Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = ohm’s law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4643 KiB  
Article
The Effect of Non-Transferred Plasma Torch Electrodes on Plasma Jet: A Computational Study
by Sai Likitha Siddanathi, Lars-Göran Westerberg, Hans O. Åkerstedt, Henrik Wiinikka and Alexey Sepman
Appl. Sci. 2025, 15(15), 8367; https://doi.org/10.3390/app15158367 - 28 Jul 2025
Viewed by 189
Abstract
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on [...] Read more.
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on plasma behavior. The results reveal that different cathode designs require varying current levels to maintain a consistent power output. This paper presents the changes in electric conductivity and electric potential for different input currents across the arc formation path (from the cathode tip to the anode beginning) and relating to Ohm’s law. Significant variations in plasma jet velocity and temperature were observed, especially near the cathode tip. The study concludes by evaluating thermal efficiency across geometry configurations. Flat cathodes demonstrated the highest efficiency, while the anode shape had minimal impact. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

20 pages, 4023 KiB  
Article
Numerical Study on the Thermal Behavior of Lithium-Ion Batteries Based on an Electrochemical–Thermal Coupling Model
by Xing Hu, Hu Xu, Chenglin Ding, Yupeng Tian and Kuo Yang
Batteries 2025, 11(7), 280; https://doi.org/10.3390/batteries11070280 - 21 Jul 2025
Viewed by 444
Abstract
The escalating demand for efficient thermal management in lithium-ion batteries necessitates precise characterization of their thermal behavior under diverse operating conditions. This study develops a three-dimensional (3D) electrochemical–thermal coupling model grounded in porous electrode theory and energy conservation principles. The model solves multi-physics [...] Read more.
The escalating demand for efficient thermal management in lithium-ion batteries necessitates precise characterization of their thermal behavior under diverse operating conditions. This study develops a three-dimensional (3D) electrochemical–thermal coupling model grounded in porous electrode theory and energy conservation principles. The model solves multi-physics equations such as Fick’s law, Ohm’s law, and the Butler–Volmer equation, to resolve coupled electrochemical and thermal dynamics, with temperature-dependent parameters calibrated via the Arrhenius equation. Simulations under varying discharge rates reveal that high-rate discharges exacerbate internal heat accumulation. Low ambient temperatures amplify polarization effects. Forced convection cooling reduces surface temperatures but exacerbates core-to-surface thermal gradients. Structural optimization strategies demonstrate that enhancing through-thickness thermal conductivity reduces temperature differences. These findings underscore the necessity of balancing energy density and thermal management in lithium-ion battery design, proposing actionable insights such as preheating protocols for low-temperature operation, optimized cooling systems for high-rate scenarios, and material-level enhancements for improved thermal uniformity. Full article
Show Figures

Figure 1

16 pages, 5598 KiB  
Article
Hybrid Fabrics for Ohmic Heating Applications
by Jiří Militký, Karel Kupka, Veronika Tunáková and Mohanapriya Venkataraman
Polymers 2025, 17(10), 1339; https://doi.org/10.3390/polym17101339 - 14 May 2025
Viewed by 371
Abstract
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in [...] Read more.
Textile structures with ohmic (Joule) heating capability are frequently used for personal thermal management by tuning fluctuations in human body temperature that arise due to climatic changes or for medical applications as electrotherapy. They are constructed from electrically conductive textile structures prepared in different ways, e.g., from metallic yarns, conductive polymers, conductive coatings, etc. In comparison with other types of flexible ohmic heaters, these structures should be corrosion resistant, air permeable, and comfortable. They should not loose ohmic heating efficiency due to frequent intensive washing and maintenance. In this study, the basic electrical properties of a conductive fabric composed of a polyester/cotton fiber mixture and a small amount of fine stainless-steel staple fibers (SS) were evaluated and predicted. Even though the basic conductive component of SS fibers is iron and its electrical characteristics obey Ohm’s law, the electrical behavior of the prepared fabric was highly nonlinear, resembling a more complex response than that of a classical conductor. The non-linear behavior was probably due to non-ideal, poorly defined random interfaces between individual short SS fibers. A significant time–dynamics relationship was also shown. Using the Stefan–Boltzmann law describing radiation power, we demonstrated that it is possible to predict surface temperature due to the ohmic heating of a fabric related to the input electrical power. Significant local temperature variations in the heated hybrid fabric in both main directions (warp and weft) were identified. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

