Nonadiabatic Energy Fluctuations of Scale-Invariant Quantum Systems in a Time-Dependent Trap
Abstract
1. Introduction
2. Exact Many-Body Dynamics under Scale Invariance
3. Exact Nonadiabatic Mean Energy
4. Nonadiabatic Energy Fluctuations
5. Nonadiabatic Energy Fluctuations: Explicit Examples
5.1. Single-Particle Time-Dependent Quantum Harmonic Oscillator
5.2. Calogero-Sutherland Gas in a Time-Dependent Harmonic Trap
5.3. Unitary Fermi Gas in a Time-Dependent Harmonic Trap
6. Nonadiabatic Moments of the Square Position Operator
7. Nonadiabatic Moments of the Squeezing Operator
8. Driving Protocols
8.1. Free Expansion
8.2. Sudden Quenches
8.3. Linear Frequency Ramp
8.4. Shortcuts to Adiabaticity by Reverse Engineering
8.5. Local Counterdiabatic Driving
9. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463–512. [Google Scholar] [CrossRef]
- Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 2008, 80, 1215–1274. [Google Scholar] [CrossRef]
- Castin, Y.; Dum, R. Bose-Einstein Condensates in Time Dependent Traps. Phys. Rev. Lett. 1996, 77, 5315–5319. [Google Scholar] [CrossRef] [PubMed]
- Kagan, Y.; Surkov, E.L.; Shlyapnikov, G.V. Evolution of a Bose-condensed gas under variations of the confining potential. Phys. Rev. A 1996, 54, R1753–R1756. [Google Scholar] [CrossRef]
- Castin, Y.; Dum, R. Low-temperature Bose-Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach. Phys. Rev. A 1998, 57, 3008–3021. [Google Scholar] [CrossRef]
- Pitaevskii, L.P.; Rosch, A. Breathing modes and hidden symmetry of trapped atoms in two dimensions. Phys. Rev. A 1997, 55, R853–R856. [Google Scholar] [CrossRef]
- Sutherland, B. Exact Coherent States of a One-Dimensional Quantum Fluid in a Time-Dependent Trapping Potential. Phys. Rev. Lett. 1998, 80, 3678–3681. [Google Scholar] [CrossRef]
- Rigol, M.; Muramatsu, A. Fermionization in an Expanding 1D Gas of Hard-Core Bosons. Phys. Rev. Lett. 2005, 94, 240403. [Google Scholar] [CrossRef]
- Minguzzi, A.; Gangardt, D.M. Exact Coherent States of a Harmonically Confined Tonks-Girardeau Gas. Phys. Rev. Lett. 2005, 94, 240404. [Google Scholar] [CrossRef]
- Del Campo, A. Fermionization and bosonization of expanding one-dimensional anyonic fluids. Phys. Rev. A 2008, 78, 045602. [Google Scholar] [CrossRef]
- Castin, Y. Exact scaling transform for a unitary quantum gas in a time dependent harmonic potential. C. R. Phys. 2004, 5, 407–410. [Google Scholar] [CrossRef]
- Deng, S.; Shi, Z.Y.; Diao, P.; Yu, Q.; Zhai, H.; Qi, R.; Wu, H. Observation of the Efimovian expansion in scale-invariant Fermi gases. Science 2016, 353, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Masuda, S.; Nakamura, K. Fast-forward of adiabatic dynamics in quantum mechanics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 1135–1154. [Google Scholar] [CrossRef]
- Chen, X.; Ruschhaupt, A.; Schmidt, S.; Del Campo, A.; Guéry-Odelin, D.; Muga, J.G. Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity. Phys. Rev. Lett. 2010, 104, 063002. [Google Scholar] [CrossRef]
- Del Campo, A. Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope. Phys. Rev. A 2011, 84, 031606. [Google Scholar] [CrossRef]
- Del Campo, A. Shortcuts to Adiabaticity by Counterdiabatic Driving. Phys. Rev. Lett. 2013, 111, 100502. [Google Scholar] [CrossRef]
- Deffner, S.; Jarzynski, C.; Del Campo, A. Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving. Phys. Rev. X 2014, 4, 021013. [Google Scholar] [CrossRef]
- Schaff, J.F.; Song, X.L.; Vignolo, P.; Labeyrie, G. Fast optimal transition between two equilibrium states. Phys. Rev. A 2010, 82, 033430. [Google Scholar] [CrossRef]
- Schaff, J.F.; Song, X.L.; Capuzzi, P.; Vignolo, P.; Labeyrie, G. Shortcut to adiabaticity for an interacting Bose-Einstein condensate. EPL Europhys. Lett. 2011, 93, 23001. [Google Scholar] [CrossRef]
- Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I.E.; Schmiedmayer, J.; Trupke, M. Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas. Sci. Rep. 2015, 5, 9820. [Google Scholar] [CrossRef]
- An, S.; Lv, D.; Del Campo, A.; Kim, K. Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space. Nat. Commun. 2016, 7, 12999. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Diao, P.; Yu, Q.; Del Campo, A.; Wu, H. Shortcuts to adiabaticity in the strongly coupled regime: Nonadiabatic control of a unitary Fermi gas. Phys. Rev. A 2018, 97, 013628. [Google Scholar] [CrossRef]
- Diao, P.; Deng, S.; Li, F.; Yu, S.; Chenu, A.; Del Campo, A.; Wu, H. Shortcuts to adiabaticity in Fermi gases. New J. Phys. 2018, 20, 105004. [Google Scholar] [CrossRef]
- Jaramillo, J.; Beau, M.; Del Campo, A. Quantum supremacy of many-particle thermal machines. New J. Phys. 2016, 18, 075019. [Google Scholar] [CrossRef]
- Schmiedl, T.; Seifert, U. Optimal Finite-Time Processes In Stochastic Thermodynamics. Phys. Rev. Lett. 2007, 98, 108301. [Google Scholar] [CrossRef]
- Choi, S.; Onofrio, R.; Sundaram, B. Optimized sympathetic cooling of atomic mixtures via fast adiabatic strategies. Phys. Rev. A 2011, 84, 051601. [Google Scholar] [CrossRef]
- Choi, S.; Onofrio, R.; Sundaram, B. Squeezing and robustness of frictionless cooling strategies. Phys. Rev. A 2012, 86, 043436. [Google Scholar] [CrossRef]
- Beau, M.; Jaramillo, J.; Del Campo, A. Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity. Entropy 2016, 18, 168. [Google Scholar] [CrossRef]
- Del Campo, A.; Goold, J.; Paternostro, M. More bang for your buck: Super-adiabatic quantum engines. Sci. Rep. 2014, 4, 1–5. [Google Scholar] [CrossRef]
- Del Campo, A.; Chenu, A.; Deng, S.; Wu, H. Friction-Free Quantum Machines. In Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions; Binder, F., Correa, L.A., Gogolin, C., Anders, J., Adesso, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 127–148. [Google Scholar] [CrossRef]
- Deng, S.; Chenu, A.; Diao, P.; Li, F.; Yu, S.; Coulamy, I.; Del Campo, A.; Wu, H. Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci. Adv. 2018, 4, eaar5909. [Google Scholar] [CrossRef]
- Olshanii, M.; Perrin, H.; Lorent, V. Example of a Quantum Anomaly in the Physics of Ultracold Gases. Phys. Rev. Lett. 2010, 105, 095302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.D.; Astrakharchik, G.E.; Aveline, D.C.; Choi, S.; Perrin, H.; Bergeman, T.H.; Olshanii, M. Breakdown of scale invariance in the vicinity of the Tonks-Girardeau limit. Phys. Rev. A 2014, 89, 063616. [Google Scholar] [CrossRef]
- Merloti, K.; Dubessy, R.; Longchambon, L.; Olshanii, M.; Perrin, H. Breakdown of scale invariance in a quasi-two-dimensional Bose gas due to the presence of the third dimension. Phys. Rev. A 2013, 88, 061603. [Google Scholar] [CrossRef]
- Del Campo, A. Exact quantum decay of an interacting many-particle system: The Calogero–Sutherland model. New J. Phys. 2016, 18, 015014. [Google Scholar] [CrossRef]
- Lohe, M.A. Exact time dependence of solutions to the time-dependent Schrödinger equation. J. Phys. A Math. Theor. 2008, 42, 035307. [Google Scholar] [CrossRef]
- Mandelstam, L.; Tamm, I. Quantum speed limits: From Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. USSR 1945, 9, 249. [Google Scholar]
- Shanahan, B.; Chenu, A.; Margolus, N.; Del Campo, A. Quantum Speed Limits across the Quantum-to-Classical Transition. Phys. Rev. Lett. 2018, 120, 070401. [Google Scholar] [CrossRef]
- Okuyama, M.; Ohzeki, M. Quantum Speed Limit is Not Quantum. Phys. Rev. Lett. 2018, 120, 070402. [Google Scholar] [CrossRef]
