# A Reliable Auto-Robust Analysis of Blood Smear Images for Classification of Microcytic Hypochromic Anemia Using Gray Level Matrices and Gabor Feature Bank

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. Materials and Methods

#### 3.1. Blood Smear Slide Preparation

#### 3.2. Image Acquisition

#### 3.3. Preprocessing

#### 3.4. Segmentation

#### 3.5. Feature Extraction

#### 3.5.1. Geometric Morphology of Microcytic Hypochromic RBCs

- Area: Area is an important geometrical feature for the detection of microcytes, being small in size compared to other blood cells.
- Circularity: A size-invariant shape descriptor given in Equation (3) which describes a shape to be circular, if the value is closer to 1 and noncircular if the value is closer to 0, where A is Area and P is parameter of a cell.$$Circularity={\displaystyle \frac{4\pi A}{{P}^{2}}}$$
- Rectangularity: It determines the degree of elongation with respect to a rectangle. Equation (4) shows its calculation, where ${A}_{s}$ is area of a shape and ${A}_{r}$ is the area of minimum bounding rectangle.$$Rectangularity={\displaystyle \frac{{A}_{s}}{{A}_{r}}}$$
- Concavity: This property is used to determine how much an object is concave; we applied it on the shapes for identification of the amount of central pallor area occupied in an RBC, given by Equation (5)$$Concavity={\displaystyle \frac{{A}_{c}}{{A}_{H}}}$$
- Convexity: A cell convexity can be determined by Equation (6), which identifies a shape through its boundary convexity.$$Convexity={\displaystyle \frac{{P}_{C}H}{{P}_{C}}}$$

