Next Article in Journal
Permutation Entropy and Irreversibility in Gait Kinematic Time Series from Patients with Mild Cognitive Decline and Early Alzheimer’s Dementia
Previous Article in Journal
Does Classifier Fusion Improve the Overall Performance? Numerical Analysis of Data and Fusion Method Characteristics Influencing Classifier Fusion Performance
Previous Article in Special Issue
Hall and Ion-Slip Effect on CNTS Nanofluid over a Porous Extending Surface through Heat Generation and Absorption
Open AccessArticle

Darcy–Forchheimer MHD Couple Stress 3D Nanofluid over an Exponentially Stretching Sheet through Cattaneo–Christov Convective Heat Flux with Zero Nanoparticles Mass Flux Conditions

1
Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan
2
KMUTT-Fixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
3
KMUTT-Fixed Point Theory and Applications Research Group, Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
4
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
5
Center of Excellence in Theoretical and Computational Science (TaCS-CoE), SCL 802 Fixed Point Laboratory, Science Laboratory Building, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
6
Mathematics Department, COMSATS University, Abbottabad Campus, Islamabad 22060, Pakistan
7
Department of Mathematics, Qurtuba University of Science and Information Technology, Peshawar 25000, Pakistan
8
Renewable Energy Research Centre, Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut’s University of Technology North Bangkok, 1518 Pracharat 1 Road, Bangsue, Bangkok 10800, Thailand
*
Authors to whom correspondence should be addressed.
Entropy 2019, 21(9), 867; https://doi.org/10.3390/e21090867
Received: 17 June 2019 / Revised: 5 August 2019 / Accepted: 5 August 2019 / Published: 6 September 2019
In the last decade, nanoparticles have provided numerous challenges in the field of science. The nanoparticles suspended in various base fluids can transform the flow of fluids and heat transfer characteristics. In this research work, the mathematical model is offered to present the 3D magnetohydrodynamics Darcy–Forchheimer couple stress nanofluid flow over an exponentially stretching sheet. Joule heating and viscous dissipation impacts are also discussed in this mathematical model. To examine the relaxation properties, the proposed model of Cattaneo–Christov is supposed. For the first time, the influence of temperature exponent is scrutinized via this research article. The designed system of partial differential equations (PDE’s) is transformed to set of ordinary differential equations (ODE’s) by using similarity transformations. The problem is solved analytically via homotopy analysis technique. Effects of dimensionless couple stress, magnetic field, ratio of rates, porosity, and coefficient of inertia parameters on the fluid flow in x- and y-directions have been examined in this work. The augmented ratio of rates parameter upsurges the velocity profile in the x-direction. The augmented magnetic field, porosity parameter, coefficient of inertia, and couple stress parameter diminishes the velocity field along the x-direction. The augmented magnetic field, porosity parameter, coefficient of inertia, ratio of rates parameter, and couple stress parameter reduces the velocity field along the y-axis. The influences of time relaxation, Prandtl number, and temperature exponent on temperature profile are also discussed. Additionally, the influences of thermophoresis parameter, Schmidt number, Brownian motion parameter, and temperature exponent on fluid concentration are explained in this work. For engineering interests, the impacts of parameters on skin friction and Nusselt number are accessible through tables. View Full-Text
Keywords: MHD; nanofluids; heat transfer; couple stress fluid; HAM; Cattaneo–Christov heat flux model MHD; nanofluids; heat transfer; couple stress fluid; HAM; Cattaneo–Christov heat flux model
Show Figures

Figure 1

MDPI and ACS Style

Ahmad, M.W.; Kumam, P.; Shah, Z.; Farooq, A.A.; Nawaz, R.; Dawar, A.; Islam, S.; Thounthong, P. Darcy–Forchheimer MHD Couple Stress 3D Nanofluid over an Exponentially Stretching Sheet through Cattaneo–Christov Convective Heat Flux with Zero Nanoparticles Mass Flux Conditions. Entropy 2019, 21, 867.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop