# Partitioned Stator Switched Flux Machine: Novel Winding Configurations

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design of Different Winding Configurations

## 3. Operation Principle and Machine Topology

## 4. Electromagnetic Performance

#### 4.1. Cogging Torque

#### 4.2. Flux Regulation

#### 4.3. Torque

## 5. Optimization Procedure

#### 5.1. Analytical Design Procedure of Power Splitting Ratio for Torque Maximization

#### 5.2. Optimal Electric Loading

#### 5.3. Genetic Algorithm

## 6. Torque Comparison with HE-PSSFM1 and HE-PSSFM2 Machine

## 7. Stress Analysis

## 8. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Kahourzade, S.; Mahmoudi, A.; Soong, W.L.; Ertugrul, N.; Pellegrino, G. Estimation of PM Machine Efficiency Maps From Limited Data. IEEE Trans. Ind. Appl.
**2020**, 56, 2612–2621. [Google Scholar] [CrossRef] - Ding, H.; Liu, M.; Sarlioglu, B. Design of Conical Rotor Flux-Switching Permanent Magnet Machine with Improved Flux-Weakening Capability for Traction Applications. In Proceedings of the 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Istanbul, Turkey, 27–29 August 2019; pp. 172–177. [Google Scholar]
- Khan, F.; Ullah, W.; Sulaiman, E. Sub-Domain Modelling and Multi-Variable Optimization of Partitioned PM Consequent Pole Flux Switching Machines. IET Electr. Power Appl.
**2020**, 14, 1360–1369. [Google Scholar] [CrossRef] - Venkataramanujam, V.; Larochelle, P.M. Design and development of planar reconfigurable motion generators. Mech. Based Des. Struct. Mach.
**2016**, 44, 426–439. [Google Scholar] [CrossRef] - Hua, H.; Hua, W.; Zhao, G.; Cheng, M. Torque Production Mechanism of Switched Reluctance Machines with Air-gap Field Modulation Principle. IEEE Trans. Energy Convers.
**2020**. [Google Scholar] [CrossRef] - Henneberger, G.; HADJI, M.J.; Ciorba, R. Design and test of permanent magnet synchronous motor with auxiliary excitation winding for electric vehicle application. In Proceedings of the European Power Electronics Chapter Symposium, Lausanne, Switzerland, 19–20 October 1994. [Google Scholar]
- Fodorean, D.; Djerdir, A.; Viorel, I.A.; Miraoui, A. A double excited synchronous machine for direct drive application—Design and prototype tests. IEEE Trans. Energy Convers.
**2007**, 22, 656–665. [Google Scholar] [CrossRef] - Laldin, O.; Sudhoff, S.D.; Pekarek, S. Analysis and design of hybrid machines for DC generation. IEEE Trans. Energy Convers.
**2015**, 30, 1192–1199. [Google Scholar] [CrossRef] - Di Barba, P.; Bonislawski, M.; Palka, R.; Paplicki, P.; Wardach, M. Design of hybrid excited synchronous machine for electrical vehicles. IEEE Trans. Magn.
**2015**, 51, 1–6. [Google Scholar] [CrossRef] - Amara, Y.; Vido, L.; Gabsi, M.; Hoang, E.; Ahmed, A.H.B.; Lecrivain, M. Hybrid excitation synchronous machines: Energy-efficient solution for vehicles propulsion. IEEE Trans. Veh. Technol.
