On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials
Abstract
:1. Introduction
2. Derivation of the Kinetic Equation
2.1. Dynamical Equations for the Mode Amplitudes
2.2. Weak Nonlinearity Expansion
2.3. Statistical Averaging
- Assumption 1: Phase randomness. This is a standard wave turbulence assumption. We assume that the phases of are random and, therefore, we can use Wick’s pairing, which says that non-zero contributions only arise in paring and . That means the first order term in is 0This result holds because the diagonal terms with and are excluded from the sum.The second order terms in can be written as
- Assumption 2: Amplitude averaging, “quasi-free field” assumption. Here, we will assume that the mode amplitudes at each site are statistically independent. Moreover, we will assume that these amplitudes are independent from and (complicated functions of the random potentials which are fixed for each realisation). This assumption leads to
2.4. Four-Wave Kinetic Equation
3. The Porous Medium Equation
3.1. Derivation of the Porous Medium Equation
3.2. Steady State Solutions-Ohm’s Law
3.3. Self-Similar Solutions
4. Six-Wave Regime
5. Summary and Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bourgain, J.; Kenig, C.E.; Klainerman, S. Mathematical Aspects of Nonlinear Dispersive Equations (AM-163); Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Faou, E.; Germain, P.; Hani, Z. The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation. J. Am. Math. Soc. 2016, 29, 915–982. [Google Scholar] [CrossRef]
- Fishman, S.; Krivolapov, Y.; Soffer, A. Perturbation theory for the nonlinear Schrödinger equation with a random potential. Nonlinearity 2009, 22, 2861. [Google Scholar] [CrossRef]
- Fishman, S.; Krivolapov, Y.; Soffer, A. The nonlinear Schrödinger equation with a random potential: Results and puzzles. Nonlinearity 2012, 25, R53. [Google Scholar] [CrossRef]
- Flach, S. Nonlinear Lattice Waves in Random Potentials; Besse, C., Garreau, J.C., Eds.; Springer: Cham, Switzerland, 2015; Volume 2146, pp. 1–48. [Google Scholar]
- Flach, S.; Krimer, D.O.; Skokos, C. Universal spreading of wave packets in disordered nonlinear systems. Phys. Rev. Lett. 2009, 102, 024101. [Google Scholar] [CrossRef] [PubMed]
- Hani, Z. Long-time instability and unbounded sobolev orbits for some periodic nonlinear schrödinger equations. Arch. Ration. Mech. Anal. 2014, 211, 929–964. [Google Scholar] [CrossRef]
- Krivolapov, Y.; Fishman, S.; Soffer, A. A numerical and symbolical approximation of the nonlinear anderson model. New J. Phys. 2010, 12, 063035. [Google Scholar] [CrossRef]
- Pikovsky, A.S.; Shepelyansky, D.L. Destruction of Anderson localization by a weak nonlinearity. Phys. Rev. Lett. 2008, 100, 094101. [Google Scholar] [CrossRef]
- Skokos, C.; Krimer, D.O.; Komineas, S.; Flach, S. Delocalization of wave packets in disordered nonlinear chains. Phys. Rev. E 2009, 79, 056211. [Google Scholar] [CrossRef]
- Wang, W.M.; Zhang, Z. Long time Anderson localization for the nonlinear random Schrödinger equation. J. Stat. Phys. 2009, 134, 953–968. [Google Scholar] [CrossRef]
- Berman, G.P.; Izrailev, F.M. The fermi–pasta–ulam problem: Fifty years of progress. Chaos 2005, 15, 015104. [Google Scholar] [CrossRef]
- Campbell, D.K.; Rosenau, P.; Zaslavsky, G.M. Introduction: The fermi–pasta–ulam problem: The first fifty years. Chaos 2005, 15, 015101. [Google Scholar] [CrossRef] [PubMed]
- Flach, S. Spreading, nonergodicity, and selftrapping: a puzzle of interacting disordered lattice waves. In Nonlinear Dynamics: Materials, Theory and Experiments; Springer: Cham, Switzerland, 2016; Volume 173, pp. 45–57. [Google Scholar]
- Mithun, T.; Kati, Y.; Danieli, C.; Flach, S. Weakly nonergodic dynamics in the Gross-Pitaevskii lattice. Phys. Rev. Lett. 2018, 120, 184101. [Google Scholar] [CrossRef] [PubMed]
- Vakulchyk, I.; Fistul, M.V.; Flach, S. Wave packet spreading with disordered nonlinear discrete-time quantum walks. Phys. Rev. Lett. 2019, 122, 040501. [Google Scholar] [CrossRef] [PubMed]