20 pages, 6272 KiB  
Review
Flash Memory for Synaptic Plasticity in Neuromorphic Computing: A Review
by Jisung Im, Sangyeon Pak, Sung-Yun Woo, Wonjun Shin and Sung-Tae Lee
Biomimetics 2025, 10(2), 121; https://doi.org/10.3390/biomimetics10020121 - 18 Feb 2025
Viewed by 1844
Abstract
The rapid expansion of data has made global access easier, but it also demands increasing amounts of energy for data storage and processing. In response, neuromorphic electronics, inspired by the functionality of biological neurons and synapses, have emerged as a growing area of [...] Read more.
The rapid expansion of data has made global access easier, but it also demands increasing amounts of energy for data storage and processing. In response, neuromorphic electronics, inspired by the functionality of biological neurons and synapses, have emerged as a growing area of research. These devices enable in-memory computing, helping to overcome the “von Neumann bottleneck”, a limitation caused by the separation of memory and processing units in traditional von Neumann architecture. By leveraging multi-bit non-volatility, biologically inspired features, and Ohm’s law, synaptic devices show great potential for reducing energy consumption in multiplication and accumulation operations. Within the various non-volatile memory technologies available, flash memory stands out as a highly competitive option for storing large volumes of data. This review highlights recent advancements in neuromorphic computing that utilize NOR, AND, and NAND flash memory. This review also delves into the array architecture, operational methods, and electrical properties of NOR, AND, and NAND flash memory, emphasizing its application in different neural network designs. By providing a detailed overview of flash memory-based neuromorphic computing, this review offers valuable insights into optimizing its use across diverse applications. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

20 pages, 1411 KiB  
Article
Covariant Formulation of the Brain’s Emerging Ohm’s Law
by Manuel Rivas and Manuel Reina
Symmetry 2024, 16(12), 1570; https://doi.org/10.3390/sym16121570 - 23 Nov 2024
Viewed by 950
Abstract
It is essential to establish the validity of Ohm’s law in any reference frame if we aim to implement a relativistic approach to brain dynamics based on a Lorentz covariant microscopic response relation. Here, we obtain a covariant formulation of Ohm’s law for [...] Read more.
It is essential to establish the validity of Ohm’s law in any reference frame if we aim to implement a relativistic approach to brain dynamics based on a Lorentz covariant microscopic response relation. Here, we obtain a covariant formulation of Ohm’s law for an electromagnetic field tensor of any order derived from the emergent conductivity tensor in highly non-isotropic systems, employing the bidomain theory framework within brain tissue cells. With this, we offer a different perspective that we hope will lead to understanding the close relationship between brain dynamics and a seemingly ordinary yet profoundly crucial element: space. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

11 pages, 3450 KiB  
Article
Numerical Investigation of the Fully Damped Wave-Type Magnetohydrodynamic Flow Problem
by Seda Demir and Harun Selvitopi
Mathematics 2024, 12(22), 3473; https://doi.org/10.3390/math12223473 - 7 Nov 2024
Viewed by 837
Abstract
Magnetohydrodynamic (MHD) flow plays a crucial role in various applications, ranging from nuclear fusion devices to MHD pumps. The mathematical modeling of such flows involves convection–diffusion-type equations, with fluid velocity governed by the Navier–Stokes equations and the magnetic field determined by Maxwell’s equations [...] Read more.
Magnetohydrodynamic (MHD) flow plays a crucial role in various applications, ranging from nuclear fusion devices to MHD pumps. The mathematical modeling of such flows involves convection–diffusion-type equations, with fluid velocity governed by the Navier–Stokes equations and the magnetic field determined by Maxwell’s equations through Ohm’s law. Due to the complexity of these models, most studies on steady and unsteady MHD equations rely on numerical methods, as theoretical solutions are limited to specific cases. In this research, we propose a damped-wave-type mathematical model to describe fluid flow within a channel, taking into account both the velocity and magnetic field components. The model is solved numerically using the finite difference method for time discretization and the finite element method for spatial discretization. Numerical results are displayed graphically for different values of Hartmann numbers, and a detailed analysis and discussion of the solutions are provided. Full article
Show Figures