**2008**, 58, 2137–2149. [Google Scholar] [CrossRef] - Zhang, Z.; Yan, Y.; Yang, S.; Bo, Z. Principle of operation and feature investigation of a new topology of hybrid excitation synchronous machine. IEEE Trans. Magn.
**2008**, 44, 2174–2180. [Google Scholar] [CrossRef] - Zhang, Z.; Ma, S.; Dai, J.; Yan, Y. Investigation of hybrid excitation synchronous machines with axial auxiliary air-gaps and non-uniform air-gaps. IEEE Trans. Ind. Appl.
**2013**, 50, 1729–1737. [Google Scholar] [CrossRef] - Khan, F.; Sulaiman, E.; Ahmad, M.Z. A novel wound field flux switching machine with salient pole rotor and nonoverlapping windings. Turk. J. Electr. Eng. Comput. Sci.
**2017**, 25, 950–964. [Google Scholar] [CrossRef] - Khan, F.; Sulaiman, E. Design optimization and efficiency analysis of 12slot-10pole wound field flux switching machine. In Proceedings of the 2015 IEEE International Magnetics Conference (INTERMAG), Beijing, China, 11–15 May 2015; p. 1. [Google Scholar]
- Shah, F.M.; Maqsood, S.; Shah, Z.M.; Muhammad, F.; Kim, S. Multilevel LVDC Distribution System with Voltage Unbalancing and Disturbance Rejection Control Topology. IEEE Access
**2020**, 8, 133787–133801. [Google Scholar] [CrossRef] - Tong, M.; Cheng, M.; Hua, W.; Ding, S. A Single-Phase On-Board Two-Stage Integrated Battery Charger for EVs Based on a Five-Phase Hybrid-Excitation Flux-Switching Machine. IEEE Trans. Veh. Technol.
**2020**, 69, 3793–3804. [Google Scholar] [CrossRef] - Ur Rahman, L.; Khan, F.; Khan, M.A.; Ahmad, N.; Khan, H.A.; Shahzad, M.; Ali, S.; Ali, H. Modular Rotor Single Phase Field Excited Flux Switching Machine with Non-Overlapped Windings. Energies
**2019**, 12, 1576. [Google Scholar] [CrossRef] [Green Version] - Owen, R.L.; Zhu, Z.; Jewell, G.W. Hybrid-excited flux-switching permanent-magnet machines with iron flux bridges. IEEE Trans. Magn.
**2010**, 46, 1726–1729. [Google Scholar] [CrossRef] - Hua, H.; Zhu, Z.; Zhan, H. Novel consequent-pole hybrid excited machine with separated excitation stator. IEEE Trans. Ind. Electron.
**2016**, 63, 4718–4728. [Google Scholar] [CrossRef] - Hua, H.; Zhu, Z. Novel partitioned stator hybrid excited switched flux machines. IEEE Trans. Energy Convers.
**2017**, 32, 495–504. [Google Scholar] [CrossRef] - Khan, F.; Sulaiman, E.; Ahmad, M.Z. Review of switched flux wound-field machines technology. IETE Tech. Rev.
**2017**, 34, 343–352. [Google Scholar] [CrossRef] - Eger, T.; Bol, T.; Thanu, A.; Daróczy, L.; Janiga, G.; Schroth, R.; Thévenin, D. Application of Entropy Generation to Improve Heat Transfer of Heat Sinks in Electric Machines. Entropy
**2017**, 19, 255. [Google Scholar] [CrossRef] [Green Version] - Farrell, R.E.; Kongthon, J. The square root rule—A case study of a scaling factor for machines with dynamic similitude. Mech. Based Des. Struct. Mach.
**2019**, 1–18. [Google Scholar] [CrossRef]