#### 3.5.2. RBC Texture Feature Calculation

- RGB mean and variance of hypochromic microcytic RBCs: The mean values ${\mu}_{r}$, ${\mu}_{g}$, and ${\mu}_{b}$ of pixels of each RBC in R, G, and B, respectively, were calculated in Equation (7).$$\begin{array}{c}\hfill {\mu}_{r}={\displaystyle \frac{1}{N}}\sum _{1}^{N}r(x,y)\\ \hfill {\mu}_{g}={\displaystyle \frac{1}{N}}\sum _{1}^{N}g(x,y)\\ \hfill {\mu}_{b}={\displaystyle \frac{1}{N}}\sum _{1}^{N}b(x,y)\end{array}$$The variances ${\left({\sigma}_{r}\right)}^{2}$, ${\left({\sigma}_{g}\right)}^{2}$, and ${\left({\sigma}_{b}\right)}^{2}$ in the channels R, G, and B, respectively, are calculated in Equation (8)).$$\begin{array}{c}\hfill {\left({\sigma}_{r}\right)}^{2}={\displaystyle \frac{\sum {(X-{\mu}_{r})}^{2}}{N}}\\ \hfill {\left({\sigma}_{g}\right)}^{2}={\displaystyle \frac{\sum {(X-{\mu}_{g})}^{2}}{N}}\\ \hfill {\left({\sigma}_{b}\right)}^{2}={\displaystyle \frac{\sum {(X-{\mu}_{b})}^{2}}{N}}\end{array}$$
- GLCM features of Hypochromic Microcytic RBCs: GLCM is the distribution of cooccurring pixel values defined over an N × N image P at a specific offset, or every P’s element determines the occurrences of a pixel with value of gray level, i, lifted by a certain distance to a pixel with value j. Our next six textural features are GLCM features. The mean of 6 GLCM features were determined for offset values conforming to 0${}^{\circ}$, 45${}^{\circ}$, 90${}^{\circ}$, and 135${}^{\circ}$ consuming 8 gray levels (see Figure 5).Maximum Probability: It measures the strongest response of the cooccurrence matrix. The range of values is [0, 1] as given in Equation (9), where ${P}_{ij}$ is the pixels of gray image.$$P=ma{x}_{ij}\left({P}_{ij}\right)$$Correlation: The degree of correlation of a pixel to its neighbor is determined by the correlation factor of the cooccurrence matrix, ranging from 1 to −1 given by Equation (10). This measure cannot be defined if any of the standard deviation $\sigma $ is 0 for the two existing correlations, perfect positive and perfect negative correlation.$$correlation=\sum _{i,j=1}^{K}{\displaystyle \frac{(i-{m}_{r})(j-{m}_{c}){p}_{\left(ij\right)}}{{\sigma}_{r}{\sigma}_{c}}}$$Pixels intensity contrast: It is a measure of intensity contrast between a pixel and its neighbor over the entire image (calculated in Equation (11)).$$contrast=\sum _{i,j=1}^{k}{(i-j)}^{2}{p}_{ij}$$Energy: It is the measurement of uniformity in the intensities of an image (as given in Equation (12)). Its value is 1, if an image is constant and 0 if the intensities are variable.$$Energy=\sum _{i,j=1}^{k}{\left({P}_{(i,j)}\right)}^{2}$$Homogeneity: It measures the spatial closeness of the distribution of elements in the cooccurrence matrix to the diagonal given by (13). The values range is [0, 1], and the maximum value is attained when the matrix is a diagonal.$$homogeneity=\sum _{i,j=1}^{k}{\displaystyle \frac{{P}_{ij}}{1+|i-j|}}$$Entropy: It measure the degree of variability of the elements of the cooccurrence matrix. Its value is 0 if all intensities of ${P}_{ij}$ are 0 and is maximum when all ${P}_{ij}$ are equal. It may be calculated by (14).$$entropy=-\sum _{i,j=1}^{k}{P}_{ij}lo{g}_{2}{P}_{ij}$$