Figure 1

13 pages, 3619 KiB  
Article
Flexible Artificial Ag NPs:a–SiC0.11:H Synapse on Al Foil with High Uniformity and On/Off Ratio for Neuromorphic Computing
by Zongyan Zuo, Chengfeng Zhou, Zhongyuan Ma, Yufeng Huang, Liangliang Chen, Wei Li, Jun Xu and Kunji Chen
Nanomaterials 2024, 14(18), 1474; https://doi.org/10.3390/nano14181474 - 10 Sep 2024
Cited by 1 | Viewed by 1333
Abstract
A neuromorphic computing network based on SiCx memristor paves the way for a next-generation brain-like chip in the AI era. Up to date, the SiCx–based memristor devices are faced with the challenge of obtaining flexibility and uniformity, which can push [...] Read more.
A neuromorphic computing network based on SiCx memristor paves the way for a next-generation brain-like chip in the AI era. Up to date, the SiCx–based memristor devices are faced with the challenge of obtaining flexibility and uniformity, which can push forward the application of memristors in flexible electronics. For the first time, we report that a flexible artificial synaptic device based on a Ag NPs:a–SiC0.11:H memristor can be constructed by utilizing aluminum foil as the substrate. The device exhibits stable bipolar resistive switching characteristic even after bending 1000 times, displaying excellent flexibility and uniformity. Furthermore, an on/off ratio of approximately 107 can be obtained. It is found that the incorporation of silver nanoparticles significantly enhances the device’s set and reset voltage uniformity by 76.2% and 69.7%, respectively, which is attributed to the contribution of the Ag nanoparticles. The local electric field of Ag nanoparticles can direct the formation and rupture of conductive filaments. The fitting results of I–V curves show that the carrier transport mechanism agrees with Poole–Frenkel (P–F) model in the high-resistance state, while the carrier transport follows Ohm’s law in the low-resistance state. Based on the multilevel storage characteristics of the Al/Ag NPs:a–SiC0.11:H/Al foil resistive switching device, we successfully observed the biological synaptic characteristics, including the long–term potentiation (LTP), long–term depression (LTD), and spike–timing–dependent plasticity (STDP). The flexible artificial Ag NPs:a–SiC0.11:H/Al foil synapse possesses excellent conductance modulation capabilities and visual learning function, demonstrating the promise of application in flexible electronics technology for high-efficiency neuromorphic computing in the AI period. Full article
(This article belongs to the Special Issue Controlled Growth and Properties of Semiconductor Nanomaterials)
Show Figures

Figure 1

42 pages, 702 KiB  
Article
Stability Estimates of Optimal Solutions for the Steady Magnetohydrodynamics-Boussinesq Equations
by Gennadii Alekseev and Yuliya Spivak
Mathematics 2024, 12(12), 1912; https://doi.org/10.3390/math12121912 - 20 Jun 2024
Cited by 2 | Viewed by 1219
Abstract
This paper develops the mathematical apparatus of studying control problems for the stationary model of magnetic hydrodynamics of viscous heat-conducting fluid in the Boussinesq approximation. These problems are formulated as problems of conditional minimization of special cost functionals by weak solutions of the [...] Read more.
This paper develops the mathematical apparatus of studying control problems for the stationary model of magnetic hydrodynamics of viscous heat-conducting fluid in the Boussinesq approximation. These problems are formulated as problems of conditional minimization of special cost functionals by weak solutions of the original boundary value problem. The model under consideration consists of the Navier–Stokes equations, the Maxwell equations without displacement currents, the generalized Ohm’s law for a moving medium and the convection-diffusion equation for temperature. These relations are nonlinearly connected via the Lorentz force, buoyancy force in the Boussinesq approximation and convective heat transfer. Results concerning the existence and uniqueness of the solution of the original boundary value problem and of its generalized linear analog are presented. The global solvability of the control problem under study is proved and the optimality system is derived. Sufficient conditions on the data are established which ensure local uniqueness and stability of solutions of the control problems under study with respect to small perturbations of the cost functional to be minimized and one of the given functions. We stress that the unique stability estimates obtained in the paper have a clear mathematical structure and intrinsic beauty. Full article
(This article belongs to the Special Issue Mathematical Problems in Fluid Mechanics)
Show Figures

