# Shortcuts to Adiabaticity for Optical Beam Propagation in Nonlinear Gradient Refractive-Index Media

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Variational Approximation Method

## 3. Effective Potential and Adiabatic Reference

## 4. Inverse Engineering for Fast Compression

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Yariv, A. Quantum Electronics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1975; p. 123. [Google Scholar]
- Kogelnik, H.; Li, T. Laser beams and resonators. Appl. Opt.
**1966**, 5, 1550–1567. [Google Scholar] [CrossRef] [PubMed] - Kogelnik, H. On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation. Appl. Opt.
**1965**, 4, 1562–1569. [Google Scholar] [CrossRef] - Okamoto, K. Fundamentals of Optical Waveguides, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Dragoman, D.; Dragoman, M. Quantum-Classical Analogies; Springer: Berlin, Germany, 2004. [Google Scholar]
- Longhi, S. Quantum-optical analogies using photonic structures. Laser Photonics Rev.
**2009**, 3, 243–261. [Google Scholar] [CrossRef] - Longhi, S.; Della Valle, G.; Ornigotti, M.; Laporta, P. Coherent tunneling by adiabatic passage in an optical waveguide system. Phy. Rev. B
**2007**, 76, 201101. [Google Scholar] [CrossRef] [Green Version] - Rodríguez-Lara, B.; Soto-Eguibar, F.; Christodoulides, D.N. Quantum optics as a tool for photonic lattice design. Phys. Scr.
**2015**, 90, 068014. [Google Scholar] [CrossRef] [Green Version] - Rangelov, A.A.; Vitanov, N.V. Achromatic multiple beam splitting by adiabatic passage in optical waveguides. Phys. Rev. A
**2012**, 85, 055803. [Google Scholar] [CrossRef] [Green Version] - Mrejen, M.; Suchowski, H.; Hatakeyama, T.; Wu, C.; Feng, L.; O’Brien, K.; Wang, Y.; Zhang, X. Adiabatic elimination-based coupling control in densely packed subwavelength waveguides. Nat. Commun.
**2015**, 6, 7565. [Google Scholar] [CrossRef] [Green Version] - Lahini, Y.; Pozzi, F.; Sorel, M.; Morandotti, R.; Christodoulides, D.N.; Silberberg, Y. Effect of nonlinearity on adiabatic evolution of light. Phys. Rev. Lett.
**2008**, 101, 193901. [Google Scholar] [CrossRef] [Green Version] - Luo, X.; Huang, J.; Zhong, H.; Qin, X.; Xie, Q.; Kivshar, Y.S.; Lee, C. Pseudo-parity-time symmetry in optical systems. Phys. Rev. Lett.
**2013**, 110, 243902. [Google Scholar] [CrossRef] - Torrontegui, E.; Ibáñez, S.; Martínez-Garaot, S. Shortcuts to adiabaticity. In Advances in Atomic, Molecular, and Optical Physics; Academic Press: Cambridge, MA, USA, 2013; Volume 62, pp. 117–169. [Google Scholar]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys.
**2019**, 91, 045001. [Google Scholar] [CrossRef] - Muga, J.G.; Chen, X.; Ruschhaupt, A.; Guéry-Odelin, D. Frictionless dynamics of Bose-Einstein condensates under fast trap variations. J. Phys. B At. Mol. Opt. Phys.
**2009**, 42, 241001. [Google Scholar] [CrossRef] - Chen, X.; Ruschhaupt, A.; Schmidt, S.; del Campo, A.; Guéry-Odelin, D.; Muga, J.G. Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity. Phys. Rev. Lett.
**2010**, 104, 063002. [Google Scholar] [CrossRef] [PubMed] - Demirplak, M.; Rice, S.A. Adiabatic Population Transfer with Control Fields. J. Phys. Chem. A
**2003**, 107, 9937–9945. [Google Scholar] [CrossRef] - Berry, M.V. Transitionless quantum driving. J. Phys. A Math. Theor.
**2009**, 42, 365303. [Google Scholar] [CrossRef] [Green Version] - Chen, X.; Lizuain, I.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J. Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett.
**2010**, 105, 123003. [Google Scholar] [CrossRef] - Deffner, S.; Jarzynski, C.; del Campo, A. Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X
**2014**, 4, 021013. [Google Scholar] [CrossRef] [Green Version] - Lewis, H.R. An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. J. Math. Phys.