- Run length matrix features of each RBC: The other textural features are created on the gray-level run length matrix (calculated in Equations (15)–(24). The $l\nabla K$ matrix p, where l is the number of gray levels and k is the maximum run length, is defined for a certain image as the total runs with pixels of gray level i and run length j. Likewise, as in the GLCM, the run length matrices were calculated using 8 gray-levels for 30${}^{\circ}$, 60${}^{\circ}$, 90${}^{\circ}$, and 135${}^{\circ}$.Short Run Emphasis (SRE):$$SRE={\displaystyle \frac{1}{R}}\sum _{i=1}^{k}\sum _{j=1}^{k}{\displaystyle \frac{{}_{{P}_{ij}}}{{j}^{2}}}$$Long Run Emphasis (LRE):$$LRE={\displaystyle \frac{1}{R}}\sum _{i=1}^{k}\sum _{j=1}^{k}\left({p}_{i}j\right){j}^{2}$$Gray-Level Nonuniformity (GLN):$$GLN={\displaystyle \frac{1}{R}}\sum _{i=1}^{k}{\left(\sum _{j=1}^{l}\left({p}_{i}j\right)\right)}^{2}$$Run Length Nonuniformity (RLN):$$RLN={\displaystyle \frac{1}{R}}\sum _{j=1}^{l}{\left(\sum _{i=1}^{k}{p}_{ij}\right)}^{2}$$Low Gray-level Run Emphasis (LGRE):$$LGRE={\displaystyle \frac{1}{R}}\sum _{i=1}^{k}\sum _{j=1}^{l}{\displaystyle \frac{pij}{{i}^{2}}}$$High Gray-level Run Emphasis (HGRE):$$HGRE={\displaystyle \frac{1}{R}}\sum _{i=1}^{k}\sum _{j=1}^{l}\left({p}_{ij}\right){i}^{2}$$Short Run Low Gray-level Emphasis (SRLGE):$$SRLGE={\displaystyle \frac{1}{R}}\sum _{i=1}^{k}\sum _{j=1}^{l}{\displaystyle \frac{{p}_{ij}}{{i}^{2}{j}^{2}}}$$Short Run High Gray-level Emphasis (SRHGE):$$SRHGE={\displaystyle \frac{1}{R}}\sum _{i=1}^{k}\sum _{j=1}^{l}{\displaystyle \frac{{p}_{\left(ij\right)}{i}^{2}}{{j}^{2}}}$$Long Run Low Gray-level Emphasis (LRLGE):$$LRLGE={\displaystyle \frac{1}{R}}\sum _{i=1}^{k}\sum _{j=1}^{l}{\displaystyle \frac{{p}_{\left(ij\right){j}^{2}}}{{i}^{2}}}$$Long Run High Gray-level Emphasis (LRHGE):$$LRHGLE={\displaystyle \frac{1}{R}}\sum _{i=1}^{k}\sum _{j=1}^{l}\left({p}_{ij}\right){i}^{2}{j}^{2}$$
- Gabor Feature Extraction: like a human visual processing system, the Gabor filter extracts features at different amplitudes and orientation.$$\begin{array}{c}\hfill \psi (x,y)={\displaystyle \frac{{f}^{2}}{\pi \gamma \eta}}{e}^{-}\left({\displaystyle \frac{{f}^{2}}{{\gamma}^{2}}}{x}^{{}^{\prime}2}\right)+\left({\displaystyle \frac{{f}^{2}}{{\eta}^{2}}}{y}^{{}^{\prime}2}\right){e}^{j2\pi f{x}^{\prime}}\\ \hfill {x}^{\prime}=xcos\theta +ysin\theta \\ \hfill {y}^{\prime}=xsin\theta +ycos\theta \end{array}$$The Gabor filter is the product of a 2D Fourier basis function and origin-centred Gaussian given in Equation (25), where f is the central frequency of the filter, $\gamma $ and $\eta $ are the sharpness or bandwidth measure along the minor and major axes of Gaussian respectively, $\theta $ is the angle of rotation, and ($\eta $/$\gamma $) is the aspect ratio. The analytical form of this function in frequency domain is given in Equation (26) as follow:$$\begin{array}{c}\hfill \psi (u,v)={e}^{-{\displaystyle \frac{{\pi}^{2}}{{f}^{2}}}({\gamma}^{2}{({u}^{\prime}-f)}^{2}+{\eta}^{2}{v}^{{}^{\prime}2})}\\ \hfill {u}^{\prime}=ucos\theta +vsin\theta \\ \hfill {v}^{\prime}=usin\theta +vcos\theta \end{array}$$In the frequency domain given by Equation (27), the function is a single real-valued Gaussian centered at f. A simplified version of a general 2D Gabor filter function in Equations (25) and (26) was formulated by [23], which implements a set of self-similar filters, i.e., Gabor wavelets (rotated and scaled forms of each other, irrespective of the frequency f and orientation $\theta $.Gabor bank or Gabor features were created from responses of Gabor filters in Equations (25) and (26) by using multiple filters on several frequencies ${f}_{m}$ and orientations ${\theta}_{n}$. Frequency in this case corresponds to scale information and is thus drawn from [23]$${f}_{m}={k}^{-m}{f}_{m}ax,m=\{0,\dots ,M-1\}$$