Figure 1

11 pages, 3124 KiB  
Proceeding Paper
Analytical Modelling of Trapezoidal Monopole Structured Antenna for Wi-Fi, Industrial Scientific and Medical, and Wireless Communication System Applications
by Gubbala Kishore Babu, Singam Aruna and Kethavathu Srinivasa Naik
Eng. Proc. 2023, 59(1), 147; https://doi.org/10.3390/engproc2023059147 - 7 Jan 2024
Cited by 1 | Viewed by 1174
Abstract
A dual-band monopole antenna of a trapezoidal shape is modelled and the analytical study is presented in this article. The designed model is working between 2.5 and 3 GHz by producing bandwidth value of 500 MHz and 4–5 GHz with a bandwidth value [...] Read more.
A dual-band monopole antenna of a trapezoidal shape is modelled and the analytical study is presented in this article. The designed model is working between 2.5 and 3 GHz by producing bandwidth value of 500 MHz and 4–5 GHz with a bandwidth value of 1000 MHz. The designed antenna polarization is linear, and the radiation is non-directive. The performance bandwidth is 4:1, 2:1, and 5:1 at 2.5, 2.6, and 4.5 GHz and the gain value is 2.3 dB, 2.9 dB, and 5.1 dB, respectively. An impedance value of 50 ohms is observed at the port during the analysis. The analysed model is best suitable for the wireless communication applications of ISM, Wi-Fi, and WLAN, with moderate gain and efficiency. In wireless communication systems, effective and adaptable antennas are in high demand. This work proposes an analytical modelling technique for a trapezoidal-structured monopole antenna for Wi-Fi, ISM, and other wireless communication systems. The proposed antenna has a compact size, broad frequency coverage, and omnidirectional radiation patterns. The analytical model considers the antenna’s geometric characteristics, material qualities, and operating frequencies using electromagnetics laws. Through rigorous mathematical definitions, the study reveals the antenna’s resistance, radiation efficiency, and gain patterns across the necessary frequency bands. Furthermore, this analytical model predicts antenna performance without time-consuming simulation or costly prototypes. A thorough analysis assesses the trapezoidal monopole antenna’s suitability for Wi-Fi, ISM, and wireless communication applications, addressing their individual requirements and limit. The bandwidth, gain, radiation efficiency, and impedance matching are examined to show the antenna’s capacity to fulfil modern wireless system needs. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

14 pages, 2215 KiB  
Article
Theoretical Study on the Open-Shell Electronic Structure and Electron Conductivity of [18]Annulene as a Molecular Parallel Circuit Model
by Naoka Amamizu, Mitsuhiro Nishida, Keisuke Sasaki, Ryohei Kishi and Yasutaka Kitagawa
Nanomaterials 2024, 14(1), 98; https://doi.org/10.3390/nano14010098 - 31 Dec 2023
Viewed by 2207
Abstract
Herein, the electron conductivities of [18]annulene and its derivatives are theoretically examined as a molecular parallel circuit model consisting of two linear polyenes. Their electron conductivities are estimated by elastic scattering Green’s function (ESGF) theory and density functional theory (DFT) methods. The calculated [...] Read more.
Herein, the electron conductivities of [18]annulene and its derivatives are theoretically examined as a molecular parallel circuit model consisting of two linear polyenes. Their electron conductivities are estimated by elastic scattering Green’s function (ESGF) theory and density functional theory (DFT) methods. The calculated conductivity of the [18]annulene does not follow the classical conductivity, i.e., Ohm’s law, suggesting the importance of a quantum interference effect in single molecules. By introducing electron-withdrawing groups into the annulene framework, on the other hand, a spin-polarized electronic structure appears, and the quantum interference effect is significantly suppressed. In addition, the total current is affected by the spin polarization because of the asymmetry in the coupling constant between the molecule and electrodes. From these results, it is suggested that the electron conductivity as well as the quantum interference effect of π-conjugated molecular systems can be designed using their open-shell nature, which is chemically controlled by the substituents. Full article
(This article belongs to the Special Issue Electrical Conductivity of Nanostructured Materials)
Show Figures