- Anandan, J.; Aharonov, Y. Geometry of quantum evolution. Phys. Rev. Lett. 1990, 65, 1697–1700. [Google Scholar] [CrossRef]
- Demirplak, M.; Rice, S.A. On the consistency, extremal, and global properties of counterdiabatic fields. J. Chem. Phys. 2008, 129, 154111. [Google Scholar] [CrossRef]
- Campbell, S.; Deffner, S. Trade-Off Between Speed and Cost in Shortcuts to Adiabaticity. Phys. Rev. Lett. 2017, 118, 100601. [Google Scholar] [CrossRef] [PubMed]
- Carlini, A.; Hosoya, A.; Koike, T.; Okudaira, Y. Time-Optimal Quantum Evolution. Phys. Rev. Lett. 2006, 96, 060503. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K. How fast and robust is the quantum adiabatic passage? J. Phys. A Math. Theor. 2013, 46, 315304. [Google Scholar] [CrossRef][Green Version]
- Gambardella, P.J. Exact results in quantum many-body systems of interacting particles in many dimensions with SU(1,1) as the dynamical group. J. Math. Phys. 1975, 16, 1172–1187. [Google Scholar] [CrossRef]
- Gritsev, V.; Barmettler, P.; Demler, E. Scaling approach to quantum non-equilibrium dynamics of many-body systems. New J. Phys. 2010, 12, 113005. [Google Scholar] [CrossRef]
- Lewis, H.R.; Riesenfeld, W.B. An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. J. Math. Phys. 1969, 10, 1458–1473. [Google Scholar] [CrossRef]
- Husimi, K. Miscellanea in Elementary Quantum Mechanics, II. Prog. Theor. Phys. 1953, 9, 381–402. [Google Scholar] [CrossRef]
- Chen, X.; Muga, J.G. Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Phys. Rev. A 2010, 82, 053403. [Google Scholar] [CrossRef]
- Calogero, F. Solution of the One-Dimensional N-Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials. J. Math. Phys. 1971, 12, 419–436. [Google Scholar] [CrossRef]
- Sutherland, B. Quantum Many-Body Problem in One Dimension: Ground State. J. Math. Phys. 1971, 12, 246–250. [Google Scholar] [CrossRef]
- Haldane, F.D.M. “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 1991, 67, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.S. Statistical Distribution for Generalized Ideal Gas of Fractional-Statistics Particles. Phys. Rev. Lett. 1994, 73, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Murthy, M.V.N.; Shankar, R. Thermodynamics of a One-Dimensional Ideal Gas with Fractional Exclusion Statistics. Phys. Rev. Lett. 1994, 73, 3331–3334. [Google Scholar] [CrossRef]
- Girardeau, M. Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. J. Math. Phys. 1960, 1, 516–523. [Google Scholar] [CrossRef]
- Girardeau, M.D.; Wright, E.M.; Triscari, J.M. Ground-state properties of a one-dimensional system of hard-core bosons in a harmonic trap. Phys. Rev. A 2001, 63, 033601. [Google Scholar] [CrossRef]
- Ares, F.; Gupta, K.S.; De Queiroz, A.R. Orthogonality catastrophe and fractional exclusion statistics. Phys. Rev. E 2018, 97, 022133. [Google Scholar] [CrossRef]
- Vacek, K.; Okiji, A.; Kawakami, N. Eigenfunctions for SU(nu) particles with 1/r2interaction in harmonic confinement. J. Phys. A Math. Gen. 1994, 27, L201–L206. [Google Scholar] [CrossRef]
- Castin, Y.; Werner, F. The Unitary Gas and its Symmetry Properties. In The BCS-BEC Crossover and the Unitary Fermi Gas; Zwerger, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 127–191. [Google Scholar] [CrossRef]
- Tan, S. Short Range Scaling Laws of Quantum Gases With Contact Interactions. arXiv 2004, arXiv:cond-mat/0412764. [Google Scholar]
- Werner, F.; Castin, Y. Unitary gas in an isotropic harmonic trap: Symmetry properties and applications. Phys. Rev. A 2006, 74, 053604. [Google Scholar] [CrossRef]
- Rajabpour, M.A.; Sotiriadis, S. Quantum quench of the trap frequency in the harmonic Calogero model. Phys. Rev. A 2014, 89, 033620. [Google Scholar] [CrossRef]