#### 3.6. ADASYN Sampling

#### 3.7. Features Reduction

## 4. Classification

## 5. Results

#### 5.1. Dataset

#### 5.2. Qualitative Results

#### 5.3. Quantitative Results

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Farooqi, N.; Naqvi, M.; Jaffery, S.; Anemia, H.F. Anemia; moderate to severe during pregnancy. Prof. Med. J.
**2014**, 21, 247–252. [Google Scholar] - Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob. Health
**2013**, 1, e16–e25. [Google Scholar] [CrossRef][Green Version] - Jandl, J.H. Blood: Textbook of hematology. Blood
**1996**, 4, 3. [Google Scholar] - Brecher, G.; Jakobek, E.F.; Schneiderman, M.A.; Williams, G.Z.; Schmidt, P.J. Size distribution of erythrocytes. Ann. N. Y. Acad. Sci.
**1962**, 99, 242–261. [Google Scholar] [CrossRef] [PubMed] - Vreugdenhil, G.; Baltus, C.; Eijk, H.V.; Swakk, A. Anaemia of chronic disease: Diagnostic significance of erythrocyte and serological parameters in iron deficient rhuematiod arthritis pateints. Rheumatology
**1990**, 29, 105–110. [Google Scholar] [CrossRef] [PubMed] - Aulakh, R.; Sohi, I.; Singh, T.; Kakkar, N. Red cell distribution width (rdw) in the diagnosis of iron deficiency with microcytic hypochromic anemia. Indian J. Pediatr.
**2009**, 76, 265–268. [Google Scholar] [CrossRef] [PubMed] - Bachman, A.L. Macrocytic hyperchromic anemia in early infancy: Report of a case and review of the literature. Am. J. Dis. Child.
**1936**, 52, 633–647. [Google Scholar] [CrossRef] - Habib, M.A.; Black, K.; Soofi, S.B.; Hussain, I.; Bhatti, Z.; Bhutta, Z.A.; Raynes-Greenow, C. Prevalence and predictors of iron deficiency anemia in children under five years of age in pakistan, a secondary analysis of national nutrition survey data 2011–2012. PLoS ONE
**2016**, 11, e0155051. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Pearson-Prentice-Hall: Upper Saddle River, NJ, USA, 2004; Volume 624. [Google Scholar]
- Moallem, G.; Sari-Sarraf, H.; Poostchi, M.; Maude, R.J.; Silamut, K.; Hossain, M.A.; Antani, S.; Jaeger, S.; Thoma, G. Detecting and segmenting overlapping red blood cells in microscopic images of thin blood smears. In Proceedings of the Medical Imaging 2018: Digital Pathology, Houston, TX, USA, 10–15 February 2018. [Google Scholar]
- Tomari, R.; Zakaria, W.N.W.; Jamil, M.M.A.; Nor, F.M.; Fuad, N.F.N. Computer aided system for red blood cell classification in blood smear image. Procedia Comput. Sci.
**2014**, 42, 206–213. [Google Scholar] [CrossRef][Green Version] - Alomari, Y.M.; Abdullah, S.; Huda, S.N.; Azma, R.Z.; Omar, K. Automatic detection and quantification of wbcs and rbcs using iterative structured circle detection algorithm. Comput. Math. Methods Med.
**2014**, 2014, 979302. [Google Scholar] [CrossRef] [PubMed][Green Version] - Aggarwal, P.; Khatter, A.; Vyas, G. An intensity threshold based image segmentation of malaria infected cells. In Proceedings of the 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 15–16 February 2018; pp. 549–553. [Google Scholar]
- Tek, F.B.; Dempster, A.G.; Kale, Z. Parasite detection and identification for automated thin blood film malaria diagnosis. Comput. Vis. Image Underst.
**2010**, 114, 21–32. [Google Scholar] [CrossRef] - Chen, H.-M.; Tsao, Y.-T.; Tsai, S.-N. Automatic image segmentation and classification based on direction texton technique for hemolytic anemia in thin blood smears. Mach. Vis. Appl.
**2014**, 25, 501–510. [Google Scholar] [CrossRef] - Xu, M.; Papageorgiou, D.P.; Abidi, S.Z.; Dao, M.; Zhao, H.; Karniadakis, G.E. A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Comput. Biol.
**2017**, 13, e1005746. [Google Scholar] [CrossRef] [PubMed] - Sharma, V.; Rathore, A.; Vyas, G. Detection of sickle cell anaemia and thalassaemia causing abnormalities in thin smear of human blood sample using image processing. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016; pp. 1–5. [Google Scholar]
- Ahirwar, N.; Pattnaik, S.; Acharya, B. Advanced image analysis based system for automatic detection and classification of malarial parasite in blood images. Int. J. Inf. Technol. Knowl. Manag.
**2012**, 5, 59–64. [Google Scholar] - Bhagavathi, S.; Niba, S.T. An automatic system for detecting and counting rbc and wbc using fuzzy logic. ARPN J. Eng. Appl. Sci.
**2016**, 11, 6891–6894. [Google Scholar] - Chandrasiri, S.; Samarasinghe, P. Morphology based automatic disease analysis through evaluation of red blood cells. In Proceedings of the 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, Langkawi, Malaysia, 27–29 January 2014; pp. 318–323. [Google Scholar]
- Adewoyin, A. Peripheral blood film-a review. Ann. Ib. Postgrad. Med.
**2014**, 12, 71–79. [Google Scholar] [PubMed] - Daugman, J.G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. JOSA A
**1985**, 2, 1160–1169. [Google Scholar] [CrossRef] [PubMed] - Ilonen, J.; Kamarainen, J.-K.; Paalanen, P.; Hamouz, M.; Kittler, J.; Kalviainen, H. Image feature localization by multiple hypothesis testing of gabor features. IEEE Trans. Image Process.
**2008**, 17, 311–325. [Google Scholar] [CrossRef] [PubMed] - Yung, M.; Brown, E.T.; Rasin, A.; Furst, J.D.; Raicu, D.S. Synthetic sampling for multi-class malignancy prediction. arXiv
**2018**, arXiv:1807.02608. [Google Scholar] - Gao, Y.-L.; Luo, S.-Z.; Wang, Z.-H.; Chen, C.-C.; Pan, J.-Y. Locality sensitive discriminative unsupervised dimensionality reduction. Symmetry
**2019**, 11, 1036. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**(

