# Design and Analysis of the IGBT Heat Dissipation Structure Based on Computational Continuum Mechanics

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Proposed Geometry Model

## 3. Theoretical Thermal Calculation

^{2}/s and Prandtl number is 0.702. Thus, $Re\approx 13613$.

- (1)
- When performing forced air cooling, it is assumed that the working atmospheric pressure and relative humidity of the power device are lower than 90%.
- (2)
- The speed of air is much smaller than the speed of sound, and the wind speed $\overline{v}$ appearing after the text is the average wind speed.
- (3)
- The air around the radiator is in a stable turbulent state.
- (4)
- The working environment temperature range of the radiator is −50–300 °C.

## 4. Numerical Simulation

#### 4.1. Simulation Theory Basis

#### 4.2. Simulation Model

#### 4.3. Simulation Results

#### 4.4. Discussion

**(1)**Influence of Power. The IGBT module under the rectangular fins was simulated with different power values. The results obtained are shown in Figure 6.

**(2)**Influence of fin height. After analyzing the influence of power on the IGBT module temperature, the IGBT module of the rectangular fins was numerically simulated under fins of different heights. The results obtained are shown in Figure 7.

**(3)**Influence of fin thickness. Fin thickness is one of the important factors affecting the temperature of the IGBT modules. The IGBT module of the rectangular fins as numerically simulated under fin of different thicknesses. The results obtained are shown in Figure 8.

**(4)**Influence of wind speed. For air-cooled radiators, the effect of wind speed on the radiator is critical. The results obtained are shown in Figure 9.

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Wang, P.; Mccluskey, P.; Bar-Cohen, A. Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module. J. Electron. Packag.
**2013**, 135, 216–221. [Google Scholar] [CrossRef] - Qian, C.; Gheitaghy, A.M.; Fan, J.; Tang, H.; Sun, B.; Ye, H.; Zhang, G. Thermal Management on IGBT Power Electronic Devices and Modules. IEEE Access
**2018**, 6, 12868–12884. [Google Scholar] [CrossRef] - Xu, B.; Lin, X.C.; Peng, L. CFD Optimization of Design for IGBT Air-Cooled Heat Sink. Adv. Mater. Res.
**2012**, 562, 755–758. [Google Scholar] [CrossRef] - Tropp, M.; Brumerčík, F.; Šteininger, J.; Weis, P.; Glowacz, A. Heat distribution in the deep drawing device components working by high temperatures. IOP Conf. Ser. Mater. Sci. Eng.
**2018**, 393, 012075. [Google Scholar] [CrossRef] - Hu, K.; Liu, Z.; Lin, S. Wavelet Entropy-Based Traction Inverter Open Switch Fault Diagnosis in High-Speed Railways. Entropy
**2016**, 18, 78. [Google Scholar] [CrossRef] - Wang, Y.; Jones, S.; Dai, A.; Liu, G. Reliability Enhancement by Integrated Liquid Cooling in Power IGBT Modules for Hybrid and Electric Vehicles. Microelectron. Reliab.
**2014**, 54, 1911–1915. [Google Scholar] [CrossRef] - Li, L.; Xu, Y.; Li, Z.; Wang, P.; Wang, B. The Effect of Electro-Thermal Parameters on IGBT Junction Temperature with the Aging of Module. Microelectron. Reliab.
**2016**, 66, 58–63. [Google Scholar] [CrossRef] - Reigosa, P.; Prindle, D.; Pâques, G.; Geissmann, S.; Iannuzzo, F.; Kopta, A.; Rahimo, M. Comparison of Thermal Runaway Limits under Different Test Conditions Based on a 4.5 kV IGBT. Microelectron. Reliab.
**2016**, 64, 524–529. [Google Scholar] [CrossRef] - Sheng, K.; Williams, B.; Finney, S. A Review of IGBT Models. IEEE Trans. Power Electron.
**2000**, 15, 1250–1266. [Google Scholar] [CrossRef] - Xia, H.; Guo, W.; Wang, D.; Liu, Y. A Review of Cooling Technology for IGBT Power Modules. J. Kunming Univ. Sci. Technol. (Nat. Sci.)
**2017**, 42, 63–67. (In Chinese) [Google Scholar] - Zhang, G.; Guo, J.; Jin, W.; Wang, X. Thermal Simulation Analysis and Experimental Research of Controller. Electr. Control Appl.
**2016**, 43, 34–38. (In Chinese) [Google Scholar] - Yan, T.; Li, X.; Liang, J.; Kong, L.; Han, G.; Liu, X.; Jing, L. Development of Loop Heat Pipe for IGBT Module Heat Dissipation in Power Plants. J. Eng. Thermophys.
**2016**, 37, 952–956. (In Chinese) [Google Scholar] - Crawford, T.; Gardner, M.T.; Mcgrowder, D.A. Experimental and Theoretical Analysis on Enhanced Flat Miniature Heat Pipes. J. Thermophys. Heat Transf.
**2015**, 18, 330–347. [Google Scholar] - Shen, L.; Jiang, J.; Fang, Y.; Yang, Z.; Hou, Y. Design and Optimization of IGBT Cooling Scheme Based on Air Cooling. Cryog. Supercond.
**2018**, 46, 95–98. (In Chinese) [Google Scholar] [CrossRef] - Lee, J.H.; Son, Y.W.; Chang, S.M. Numerical Analysis on Natural Convection Heat Transfer in a Single Circular Fin-Tube Heat Exchanger (Part 2): Correlations for Limiting Cases. Entropy
**2020**, 22, 358. [Google Scholar] [CrossRef] [Green Version] - Kurnia, J.; Lim, D.; Chen, L.; Jiang, L.; Sasmito, A.P. Entropy Generation and Heat Transfer Performance in Microchannel Cooling. Entropy
**2019**, 21, 191. [Google Scholar] [CrossRef] [Green Version] - Zhang, Z.; Xu, G.; Shen, X. Analyzing and Design of Dissipation System of Inverter. J. Tongji Univ. (Nat. Sci.)
**2004**, 6, 775–778. (In Chinese) [Google Scholar] - Zhou, T.; Lu, X.; Li, Y. Calculation of Thermal Resistance for Air-Cooling Heat Sink of Power Semiconductor Parts. J. Bohai Univ. (Nat. Sci. Ed.)
**2011**, 32, 228–235. (In Chinese) [Google Scholar] - Mondal, K.; Wongwise, S. Assesment of Thermodynamic Irreversibility in a Micro-Scale Viscous Dissipative Circular Couette Flow. Entropy
**2018**, 20, 50. [Google Scholar] [CrossRef] [Green Version] - López Paniagua, I.; Rodríguez Martín, J.; González Fernandez, C.; Jiménez Alvaro, Á.; Nieto Carlier, R.A. New Simple Method for Estimating Exergy Destruction in Heat Exchangers. Entropy
**2013**, 15, 474–489. [Google Scholar] [CrossRef] - Han, C.W.; Jeong, S.B.; Oh, M.D. Thermo-Fluid Simulation for the Thermal Design of the IGBT Module in the Power Conversion System. Microelectron. Reliab.
**2016**, 59, 64–72. [Google Scholar] [CrossRef]