**Figure 3.**Flux distribution at different rotor positions by PM excitation only. (

**a**) Electrical degree, ${\theta}_{e}={0}^{\circ}$, ${\theta}_{e}={90}^{\circ}$. (

**b**) Electrical degree, ${\theta}_{e}={180}^{\circ}$, ${\theta}_{e}={270}^{\circ}$.

**Figure 6.**Flux distribution at no load/cooling jacket of inner stator HE-PSSFM3; (

**a**) flux enhancing, (

**b**) flux enhancing and (

**c**) cooling jacket of inner stator HE-PSSFM3.

**Figure 7.**Flux linkage/flux density plots at different rotor position; (

**a**) flux linkage with combined excitation, and (

**b**) flux density plots at different rotor position.

**Figure 14.**Variation of normalized torque with ${\lambda}_{s}$: Comparison between analytical and FEA predictions.

**Figure 17.**No-load flux linkage at PM excitation only; (

**a**) flux linkage of initial and designs, and (

**b**) flux linkage of 2D and 3D design.

Characteristic | Unit | Different Winding Configuration | ||
---|---|---|---|---|

Inner Toroidal | Outer Toroidal | Inner and Outer Toroidal | ||

Cogging torque | mNm | 438.5 | 683.4 | 484.1 |

Flux linkage | mWb | 12.4 | 5.1 | 4.3 |

Average torque | mNm | 1287.25 | 560 | 250 |

Parameter | HE-PSSFM3 | HE-PSSFM2 | HE-PSSFM1 |
---|---|---|---|

Stator slot number | 12 | 12 | 12 |

PM height (mm) | 1.67 | 5.6 | 5.6 |

Slot package factor | 0.5 | 0.5 | 0.5 |

PM thickness (mm) | 10 | 3 | 3 |

PM volume (mm${}^{3}$) | 2500 | 5000 | 2500 |

Rotor pole-pair number | 10 | 10 | 10 |

Inner radius of outer stator (mm) | 31.95 | 31.95 | 31.95 |

Rotor inner pole arc | 24 | 24 | 24 |

Inner stator inner radius (mm) | 10.4 | 10.4 | 10.4 |

Rotor thickness (mm) | 3.5 | 3.5 | 3.5 |

Rated speed (rpm) | 400 | 400 | 400 |

Inner stator outer radius (mm) | 27.45 | 27.45 | 27.45 |

Air-gap length (mm) | 0.5 | 0.5 | 0.5 |

Active axial length (mm) | 25 | 25 | 25 |

Inner stator yoke radius | 7.5 | 16.5 | 16.5 |

Outer radius stator (mm) | 45 | 45 | 45 |

HE-PSSFM3 | HE-PSSFM1 | HE-PSSFM2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|

Field Winding | Unit | 0 | Js = −5 | Js = 5 | 0 | Js = 5 | Js= −5 | 0 | Js = 5 | Js= −5 |

Tavg | Nm | 1.29 | 1.25 | 1.34 | 1.0 | 1.12 | 0.87 | 1.08 | 1.28 | 1.0012 |

Parameter | Unit | Initial Design | Optimize Design |
---|---|---|---|

Stator slot number | Not exist | 12 | 12 |

PM height | mm | 1.67 | 1.67 |

Slot package factor | Not exist | 0.5 | 0.5 |

PM thickness | Mm | 10 | 10 |

PM volume | mm${}^{3}$ | 2500 | 2500 |

Stator yoke radius | mm | 43 | 41 |

Active axial length | mm | 25 | 25 |

Rotor inner pole arc | deg. | 24 | 16.5 |

Rated speed | r/min | 400 | 400 |

Rotor outer pole arc | deg. | 25 | 24 |

Rotor radial thickness | mm | 3.5 | 3.5 |

Inner stator outer radius | mm | 27.45 | 27.45 |

Inner stator inner radius | mm | 10.4 | 10.4 |

Rotor pole-pair number | Not exist | 10 | 10 |

Outer Stator inner radius | mm | 31.95 | 31.95 |

Air-gap length | mm | 0.5 | 0.5 |

Stator outer radius | mm | 45 | 45 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Irfan, M.; Rehman, N.U.; Khan, F.; Muhammad, F.; Alwadie, A.S.; Glowacz, A.
Partitioned Stator Switched Flux Machine: Novel Winding Configurations. *Entropy* **2020**, *22*, 920.
https://doi.org/10.3390/e22090920

**AMA Style**

Irfan M, Rehman NU, Khan F, Muhammad F, Alwadie AS, Glowacz A.
Partitioned Stator Switched Flux Machine: Novel Winding Configurations. *Entropy*. 2020; 22(9):920.
https://doi.org/10.3390/e22090920

**Chicago/Turabian Style**

Irfan, Muhammad, Naveed Ur Rehman, Faisal Khan, Fazal Muhammad, Abdullah S. Alwadie, and Adam Glowacz.
2020. "Partitioned Stator Switched Flux Machine: Novel Winding Configurations" *Entropy* 22, no. 9: 920.
https://doi.org/10.3390/e22090920