**a**) A normal blood smear image and (

**b**) microcytic hypochromic, (

**c**) normocytic hypochromic, (

**d**) macrocytic hypochromic, and (

**e**) microcytic hyperchromic anemia.

**Figure 3.**Output images after the preprocessing step: (

**a**) original RGB image, (

**b**) red channel, (

**c**) green channel, (

**d**) blue channel, (

**e**) enhanced green channel, and (

**f**) quantized image leaving behind RBCs.

**Figure 4.**(

**a**) Binarized original image of a sample blood smear, (

**b**) binarized image of a sample blood smear quantized, and (

**c**) exclusive OR of (

**a**,

**b**).

**Figure 5.**(

**a**) Orientation of angles overlayed on a sample red blood cell (RBC) and (

**b**) scanning through 0${}^{\circ}$, 45${}^{\circ}$, 90${}^{\circ}$, and 135${}^{\circ}$.

**Figure 6.**(

**a**) Original image of hyperchromic macrocytic RBC, (

**b**) gray level image of hyperchromic macrocytic RBC, (

**c**) Gabor filter bank of hyperchromic macrocytic RBC, (

**d**) original image of hypochromic microcytic RBC, (

**e**) gray level image of hypochromic microcytic RBC, (

**f**) Gabor filter bank features of hypochromic microcytic RBC, (

**g**) original image of hyperchromic microcytic RBC, (

**h**) gray level image of hyperchromic microcytic RBC, and (

**i**) a hyperchromic microcytic RBC with its Gabor filter bank features.

**Figure 8.**(

**a**,

**d**,

**g**) Original RGB images of a sample blood smear, (

**b**,

**e**,

**h**) removal of white blood cells (WBCs) from the blood smear images, and (

**c**,

**f**,

**i**) enhanced gray-scale images of RBCs in blood smears.

**Figure 9.**Classes of cells among RBCs (

**a**,

**b**) microcytic hypochromic cells, (

**c**) microcytic narmochromic cells, (

**d**) macrocytic hyperchromic cells (

**e**,

**f**) microcytic hyperchromic cells (

**g**) macrocytic Hyperchromic cells, and (

**h**,

**j**) codocytes or taget cells.

**Figure 10.**Graphs showing the results of four types of texture features, (

**a**) GLRLM (

**b**) GLCM (

**c**) GMSE (

**d**) GMA.

Cell Type | Original | Synthetic | Total |
---|---|---|---|

Microcyte | 157 | 197 | 354 |

Normocytes | 270 | 57 | 327 |

Macrocytes | 101 | 211 | 312 |

Hypochromic | 157 | 150 | 340 |

Narmochromic | 380 | 0 | 380 |

Cell No. | Contrast | Correlation | Energy | Homogeneity |