Figure 1

18 pages, 10919 KiB  
Article
Three-Dimensional Forward Modeling of Transient Electromagnetic Method Considering Induced Polarization Effect Based on Spectral Element Method
by Xiaonan Zhang, Liangjun Yan, Xin Huang, Lei Zhou, Xinyu Wang and Xiaoyue Cao
Minerals 2024, 14(1), 24; https://doi.org/10.3390/min14010024 - 25 Dec 2023
Cited by 4 | Viewed by 2041
Abstract
The transient electromagnetic method (TEM) is widely used in the exploration of mineral, petroleum, and geothermal resources due to its sensitivity to low-resistivity bodies, limited site constraints, and strong resistance to interference. In practical applications, the TEM often uses a long wire source [...] Read more.
The transient electromagnetic method (TEM) is widely used in the exploration of mineral, petroleum, and geothermal resources due to its sensitivity to low-resistivity bodies, limited site constraints, and strong resistance to interference. In practical applications, the TEM often uses a long wire source instead of an idealized horizontal electric dipole (HED) source as the excitation source. This is due to the complex external conditions and the relatively large distance between the receiving zone and the transmitter source. Compared to the HED, the long wire source can provide a larger excitation current, generating stronger signals to meet the requirements of a higher signal-to-noise ratio or deeper exploration. It also produces longer-duration signals, thereby providing better resolution. Additionally, for the interpretation of TEM data, three-dimensional forward modeling plays a crucial role. However, the mature traditional TEM forward method is based on a simple, sometimes inappropriate model, as it is well established that the induced polarization (IP) effect is widely present in the deep earth, especially in oil and gas reservoirs. The presence of the IP effect results in negative responses in field data that do not conform to the traditional theoretical decay law of TEM, which can significantly impact data processing and inversion results. To address this issue, a TEM forward modeling method considering the IP effect based on the spectral element method (SEM) has been developed in this study. Firstly, starting from the Helmholtz equation satisfied by the time domain electric field, we introduce the Debye model with polarization information into the forward modeling by utilizing the differential form of Ohm’s law. As a result, we derive the boundary value problem for the time domain electric field that considers the induced polarization effect. Using Gauss–Lobatto–Legendre (GLL) polynomials as the basis functions, the SEM is employed to discretize the governing equations at each time step and obtain spectral element discretization equations. Then, temporal discretization equations are derived using the second-order backward Euler formula, and the linear system of equations is solved using the Pardiso direct solver. Finally, the electromagnetic responses at any time channel are obtained via SEM interpolation and numerical integration, thereby achieving three-dimensional TEM forward modeling considering the IP effect. The results indicate that this method can effectively reflect the spatial distribution of polarizable subsurface media. It provides valuable references for studying the polarization parameters of subsurface media and performing a three-dimensional inversion of TEM data considering the induced polarization effect. Full article
Show Figures