- Deffner, S.; Lutz, E. Nonequilibrium work distribution of a quantum harmonic oscillator. Phys. Rev. E 2008, 77, 021128. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.; García-March, M.A.; Fogarty, T.; Busch, T. Quenching small quantum gases: Genesis of the orthogonality catastrophe. Phys. Rev. A 2014, 90, 013617. [Google Scholar] [CrossRef]
- García-March, M.Á.; Fogarty, T.; Campbell, S.; Busch, T.; Paternostro, M. Non-equilibrium thermodynamics of harmonically trapped bosons. New J. Phys. 2016, 18, 103035. [Google Scholar] [CrossRef]
- Vicari, E. Particle-number scaling of the quantum work statistics and Loschmidt echo in Fermi gases with time-dependent traps. Phys. Rev. A 2019, 99, 043603. [Google Scholar] [CrossRef]
- Rezek, Y.; Kosloff, R. Irreversible performance of a quantum harmonic heat engine. New J. Phys. 2006, 8, 83. [Google Scholar] [CrossRef]
- Salamon, P.; Hoffmann, K.H.; Rezek, Y.; Kosloff, R. Maximum work in minimum time from a conservative quantum system. Phys. Chem. Chem. Phys. 2009, 11, 1027–1032. [Google Scholar] [CrossRef]
- Rezek, Y.; Salamon, P.; Hoffmann, K.H.; Kosloff, R. The quantum refrigerator: The quest for absolute zero. EPL Europhys. Lett. 2009, 85, 30008. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Salamon, P.; Rezek, Y.; Kosloff, R. Time-optimal controls for frictionless cooling in harmonic traps. EPL Europhys. Lett. 2011, 96, 60015. [Google Scholar] [CrossRef]
- Abah, O.; Roßnagel, J.; Jacob, G.; Deffner, S.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Single-Ion Heat Engine at Maximum Power. Phys. Rev. Lett. 2012, 109, 203006. [Google Scholar] [CrossRef]
- Kosloff, R.; Rezek, Y. The Quantum Harmonic Otto Cycle. Entropy 2017, 19, 136. [Google Scholar] [CrossRef]
- Lidar, D.A.; Rezakhani, A.T.; Hamma, A. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. J. Math. Phys. 2009, 50, 102106. [Google Scholar] [CrossRef]
- Kim, S.P.; Kim, W. Construction of exact Ermakov-Pinney solutions and time-dependent quantum oscillators. J. Korean Phys. Soc. 2016, 69, 1513–1517. [Google Scholar] [CrossRef][Green Version]
- Abah, O.; Lutz, E. Energy efficient quantum machines. EPL Europhys. Lett. 2017, 118, 40005. [Google Scholar] [CrossRef]
- Stefanatos, D.; Ruths, J.; Li, J.S. Frictionless atom cooling in harmonic traps: A time-optimal approach. Phys. Rev. A 2010, 82, 063422. [Google Scholar] [CrossRef]
- Stefanatos, D. Minimum-Time Transitions Between Thermal Equilibrium States of the Quantum Parametric Oscillator. IEEE Trans. Autom. Control 2017, 62, 4290–4297. [Google Scholar] [CrossRef]
- Larocca, M.; Calzetta, E.; Wisniacki, D.A. Exploiting landscape geometry to enhance quantum optimal control. Phys. Rev. A 2020, 101, 023410. [Google Scholar] [CrossRef]
- Fogarty, T.; Deffner, S.; Busch, T.; Campbell, S. Orthogonality Catastrophe as a Consequence of the Quantum Speed Limit. Phys. Rev. Lett. 2020, 124, 110601. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beau, M.; del Campo, A. Nonadiabatic Energy Fluctuations of Scale-Invariant Quantum Systems in a Time-Dependent Trap. Entropy 2020, 22, 515. https://doi.org/10.3390/e22050515
Beau M, del Campo A. Nonadiabatic Energy Fluctuations of Scale-Invariant Quantum Systems in a Time-Dependent Trap. Entropy. 2020; 22(5):515. https://doi.org/10.3390/e22050515
Chicago/Turabian StyleBeau, Mathieu, and Adolfo del Campo. 2020. "Nonadiabatic Energy Fluctuations of Scale-Invariant Quantum Systems in a Time-Dependent Trap" Entropy 22, no. 5: 515. https://doi.org/10.3390/e22050515
APA StyleBeau, M., & del Campo, A. (2020). Nonadiabatic Energy Fluctuations of Scale-Invariant Quantum Systems in a Time-Dependent Trap. Entropy, 22(5), 515. https://doi.org/10.3390/e22050515