---|---|---|---|---|

Cell1 | 85.40 | 406.62 | 123.52 | 105.8 |

Cell2 | 80.02758 | −112.132 | 136.3636 | 108.52 |

Cell3 | 116.9 | 394.59 | 100 | 93.68 |

Cell4 | 96.18 | 94.716 | 117.85 | 100.0 |

Cell5 | 121.1 | −79.49 | 80 | 92.77 |

Cell6 | 106.2 | −148.7 | 80 | 98.03 |

Cell7 | 86.6 | −201.2 | 120 | 104.07 |

Cell8 | 88.12 | 88.12 | 120 | 104 |

Cell9 | 106.1 | 97.47 | 100 | 98 |

Cell10 | 100 | 100 | 100 | 100 |

Cell No. | SRE | LRE | GLN | RLN | RP | LGRE | HGRE | SRLGE | SRHGE | LRLGE | LRHGE |
---|---|---|---|---|---|---|---|---|---|---|---|

Cell1 | 0.56 | 44.24 | 116.35 | 113.27 | 8.74 | 2.09 | 50.11 | 0.22 | 12.46 | 24.79 | 209.57 |

Cell2 | 0.7 | 40.25 | 126.78 | 108.01 | 8.69 | 2.26 | 39.37 | 0.29 | 14.12 | 25.91 | 127.59 |

Cell3 | 0.43 | 44.88 | 135.02 | 139.61 | 8.47 | 2.02 | 51.45 | 0.18 | 10.59 | 24.89 | 268.0 |

Cell4 | 0.5 | 65.18 | 137.38 | 115.35 | 12.93 | 2.62 | 48.2 | 0.23 | 7.83 | 45.05 | 134.07 |

Cell5 | 88.24 | 106.62 | 94.77 | 106.14 | 102.68 | 93.53 | 110.29 | 80.23 | 86.07 | 96.51 | 118.61 |

Cell6 | 115.4 | 100.85 | 94.51 | 98.77 | 103.26 | 92.73 | 99.82 | 120.77 | 73.02 | 88.5 | 120.18 |

Cell7 | 0.39 | 61.57 | 132.04 | 111.73 | 11.22 | 2.6 | 43.64 | 0.19 | 7.9 | 42.7 | 130.44 |

Cell8 | 1.25 | 89.76 | 103.12 | 103.36 | 29.92 | 7.01 | 81.33 | 0.59 | 19.3 | 70.39 | 130.52 |

Cell9 | 0.33 | 47.64 | 309.2 | 216.5 | 11.1 | 2.44 | 28.86 | 0.15 | 6.02 | 32.81 | 254.73 |

Cell10 | 0.37 | 45.41 | 355.65 | 206.29 | 10.46 | 2.56 | 28.17 | 0.18 | 5.99 | 31.69 | 325.68 |

Cell No. | MSE1 | MSE2 | MSE3 | MSE4 | MSE5 | MSE6 | MSE7 | MSE8 | MSE9 | MSE10 | MSE11 | MSE12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|

Cell1 | 376 | 263 | 165.7 | 155.2 | 414.9 | 301.7 | 216.3 | 204.5 | 424.4 | 313.3 | 226.3 | 197 |

Cell2 | 258 | 350 | 274.6 | 316.8 | 436.3 | 380.9 | 264.9 | 306.7 | 439.7 | 382.9 | 273.3 | 299 |

Cell3 | 269 | 403 | 419.8 | 554.9 | 328.8 | 457.5 | 386.6 | 493.4 | 314.5 | 440.3 | 377.1 | 462 |

Cell4 | 234 | 205 | 207.9 | 153.3 | 177.8 | 157.8 | 186.5 | 174.7 | 173.5 | 153 | 200.3 | 172 |

Cell5 | 62 | 96 | 121.3 | 164.9 | 72.1 | 110.4 | 157.8 | 173.6 | 73.3 | 109.7 | 155.8 | 167 |

Cell6 | 45 | 70 | 91.5 | 113.5 | 40.8 | 70.5 | 93.3 | 104.4 | 41.5 | 72.4 | 102 | 105 |

Cell7 | 120 | 115 | 149.8 | 136 | 79.1 | 140 | 201.2 | 149.7 | 70.6 | 102.6 | 147.2 | 156 |