- Balk, A.M.; Nazarenko, S.V. Physical realizability of anisotropic weak-turbulence Kolmogorov spectra. Sov. Phys. JETP 1990, 70, 1031–1041. [Google Scholar]
- Galtier, S.; Nazarenko, S.V.; Newell, A.C.; Pouquet, A. A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 2000, 63, 447–488. [Google Scholar] [CrossRef] [Green Version]
- Lvov, Y.V.; Nazarenko, S. Noisy spectra, long correlations, and intermittency in wave turbulence. Phys. Rev. E 2004, 69, 066608. [Google Scholar] [CrossRef] [Green Version]
- Nazarenko, S. Wave turbulence. In Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 825. [Google Scholar]
- Zakharov, V.E.; L’vov, V.S.; Falkovich, G. Kolmogorov Spectra of Turbulence I: Wave Turbulence; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Craciun, G.; Tran, M.B. A reaction network approach to the convergence to equilibrium of quantum boltzmann equations for bose gases. arXiv 2016, arXiv:1608.05438. [Google Scholar]
- Jin, S.; Tran, M.B. Quantum hydrodynamic approximations to the finite temperature trapped bose gases. Physica D 2018, 380, 45–57. [Google Scholar] [CrossRef]
- Newell, A.C.; Nazarenko, S.; Biven, L. Wave turbulence and intermittency. Physica D 2001, 152, 520–550. [Google Scholar] [CrossRef]
- Pomeau, Y.; Tran, M.B. Statistical physics of non equilibrium quantum phenomena. In Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Reichl, L.E.; Tran, M.-B. A kinetic equation for ultra-low temperature bose–einstein condensates. J. Phys. A Math. Theor. 2019, 52, 063001. [Google Scholar] [CrossRef]
- Soffer, A.; Tran, M.-B. On coupling kinetic and Schrodinger equations. J. Differ. Equ. 2018, 265, 2243–2279. [Google Scholar] [CrossRef]
- Soffer, A.; Tran, M.-B. On the dynamics of finite temperature trapped bose gases. Adv. Math. 2018, 325, 533–607. [Google Scholar] [CrossRef]
- Choi, Y.; Lvov, Y.V.; Nazarenko, S. Probability densities and preservation of randomness in wave turbulence. Phys. Lett. A 2004, 332, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Lvov, Y.V.; Nazarenko, S. Joint statistics of amplitudes and phases in wave turbulence. Physica D 2005, 201, 121–149. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Lvov, Y.V.; Nazarenko, S.; Pokorni, B. Anomalous probability of large amplitudes in wave turbulence. Phys. Lett. A 2005, 339, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Rivkind, A.; Krivolapov, Y.; Fishman, S.; Soffer, A. Eigenvalue repulsion estimates and some applications for the one-dimensional Anderson model. J. Phys. A Math. Theor. 2011, 44, 305206. [Google Scholar] [CrossRef]
- Germain, P.; Ionescu, A.D.; Tran, M.-B. Optimal local well-posedness theory for the kinetic wave equation. arXiv 2017, arXiv:1711.05587. [Google Scholar]
- Vázquez, J.L. The Porous Medium Equation: Mathematical Theory; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Kolovsky, A.R.; Gómez, E.A.; Korsch, H.J. Bose-einstein condensates on tilted lattices: Coherent, chaotic, and subdiffusive dynamics. Phys. Rev. A 2010, 81, 025603. [Google Scholar] [CrossRef]
- Tuck, B. Some explicit solutions to the non-linear diffusion equation. J. Phys. D 1976, 9, 1559. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarenko, S.; Soffer, A.; Tran, M.-B. On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials. Entropy 2019, 21, 823. https://doi.org/10.3390/e21090823
Nazarenko S, Soffer A, Tran M-B. On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials. Entropy. 2019; 21(9):823. https://doi.org/10.3390/e21090823
Chicago/Turabian StyleNazarenko, Sergey, Avy Soffer, and Minh-Binh Tran. 2019. "On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials" Entropy 21, no. 9: 823. https://doi.org/10.3390/e21090823
APA StyleNazarenko, S., Soffer, A., & Tran, M.-B. (2019). On the Wave Turbulence Theory for the Nonlinear Schrödinger Equation with Random Potentials. Entropy, 21(9), 823. https://doi.org/10.3390/e21090823