A Dual Measure of Uncertainty: The Deng Extropy
Abstract
1. Introduction
2. The Deng Extropy
3. The Maximum Deng Extropy
4. Application to Pattern Recognition
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BPA | Basic probability assignment |
PPT | Pignistic probability transformation |
SL | Sepal length in cm |
SW | Sepal width in cm |
PL | Petal length in cm |
PW | Petal width in cm |
Se | Iris Setosa |
Ve | Iris Versicolour |
Vi | Iris Virginica |
References
- Shannon, C.E. A mathematical theory of communication. Bell Labs. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Lad, F.; Sanfilippo, G.; Agrò, G. Extropy: Complementary dual of entropy. Stat. Sci. 2015, 30, 40–58. [Google Scholar] [CrossRef]
- Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Deng, Y. Deng entropy. Chaos Solitons Fractals 2016, 91, 549–553. [Google Scholar] [CrossRef]
- Fu, C.; Yang, J.B.; Yang, S.L. A group evidential reasoning approach based on expert reliability. Eur. J. Oper. Res. 2015, 246, 886–893. [Google Scholar] [CrossRef]
- Yang, J.B.; Xu, D.L. Evidential reasoning rule for evidence combination. Artif. Intell. 2013, 205, 1–29. [Google Scholar] [CrossRef]
- Kabir, G.; Tesfamariam, S.; Francisque, A.; Sadiq, R. Evaluating risk of water mains failure using a Bayesian belief network model. Eur. J. Oper. Res. 2015, 240, 220–234. [Google Scholar] [CrossRef]
- Liu, H.C.; You, J.X.; Fan, X.J.; Lin, Q.L. Failure mode and effects analysis using D numbers and grey relational projection method. Expert Syst. Appl. 2014, 41, 4670–4679. [Google Scholar] [CrossRef]
- Han, Y.; Deng, Y. An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors. Soft Comput. 2018, 22, 5073–5090. [Google Scholar] [CrossRef]
- Liu, Z.; Pan, Q.; Dezert, J.; Han, J.W.; He, Y. Classifier fusion with contextual reliability evaluation. IEEE Trans. Cybern. 2018, 48, 1605–1618. [Google Scholar] [CrossRef]
- Smets, P. Data fusion in the transferable belief model. In Proceedings of the Third International Conference on Information Fusion, Paris, France, 10–13 July 2000; Volume 1, pp. PS21–PS33. [Google Scholar]
- Balakrishnan, N.; Buono, F.; Longobardi, M. On weighted extropies. Comm. Stat. Theory Methods. (under review).
- Calì, C.; Longobardi, M.; Ahmadi, J. Some properties of cumulative Tsallis entropy. Physica A 2017, 486, 1012–1021. [Google Scholar] [CrossRef]
- Calì, C.; Longobardi, M.; Navarro, J. Properties for generalized cumulative past measures of information. Probab. Eng. Inform. Sci. 2020, 34, 92–111. [Google Scholar] [CrossRef]
- Calì, C.; Longobardi, M.; Psarrakos, G. A family of weighted distributions based on the mean inactivity time and cumulative past entropies. Ricerche Mat. 2019, 1–15. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Longobardi, M. On cumulative entropies. J. Stat. Plann. Inference 2009, 139, 4072–4087. [Google Scholar] [CrossRef]
- Kamari, O.; Buono, F. On extropy of past lifetime distribution. Ricerche Mat. 2020, in press. [Google Scholar] [CrossRef]
- Longobardi, M. Cumulative measures of information and stochastic orders. Ricerche Mat. 2014, 63, 209–223. [Google Scholar] [CrossRef]
- Abellan, J. Analyzing properties of Deng entropy in the theory of evidence. Chaos Solitons Fractals 2017, 95, 195–199. [Google Scholar] [CrossRef]
- Tang, Y.; Fang, X.; Zhou, D.; Lv, X. Weighted Deng entropy and its application in uncertainty measure. In Proceedings of the 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–5. [Google Scholar]
- Wang, D.; Gao, J.; Wei, D. A New Belief Entropy Based on Deng Entropy. Entropy 2019, 21, 987. [Google Scholar] [CrossRef]
- Hohle, U. Entropy with respect to plausibility measures. In Proceedings of the 12th IEEE International Symposium on Multiple-Valued Logic, Paris, France, 25–27 May 1982; pp. 167–169. [Google Scholar]
- Yager, R.R. Entropy and specificity in a mathematical theory of evidence. Int. J. Gen. Syst. 1983, 9, 249–260. [Google Scholar] [CrossRef]
- Klir, G.J.; Ramer, A. Uncertainty in the Dempster-Shafer theory: A critical re-examination. Int. J. Gen. Syst. 1990, 18, 155–166. [Google Scholar] [CrossRef]
- Kang, B.; Deng, Y. The Maximum Deng Entropy. IEEE Access 2019, 7, 120758–120765. [Google Scholar] [CrossRef]
- Dheeru, D.; Karra Taniskidou, E. UCI Machine Learning Repository. 2017. Available online: http://archive.ics.uci.edu/ml (accessed on 20 May 2020).