Cell8 | 50 | 101 | 138.6 | 120 | 51.8 | 101 | 149.7 | 146 | 54.2 | 113.4 | 163.6 | 131 |

Cell9 | 701 | 682 | 737.9 | 862.7 | 669 | 592 | 692 | 784 | 70 | 653.5 | 685.5 | 820 |

Cell10 | 730 | 695 | 700 | 850 | 670 | 590 | 701 | 770 | 715 | 1373.9 | 1396.1 | 1397 |

Cell No. | MA1 | MA2 | MA3 | MA4 | MA5 | MA6 | MA7 | MA8 | MA9 | MA10 | MA11 | MA12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|

Cell1 | 2 | 5 | 11 | 20 | 2 | 6 | 13 | 21 | 2 | 6 | 13 | 21 |

Cell2 | 1 | 5 | 12 | 23 | 1 | 5 | 12 | 21 | 1 | 5 | 12 | 22 |

Cell3 | 1 | 4 | 11 | 23 | 1 | 4 | 11 | 21 | 1 | 4 | 10 | 21 |

Cell4 | 2 | 5 | 16 | 24 | 2 | 5 | 16 | 24 | 1 | 5 | 16 | 24 |

Cell5 | 1 | 4 | 13 | 25 | 1 | 5 | 15 | 26 | 1 | 5 | 15 | 26 |

Cell6 | 1 | 4 | 11 | 21 | 1 | 4 | 12 | 21 | 1 | 4 | 12 | 21 |

Cell7 | 1 | 4 | 13 | 22 | 1 | 5 | 16 | 23 | 1 | 4 | 13 | 23 |

Cell8 | 1 | 4 | 14 | 22 | 1 | 5 | 16 | 25 | 1 | 5 | 16 | 24 |

Cell9 | 1 | 4 | 12 | 18 | 1 | 4 | 12 | 17 | 1 | 4 | 11 | 17 |

Cell10 | 1 | 4 | 12 | 16 | 1 | 4 | 12 | 16 | 1 | 4 | 12 | 16 |

**Table 6.**Performance evaluation of each classification algorithm with statistical measurement tools.

Statistical | K-means Clustering (%) | Logistic Regression (%) | Naive Bayes (%) | Proposed Classifier (%) |
---|---|---|---|---|

Precision | 81.1 | 86.4 | 87.1 | 92.3 |

Accuracy | 80.7 | 86.2 | 88.3 | 93.2 |

Recall | 80.3 | 83.2 | 84.3 | 95.4 |

F1-Score | 79.8 | 82.1 | 84.1 | 94.1 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Azam, B.; Ur Rahman, S.; Irfan, M.; Awais, M.; Alshehri, O.M.; Saif, A.; Nahari, M.H.; Mahnashi, M.H.
A Reliable Auto-Robust Analysis of Blood Smear Images for Classification of Microcytic Hypochromic Anemia Using Gray Level Matrices and Gabor Feature Bank. *Entropy* **2020**, *22*, 1040.
https://doi.org/10.3390/e22091040

**AMA Style**

Azam B, Ur Rahman S, Irfan M, Awais M, Alshehri OM, Saif A, Nahari MH, Mahnashi MH.
A Reliable Auto-Robust Analysis of Blood Smear Images for Classification of Microcytic Hypochromic Anemia Using Gray Level Matrices and Gabor Feature Bank. *Entropy*. 2020; 22(9):1040.
https://doi.org/10.3390/e22091040

**Chicago/Turabian Style**

Azam, Bakht, Sami Ur Rahman, Muhammad Irfan, Muhammad Awais, Osama Mohammed Alshehri, Ahmed Saif, Mohammed Hassan Nahari, and Mater H. Mahnashi.
2020. "A Reliable Auto-Robust Analysis of Blood Smear Images for Classification of Microcytic Hypochromic Anemia Using Gray Level Matrices and Gabor Feature Bank" *Entropy* 22, no. 9: 1040.
https://doi.org/10.3390/e22091040