Figure 1

20 pages, 5841 KiB  
Article
Theoretical Simulation of the Resistivity and Fractured–Cavernous Structures of Carbonate Reservoirs
by Zhaohui Zhang, Chuqiao Gao, Yongde Gao, Chunzhen Niu and Shenglun Ma
Processes 2024, 12(1), 43; https://doi.org/10.3390/pr12010043 - 23 Dec 2023
Viewed by 1313
Abstract
Recently, theoretical modeling based on rock physics has emerged as a pivotal approach to studying the resistivity of complex fractured–cavernous microstructures. In this work, to study the effects of fractured–cavernous structures on carbonate reservoir resistivity, electrical conductivity models were developed based on the [...] Read more.
Recently, theoretical modeling based on rock physics has emerged as a pivotal approach to studying the resistivity of complex fractured–cavernous microstructures. In this work, to study the effects of fractured–cavernous structures on carbonate reservoir resistivity, electrical conductivity models were developed based on the effective medium theory and Ohm’s Law, and theoretical simulations were performed to examine how the porosity and resistivity of the rock matrix, the formation water resistivity, and the parameters of the fractured–cavernous microstructure affect the resistivity of rocks saturated with petroleum or water. Furthermore, the modeling results revealed the specific relationships between these factors in petroleum-saturated and water-saturated rocks. For vuggy reservoirs, a significant negative correlation between throat diameter and resistivity was revealed when variations in the rock matrix and formation water resistivity were negligible. Furthermore, the pore shape—especially the extension of pores in the direction of the current—severely reduced the resistivity of petroleum-saturated rocks. For fractured reservoirs, the porosity and resistivity of the rock matrix were the primary factors affecting resistivity, with the fracture inclination angle and width also exhibiting pronounced effects on the resistivity of water-saturated rocks. The rock cementation exponent was much smaller when the matrix pores were interconnected through fractures than when they were interconnected through throats. The findings reveal that the effects of the structural parameters of fractured–cavernous carbonate reservoirs on reservoir resistivity differ between petroleum-saturated and water-saturated rocks. The conventional Archie’s equation is insufficient for evaluating fluid saturation in carbonate reservoirs. A saturation evaluation model with a variable rock cementation exponent tailored to the specific reservoir type should thus be developed. Full article
(This article belongs to the Special Issue Exploration, Exploitation and Utilization of Coal and Gas Resources)
Show Figures

Figure 1

12 pages, 3165 KiB  
Article
Electron Transport Properties of Graphene/WS2 Van Der Waals Heterojunctions
by Junnan Guo, Xinyue Dai, Lishu Zhang and Hui Li
Molecules 2023, 28(19), 6866; https://doi.org/10.3390/molecules28196866 - 29 Sep 2023
Cited by 8 | Viewed by 2640
Abstract
Van der Waals heterojunctions of two-dimensional atomic crystals are widely used to build functional devices due to their excellent optoelectronic properties, which are attracting more and more attention, and various methods have been developed to study their structure and properties. Here, density functional [...] Read more.
Van der Waals heterojunctions of two-dimensional atomic crystals are widely used to build functional devices due to their excellent optoelectronic properties, which are attracting more and more attention, and various methods have been developed to study their structure and properties. Here, density functional theory combined with the nonequilibrium Green’s function technique has been used to calculate the transport properties of graphene/WS2 heterojunctions. It is observed that the formation of heterojunctions does not lead to the opening of the Dirac point of graphene. Instead, the respective band structures of both graphene and WS2 are preserved. Therefore, the heterojunction follows a unique Ohm’s law at low bias voltages, despite the presence of a certain rotation angle between the two surfaces within the heterojunction. The transmission spectra, the density of states, and the transmission eigenstate are used to investigate the origin and mechanism of unique linear I–V characteristics. This study provides a theoretical framework for designing mixed-dimensional heterojunction nanoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Molecular Modeling in Chemistry)
Show Figures