**1969**, 10, 1458. [Google Scholar] [CrossRef] - Schaff, J.F.; Song, X.L.; Vignolo, P.; Labeyrie, G. Fast optimal transition between two equilibrium states. Phys. Rev. A
**2010**, 82, 033430. [Google Scholar] [CrossRef] [Green Version] - Schaff, J.F.; Song, X.L.; Capuzzi, P.; Vignolo, P.; Labeyrie, G. Shortcut to adiabaticity for an interacting Bose-Einstein condensate. Europhys. Lett.
**2010**, 93, 23001. [Google Scholar] [CrossRef] [Green Version] - Silveri, M.P.; Tuorila, J.A.; Thuneberg, E.V.; Paraoanu, G.S. Quantum systems under frequency modulation. Rep. Prog. Phys.
**2017**, 80, 056002. [Google Scholar] [CrossRef] - Li, Y.; Wu, L.A.; Wang, Z.D. Fast ground-state cooling of mechanical resonators with time-dependent optical cavities. Phys. Rev. A
**2011**, 83, 043804. [Google Scholar] [CrossRef] [Green Version] - Faure, S.; Ciliberto, S.; Trizac, E.; Guéry-Odelin, D. Shortcut to stationary regimes: A simple experimental demonstration. Am. J. Phys.
**2019**, 87, 125–129. [Google Scholar] [CrossRef] - Stefanatos, D. Design of a photonic lattice using shortcuts to adiabaticity. Phys. Rev. A
**2014**, 90, 023811. [Google Scholar] [CrossRef] [Green Version] - Wang, K.; Perez-Leija, A.; Weimann, S.; Szameit, A. Non-adiabatic dynamic-phase-free geometric phase in multiport photonic lattices. J. Opt.
**2020**, 22, 035801. [Google Scholar] [CrossRef] - Zhang, J.; Shim, J.H.; Niemeyer, I.; Taniguchi, T.; Teraji, T.; Abe, H.; Suter, D. Experimental implementation of assisted quantum adiabatic passage in a single spin. Phys. Rev. Lett.
**2013**, 110, 240501. [Google Scholar] [CrossRef] - Zhou, B.B.; Baksic, A.; Ribeiro, H.; Yale, C.G.; Heremans, F.J.; Jerger, P.C.; Auer, A.; Burkard, G.; Clerk, A.A.; Awschalom, D.D. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys.
**2017**, 13, 330–334. [Google Scholar] [CrossRef] [Green Version] - Vepsäläinen, A.; Danilin, S.; Paraoanu, G.S. Superadiabatic population transfer in a three-level superconducting circuit. Sci. Adv.
**2019**, 5, eaau5999. [Google Scholar] [CrossRef] [Green Version] - Stefanatos, D.; Ruths, J.; Li, J.S. Frictionless atom cooling in harmonic traps: A time-optimal approach. Phys. Rev. A
**2010**, 82, 063422. [Google Scholar] [CrossRef] [Green Version] - Chen, X.; Torrontegui, E.; Stefanatos, D.; Li, J.S.; Muga, J.G. Optimal trajectories for efficient atomic transport without final excitation. Phys. Rev. A
**2011**, 84, 043415. [Google Scholar] [CrossRef] [Green Version] - Lu, X.J.; Chen, X.; Alonso, J.; Muga, J.G. Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang-singular-bang control. Phys. Rev. A
**2014**, 89, 023627. [Google Scholar] [CrossRef] [Green Version] - Tseng, S.Y.; Wen, R.D.; Chiu, Y.F.; Chen, X. Short and robust directional couplers designed by shortcuts to adiabaticity. Opt. Express
**2014**, 22, 18849–18859. [Google Scholar] [CrossRef] [PubMed] - Tseng, S.Y. Robust coupled-waveguide devices using shortcuts to adiabaticity. Opt. Express
**2014**, 39, 6600–6603. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Chen, X.; Wen, R.D.; Tseng, S.Y. Analysis of optical directional couplers using shortcuts to adiabaticity. Opt. Express
**2016**, 24, 18322–18331. [Google Scholar] [CrossRef] - Ho, C.P.; Tseng, S.Y. Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity. Opt. Express
**2015**, 40, 4831–4834. [Google Scholar] [CrossRef] - Chung, H.C.; Martínez-Garaot, S.; Chen, X.; Muga, J.G.; Tseng, S.Y. Shortcuts to adiabaticity in optical waveguides. Europhys. Lett.
**2019**, 127, 34001. [Google Scholar] [CrossRef] - Tseng, S.Y.; Chen, X. Engineering of fast mode conversion in multimode waveguides. Opt. Lett.
**2012**, 37, 5118–5120. [Google Scholar] [CrossRef] - Chen, X.; Wang, H.W.; Ban, Y.; Tseng, S.Y. Short-length and robust polarization rotators in periodically poled lithium niobate via shortcuts to adiabaticity. Opt. Express
**2014**, 22, 24169–24178. [Google Scholar] [CrossRef] - Della, V.G.; Perozziello, G.; Longhi, S. Shortcut to adiabaticity in full-wave optics for ultra-compact waveguide junctions. J. Opt.
