishida, T.; et al. A Scan for Genetic Determinants of Human Hair Morphology: EDAR Is Associated with Asian Hair Thickness. Hum. Mol. Genet.
**2008**, 17, 835–843. [Google Scholar] [CrossRef] - Fujimoto, A.; Nishida, N.; Kimura, R.; Miyagawa, T.; Yuliwulandari, R.; Batubara, L.; Mustofa, M.S.; Samakkarn, U.; Settheetham-Ishida, W.; Ishida, T.; et al. FGFR2 Is Associated with Hair Thickness in Asian Populations. J. Hum. Genet.
**2009**, 54, 461–465. [Google Scholar] [CrossRef] [PubMed][Green Version] - Loussouarn, G.; Garcel, A.L.; Lozano, I.; Collaudin, C.; Porter, C.; Panhard, S.; Saint-Léger, D.; De La Mettrie, R. Worldwide Diversity of Hair Curliness: A New Method of Assessment. Int. J. Dermatol.
**2007**, 46, 2–6. [Google Scholar] [CrossRef] [PubMed] - De la Mettrie, R.; Saint-Léger, D.; Loussouarn, G.; Garcel, A.L.; Porter, C.; Langaney, A. Shape Variability and Classification of Human Hair: A Worldwide Approach. Hum. Biol.
**2007**, 79, 265–281. [Google Scholar] [CrossRef] [PubMed] - Floridi, L. Semantic Conceptions of Information. In The Stanford Encyclopedia of Philosophy, Spring 2017 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2017. [Google Scholar]
- Vickers, J. The Problem of Induction. In The Stanford Encyclopedia of Philosophy, Spring 2016 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2016. [Google Scholar]

**Figure 1.**Causal diagrams between C and E with different degrees of invariance. In each diagram, each value of C (e.g., ${c}_{1}$, ${c}_{2}$) has the same probability. If there are four possible values of C, then each value has a probability of $\frac{1}{4}$. Furthermore, when more than one arrow leaves from a particular value of C, each arrow has the same probability conditioned on the value of C it leaves from. For instance two arrows leaving a particular value of C implies a conditional probability of $\frac{1}{2}$ for each arrow. In a context where there are six possible values of C, the overall probability of an arrow leaving a value of C from which overall two arrows are leaving is thus $\frac{1}{2}\times \frac{1}{6}=\frac{1}{12}$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bourrat, P.
Measuring Causal Invariance Formally. *Entropy* **2021**, *23*, 690.
https://doi.org/10.3390/e23060690

**AMA Style**

Bourrat P.
Measuring Causal Invariance Formally. *Entropy*. 2021; 23(6):690.
https://doi.org/10.3390/e23060690

**Chicago/Turabian Style**

Bourrat, Pierrick.
2021. "Measuring Causal Invariance Formally" *Entropy* 23, no. 6: 690.
https://doi.org/10.3390/e23060690