Observable and Unobservable Mechanical Motion
Abstract
:1. Introduction
2. Thermodynamic Approach to Classical Mechanical Motion
3. Mechanical Motion in the Quantum Domain
4. Least Action Principles and Observational Overhead
5. Dissipative Overhead and Irreversibility
- (i)
- the fractional loss of mechanical energy, , in each ion–molecule interaction,
- (ii)
- the number of collisions required to transfer the mean thermal energy of the moving ion toward its environment where it becomes dissipated,
- (iii)
- the total time, , required for this energy transfer,
- (iv)
- the length of the diffusion path, , covered in the time .
6. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Photon Detection
References
- Goldstein, H.; Poole, C.P.; Safko, J.L. Klassische Mechanik; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Nolting, W. Grundkurs Theoretische Physik 2—Analytische Mechanik; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2014. [Google Scholar]
- Maxwell, J.C. Theory of Heat; Longmans, Green, and Co.: London, UK, 1871. [Google Scholar]
- Kittel, C.; Krömer, H.; Mitter, M. Physik der Wärme; Oldenbourg Wissenschaftsverlag: München, Germany, 1993. [Google Scholar]
- Nolting, W. Grundkurs Theoretische Physik 5/1; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Leff, H.S.; Rex, A.F. (Eds.) Maxwell’s Demon: Entropy, Information, Computing; Adam Hilger: Bristol, UK; Princeton University Press: Princeton, UK, 1990. [Google Scholar]
- Leff, H.S.; Rex, A.F. (Eds.) Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing, 1st ed.; Adam Hilger: Bristol, UK, 2003. [Google Scholar]
- Müller, J.G. Information contained in molecular motion. Entropy 2019, 21, 1052. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.G. Photon detection as a process of information gain. Entropy 2020, 22, 392. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1975. [Google Scholar]
- Nolting, W. Grundkurs Theoretische Physik 3—Elektrodynamik; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007. [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed.; John Wiley & Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada; Singapore, 1985. [Google Scholar]
- Ben-Naim, A. A Farewell to Entropy: Statistical Thermodynamics Based on Information; World Scientific: Singapore, 2008. [Google Scholar]
- Falk, G.; Ruppel, W. Mechanik, Relativität, Gravitation; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1975. [Google Scholar]
- Falk, G.; Ruppel, W. Energie und Entropie: Eine Einführung in die Thermodynamik; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976. [Google Scholar]
- Kingston, R.H. Detection of Optical and Infrared Radiation; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Bohr, N. On the constitution of atoms and molecules. Philos. Mag. J. Sci. 1913, 26, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Schpolski, E.W. Atomphysik; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1970. [Google Scholar]
- Reader, J.; Corliss, C.H. Line Spectra of the Elements. In CRC Handbook of Chemistry and Physics; Rumble, J., Ed.; Taylor & Francis: Oxford, UK, 2018; ISBN 978-1-138-56163-2. [Google Scholar]
- Bormashenko, E. The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or a Step to Great Unification? Entropy 2019, 21, 918. [Google Scholar] [CrossRef] [Green Version]
- Bormashenko, E. Informational Reinterpretation of the Mechanics Notions and Laws. Entropy 2020, 22, 631. [Google Scholar] [CrossRef]
Interaction | ||||
---|---|---|---|---|
Gas–ion | ||||
Gas–electron |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, J.G. Observable and Unobservable Mechanical Motion. Entropy 2020, 22, 737. https://doi.org/10.3390/e22070737
Müller JG. Observable and Unobservable Mechanical Motion. Entropy. 2020; 22(7):737. https://doi.org/10.3390/e22070737
Chicago/Turabian StyleMüller, J. Gerhard. 2020. "Observable and Unobservable Mechanical Motion" Entropy 22, no. 7: 737. https://doi.org/10.3390/e22070737