**2016**, 18, 09LT03. [Google Scholar] - Anderson, D. Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A
**1983**, 27, 3135. [Google Scholar] [CrossRef] - Malomed, B.A. Variational methods in nonlinear fiber optics and related fields. Prog. Opt.
**2002**, 43, 71–193. [Google Scholar] - Perez-Garcia, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P. Low energy excitations of a Bose-Einstein condensate: A time-dependent variational analysis. Phys. Rev. Lett.
**1996**, 77, 5320. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Garcia-Ripoll, J.J.; Perez-Garcia, V.M.; Torres, P. Extended parametric resonances in nonlinear Schrödinger systems. Phys. Rev. Lett.
**1999**, 83, 1715. [Google Scholar] [CrossRef] [Green Version] - Li, J.; Sun, K.; Chen, X. Shortcut to adiabatic control of soliton matter waves by tunable interaction. Sci. Rep.
**2016**, 6, 38258. [Google Scholar] [CrossRef] - Li, J.; Fogarty, T.; Campbell, S.; Chen, X.; Busch, T. An efficient nonlinear Feshbach engine. New J. Phys.
**2018**, 20, 015005. [Google Scholar] [CrossRef] - Paul, K.; Sarma, A.K. Nonlinear compression of temporal solitons in an optical waveguide via inverse engineering. Europhys. Lett.
**2018**, 121, 64001. [Google Scholar] [CrossRef] [Green Version] - Xu, T.N.; Li, J.; Busch, T.; Chen, X.; Fogarty, T. Effects of coherence on quantum speed limits and shortcuts to adiabaticity in many-particle systems. Phys. Rev. Res.
**2020**, 2, 023125. [Google Scholar] [CrossRef] - García-Ripoll, J.J.; Ruiz-Chamorro, A.; Torrontegui, E. Quantum control of transmon superconducting qubits. arXiv
**2002**, arXiv:2002.10320v2. [Google Scholar] - Pérezgarcía, V.M.; Torres, P.; Garcíaripoll, J.J.; Michinel, H. Moment analysis of paraxial propagation in a nonlinear graded index fiber. J. Opt. B Quantum Semiclassical Opt.
**2000**, 2, 353. [Google Scholar] [CrossRef] - Anderson, D.; Lisak, M.; Malomed, B.; Quirogateixeiro, M. Tunneling of an optical soliton through a fiber junction. J. Opt. Soc. Am. B
**1994**, 11, 2380–2384. [Google Scholar] [CrossRef] - Quiroga-Teixeiro, M.L.; Anderson, D.; Andrekson, P.A.; Berntson, A.; Lisak, M. Efficient soliton compression by fast adiabatic amplification. J. Opt. Soc. Am. B
**1996**, 13, 687–692. [Google Scholar] [CrossRef] - Eleuch, H.; Bennaceur, R. An optical soliton pair among absorbing three-level atoms. J. Opt. A Pure Appl. Opt.
**2003**, 5, 528. [Google Scholar] [CrossRef] - Christodoulides, D.N.; Coskun, T.H.; Mitchell, M.; Segev, M. Multimode Incoherent Spatial Solitons in Logarithmically Saturable Nonlinear Media. Phys. Rev. Lett.
**1998**, 80, 2310. [Google Scholar] [CrossRef] [Green Version] - Coskun, T.H.; Christodoulides, D.N.; Kim, Y.R.; Chen, Z.G.; Soljacic, M.; Segev, M. Bright spatial solitons on a partially incoherent background. Phys. Rev. Lett.
**2000**, 84, 2374. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Huang, T.Y.; Boris, A.; Malomed; Chen, X. Shortcuts to adiabaticity for an interacting Bose-Einstein condensate via exact solutions of the generalized Ermakov equation. Chaos
**2020**, 30, 053131. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshitz, E.M. Mechanics, 2nd ed.; Pergamon: Oxford, UK, 1969. [Google Scholar]
- Kruglov, V.I.; Peacock, A.C.; Harvey, J.D. Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett.
**2003**, 90, 113902. [Google Scholar] [CrossRef] [PubMed] - Eleuch, H.; Bennaceur, R. Autocorrelation function of microcavity-emitting field in the non-linear regime. Eur. Phys. J. D.
**2010**, 57, 259–264. [Google Scholar] [CrossRef] - Mohamed, A.B.; Eleuch, H. Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity. Eur. Phys. J. D.
**2015**, 69, 191. [Google Scholar] [CrossRef]