Graphical abstract

13 pages, 5150 KiB  
Article
Electrical Characteristics of CMOS-Compatible SiOx-Based Resistive-Switching Devices
by Maria N. Koryazhkina, Dmitry O. Filatov, Stanislav V. Tikhov, Alexey I. Belov, Dmitry A. Serov, Ruslan N. Kryukov, Sergey Yu. Zubkov, Vladislav A. Vorontsov, Dmitry A. Pavlov, Evgeny G. Gryaznov, Elena S. Orlova, Sergey A. Shchanikov, Alexey N. Mikhaylov and Sungjun Kim
Nanomaterials 2023, 13(14), 2082; https://doi.org/10.3390/nano13142082 - 16 Jul 2023
Cited by 4 | Viewed by 1450
Abstract
The electrical characteristics and resistive switching properties of memristive devices have been studied in a wide temperature range. The insulator and electrode materials of these devices (silicon oxide and titanium nitride, respectively) are fully compatible with conventional complementary metal-oxide-semiconductor (CMOS) fabrication processes. Silicon [...] Read more.
The electrical characteristics and resistive switching properties of memristive devices have been studied in a wide temperature range. The insulator and electrode materials of these devices (silicon oxide and titanium nitride, respectively) are fully compatible with conventional complementary metal-oxide-semiconductor (CMOS) fabrication processes. Silicon oxide is also obtained through the low-temperature chemical vapor deposition method. It is revealed that the as-fabricated devices do not require electroforming but their resistance state cannot be stored before thermal treatment. After the thermal treatment, the devices exhibit bipolar-type resistive switching with synaptic behavior. The conduction mechanisms in the device stack are associated with the effect of traps in the insulator, which form filaments in the places where the electric field is concentrated. The filaments shortcut the capacitance of the stack to different degrees in the high-resistance state (HRS) and in the low-resistance state (LRS). As a result, the electron transport possesses an activation nature with relatively low values of activation energy in an HRS. On the contrary, Ohm’s law and tunneling are observed in an LRS. CMOS-compatible materials and low-temperature fabrication techniques enable the easy integration of the studied resistive-switching devices with traditional analog–digital circuits to implement new-generation hardware neuromorphic systems. Full article
(This article belongs to the Special Issue Advances in Memristive Nanomaterials)
Show Figures

Figure 1

15 pages, 11732 KiB  
Article
Amorphous/Nanocrystalline High-Entropy CoCrFeNiTix Thin Films with Low Thermal Coefficient of Resistivity Obtained via Magnetron Deposition
by Maksim Poliakov, Dmitry Kovalev, Sergei Vadchenko, Dmitry Moskovskikh, Philipp Kiryukhantsev-Korneev, Lidiya Volkova, Alexander Dudin, Andrey Orlov, Andrey Goryachev and Alexander Rogachev
Nanomaterials 2023, 13(13), 2004; https://doi.org/10.3390/nano13132004 - 4 Jul 2023
Cited by 11 | Viewed by 2543
Abstract
High-entropy alloys are promising materials for novel thin-film resistors since they have high resistivity and a low-temperature coefficient of resistivity (TCR). In this work, a new high-entropy thin-film CoCrFeNiTix was deposited on a Si/SiO2 substrate by means of magnetron sputtering of [...] Read more.
High-entropy alloys are promising materials for novel thin-film resistors since they have high resistivity and a low-temperature coefficient of resistivity (TCR). In this work, a new high-entropy thin-film CoCrFeNiTix was deposited on a Si/SiO2 substrate by means of magnetron sputtering of the multi-component target produced by hot pressing of the powder mixture. The samples possessed a thickness of 130–230 nm and an amorphous atomic structure with nanocrystallite traces. This structure persisted after being annealed up to 400 °C, which was confirmed using X-ray and electron diffraction. The film had a single-phase structure with a smooth surface and a uniform distribution of all elements. The obtained film served for microresistor elaboration, which was produced using the lithography technique and tested in a temperature range from −60 °C up to 200 °C. Resistivity at room temperature was estimated as 2.37 μOhm·m. The results have demonstrated that TCR depends on temperature according to the simple linear law in a range from −60 °C up to 130 °C, changing its value from −78 ppm/°C at low temperatures to −6.6 ppm/°C at 130 °C. Such characteristics show the possibility of using these high-entropy alloy films for resistive elements in contemporary and future micro-electronic devices. Full article
(This article belongs to the Special Issue Solid-State Reactions in Nanomaterials)
Show Figures

Figure 1

Back to TopTop