- Cui, H.; Liu, Q.; Zhang, J.; Kang, B. An Improved Deng Entropy and Its Application in Pattern Recognition. IEEE Access 2019, 7, 18284–18292. [Google Scholar] [CrossRef]
- Kang, B.Y.; Li, Y.; Deng, Y.; Zhang, Y.J.; Deng, X.Y. Determination of basic probability assignment based on interval numbers and its application. Acta Electron. Sin. 2012, 40, 1092–1096. [Google Scholar]
- Tran, L.; Duckstein, L. Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy Sets Syst. 2002, 130, 331–341. [Google Scholar] [CrossRef]
A | Deng Extropy | Deng Entropy |
---|---|---|
28.104 | 2.6623 | |
27.904 | 3.9303 | |
27.704 | 4.9082 | |
27.504 | 5.7878 | |
27.304 | 6.6256 | |
27.104 | 7.4441 | |
26.903 | 8.2532 | |
26.702 | 9.0578 | |
26.500 | 9.8600 | |
26.295 | 10.661 | |
26.086 | 11.462 | |
25.866 | 12.262 | |
25.621 | 13.062 | |
25.304 | 13.862 |
Item | SL | SW | PL | PW |
---|---|---|---|---|
[4.4,5.8] | [2.3,4.4] | [1.0,1.9] | [0.1,0.6] | |
[4.9,7.0] | [2.0,3.4] | [3.0,5.1] | [1.0,1.7] | |
[4.9,7.9] | [2.2,3.8] | [4.5,6.9] | [1.4,2.5] | |
[4.9,5.8] | [2.3,3.4] | – | – | |
[4.9,5.8] | [2.3,3.8] | – | – | |
[4.9,7.0] | [2.2,3.4] | [4.5,5.1] | [1.4,1.7] | |
[4.9,5.8] | [2.3,3.4] | – | – |
Item | SL | SW | PL | PW | Combined BPA |
---|---|---|---|---|---|
0.1098 | 0.1018 | 0.0625 | 0.1004 | 0.0059 | |
0.1703 | 0.1303 | 0.1839 | 0.2399 | 0.4664 | |
0.1257 | 0.1385 | 0.1819 | 0.3017 | 0.4656 | |
0.1413 | 0.1663 | 0.0000 | 0.0000 | 0.0000 | |
0.1413 | 0.1441 | 0.0000 | 0.0000 | 0.0000 | |
0.1703 | 0.1527 | 0.5719 | 0.3580 | 0.0620 | |
0.1413 | 0.1663 | 0.0000 | 0.0000 | 0.0000 | |
Deng extropy | 5.2548 | 5.2806 | 5.1636 | 4.9477 |
Item | SL | SW | PL | PW | Combined BPA |
---|---|---|---|---|---|
0.0808 | 0.0730 | 0.0504 | 0.1004 | 0.0224 | |
0.1252 | 0.0934 | 0.1482 | 0.2399 | 0.4406 | |
0.0925 | 0.0993 | 0.1465 | 0.3017 | 0.4451 | |
0.1039 | 0.1192 | 0.0000 | 0.0000 | 0.0000 | |
0.1039 | 0.1033 | 0.0000 | 0.0000 | 0.0000 | |
0.1252 | 0.1095 | 0.4608 | 0.3580 | 0.0919 | |
0.3684 | 0.4023 | 0.1942 | 0.0000 | 0.0000 |
Item | Setosa | Versicolor | Virginica | Global |
---|---|---|---|---|
Kang’s method | 100% | 96% | 84% | 93.33% |
Method based on Deng extropy | 100% | 96% | 86% | 94% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buono, F.; Longobardi, M. A Dual Measure of Uncertainty: The Deng Extropy. Entropy 2020, 22, 582. https://doi.org/10.3390/e22050582
Buono F, Longobardi M. A Dual Measure of Uncertainty: The Deng Extropy. Entropy. 2020; 22(5):582. https://doi.org/10.3390/e22050582
Chicago/Turabian StyleBuono, Francesco, and Maria Longobardi. 2020. "A Dual Measure of Uncertainty: The Deng Extropy" Entropy 22, no. 5: 582. https://doi.org/10.3390/e22050582
APA StyleBuono, F., & Longobardi, M. (2020). A Dual Measure of Uncertainty: The Deng Extropy. Entropy, 22(5), 582. https://doi.org/10.3390/e22050582