**Figure 1.**The potential energy $V\left(a\right)$ for a fictitious particle with unit mass as the function of the beam width a. Here the parameters are ${\alpha}^{2}\left(0\right)=0.3$ and $P=1$ (solid red), $P=0.1$ (dashed black), and $P=10$ (dash-dotted blue).

**Figure 2.**The evolution of beam width designed by STA (solid red) and adiabatic protocols (dashed blue), where the initial and final values are fixed by Equation (14). Parameters: $a\left(0\right)={a}_{i}=1$ and $a\left({z}_{f}\right)=0.5$ are the same for STA and adiabatic protocols, but the propagation distance ${z}_{f}=306$ (adiabatic) and ${z}_{f}=5$ (STA) are different. $P=1$ and the other parameters are the same as those in Figure 1.

**Figure 3.**Guiding coefficient, ${\alpha}^{2}\left(z\right)$, relevant to the parabolic profile of refractive index, for designed STA and adiabatic protocols, when ${z}_{f}=5$ (solid red), ${z}_{f}=0.6$ (dot-dashed black) for STA protocols are compared with adiabatic references ${z}_{f}=306$ (dashed blue).

**Figure 4.**Density plot of effective potential, ${\alpha}^{2}\left(z\right){x}^{2}$, corresponding to the parabolic profile of the refractive index, where the adiabatic reference (

**a**) and STA protocol (

**b**) are presented with the same parameters as those in Figure 2.

**Figure 5.**Beam propagation by using the split-step Fourier method, for free space without parabolic refractive index (

**a**), adiabatic reference (

**b**), and STA protocol (

**c**). All the parameters are the same as those in Figure 2.

**Figure 6.**Fidelity versus the propagation distance ${z}_{f}$ for adiabatic reference (blue dotted) and STA protocol (red dotted). All parameters used here are the same as those in Figure 2.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kong, Q.; Ying, H.; Chen, X.
Shortcuts to Adiabaticity for Optical Beam Propagation in Nonlinear Gradient Refractive-Index Media. *Entropy* **2020**, *22*, 673.
https://doi.org/10.3390/e22060673

**AMA Style**

Kong Q, Ying H, Chen X.
Shortcuts to Adiabaticity for Optical Beam Propagation in Nonlinear Gradient Refractive-Index Media. *Entropy*. 2020; 22(6):673.
https://doi.org/10.3390/e22060673

**Chicago/Turabian Style**

Kong, Qian, Huimin Ying, and Xi Chen.
2020. "Shortcuts to Adiabaticity for Optical Beam Propagation in Nonlinear Gradient Refractive-Index Media" *Entropy* 22, no. 6: 673.
https://doi.org/10.3390/e22060673