**Figure 1.**Three types of heat-dissipating fin structure. (

**a**) Traditional rectangular fins; (

**b**) The proposed arc-shaped fins; (

**c**) The proposed rectangular fins.

**Figure 3.**Simulation results under different heat dissipation structures. (

**a**) Traditional rectangular fins; (

**b**) Arc-shaped fins; (

**c**) Rectangular fins.

**Figure 4.**Simulation results of the cut surface of the air inlet chip of different heat dissipation structures. (

**a**) Traditional rectangular fins; (

**b**) Arc-shaped fins; (

**c**) Rectangular fins.

**Figure 5.**Velocity distributions under different heat dissipation structures. (

**a**) Traditional rectangular fins; (

**b**) Arc-shaped fins; (

**c**) Rectangular fins.

Material | Density/$(\mathit{k}\mathit{g}\xb7{\mathit{m}}^{-3})$ | Thermal Conductivity/$\left(\mathit{W}{\mathit{m}}^{-1}{\mathit{K}}^{-1}\right)$ | Specific Heat Capacity/($\mathit{J}\xb7{(\mathit{k}\mathit{g}\xb7\mathit{k})}^{-1}$) |
---|---|---|---|

Si | 2329 | 124 | 702 |

Al | 2702 | 237 | 903 |

Cu | 8940 | 398 | 386 |

Temperature Value | A/K | B/K | C/K | D/K | E/K | F/K | |
---|---|---|---|---|---|---|---|

Type | |||||||

Traditional rectangular | 308.17 | 310.56 | 312.95 | 315.34 | 317.72 | 320.11 | |

Arc-shaped | 307.06 | 309.50 | 311.94 | 314.37 | 316.81 | 319.25 | |

Rectangular | 305.22 | 307.80 | 310.39 | 312.98 | 315.56 | 318.15 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lin, X.; Wu, H.; Liu, Z.; Ying, B.; Ye, C.; Zhang, Y.; Li, Z.
Design and Analysis of the IGBT Heat Dissipation Structure Based on Computational Continuum Mechanics. *Entropy* **2020**, *22*, 816.
https://doi.org/10.3390/e22080816

**AMA Style**

Lin X, Wu H, Liu Z, Ying B, Ye C, Zhang Y, Li Z.
Design and Analysis of the IGBT Heat Dissipation Structure Based on Computational Continuum Mechanics. *Entropy*. 2020; 22(8):816.
https://doi.org/10.3390/e22080816

**Chicago/Turabian Style**

Lin, Xin, Huawei Wu, Zhen Liu, Baosheng Ying, Congjin Ye, Yuanjin Zhang, and Zhixiong Li.
2020. "Design and Analysis of the IGBT Heat Dissipation Structure Based on Computational Continuum Mechanics" *Entropy* 22, no. 8: 816.
https://doi.org/10.3390/e22080816