# Non-Thermal Quantum Engine in Transmon Qubits

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Description

## 3. Non-Equilibrium Thermodynamics

#### 3.1. Non-Thermal Equilibrium States

#### 3.2. The Cycle

## 4. Work, Heat and Efficiency

## 5. Conclusions and Final Remarks

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Non-Thermal Equilibrium States

**Figure A1.**Stationary state’s elements ${\rho}_{\mathrm{T}}^{ee}$ and $|{\rho}_{\mathrm{T}}^{eg}|$ for different values of $({\omega}_{\mathrm{T}},{E}_{d})$. Important amounts of population and quantum coherence changes can be reached during the engine operation.

## Appendix B. Thermodynamic Quantities along Each Stroke

## References

- Gemmer, J.; Michel, M.; Mahler, G. Quantum Thermodynamics; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Gelin, M.F.; Thoss, M. Thermodynamics of a subensemble of a canonical ensemble. Phys. Rev. E
**2009**, 79, 051121. [Google Scholar] [CrossRef][Green Version] - Scully, M.O.; Zubairy, M.S.; Agarwal, G.S.; Walther, H. Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence. Science
**2003**, 299, 862. [Google Scholar] [CrossRef] [PubMed] - Gardas, B.; Deffner, S. Thermodynamic universality of quantum Carnot engines. Phys. Rev. E
**2015**, 92, 042126. [Google Scholar] [CrossRef] [PubMed][Green Version] - Deffner, S. Efficiency of Harmonic Quantum Otto Engines at Maximal Power. Entropy
**2018**, 20, 875. [Google Scholar] [CrossRef] - Çakmak, B.; Müstecaplıoğlu, O.E. Spin quantum heat engines with shortcuts to adiabaticity. Phys. Rev. E
**2019**, 99, 032108. [Google Scholar] [CrossRef][Green Version] - Klaers, J.; Faelt, S.; Imamoglu, A.; Togan, E. Squeezed Thermal Reservoirs as a Resource for a Nanomechanical Engine beyond the Carnot Limit. Phys. Rev. X
**2017**, 7, 031044. [Google Scholar] [CrossRef] - Dillenschneider, R.; Lutz, E. Energetics of quantum correlations. EPL (Europhys. Lett.)
**2009**, 88, 50003. [Google Scholar] [CrossRef][Green Version] - Huang, X.L.; Wang, T.; Yi, X.X. Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E
**2012**, 86, 051105. [Google Scholar] [CrossRef] [PubMed][Green Version] - Abah, O.; Lutz, E. Efficiency of heat engines coupled to nonequilibrium reservoirs. EPL (Europhys. Lett.)
**2014**, 106, 20001. [Google Scholar] [CrossRef] - Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett.
**2014**, 112, 030602. [Google Scholar] [CrossRef] - Hardal, A.Ü.C.; Müstecaplıoğlu, Ö.E. Superradiant Quantum Heat Engine. Sci. Rep.
**2015**, 5, 12953. [Google Scholar] [CrossRef][Green Version] - Niedenzu, W.; Gelbwaser-Klimovsky, D.; Kofman, A.G.; Kurizki, G. On the operation of machines powered by quantum non-thermal baths. New J. Phys.
**2016**, 18, 083012. [Google Scholar] [CrossRef][Green Version] - Manzano, G.; Galve, F.; Zambrini, R.; Parrondo, J.M.R. Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E
**2016**, 93, 052120. [Google Scholar] [CrossRef][Green Version] - Agarwalla, B.K.; Jiang, J.H.; Segal, D. Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs. Phys. Rev. B
**2017**, 96, 104304. [Google Scholar] [CrossRef][Green Version] - Stefanatos, D. Optimal efficiency of a noisy quantum heat engine. Phys. Rev. E
**2014**, 90, 012119. [Google Scholar] [CrossRef][Green Version] - Torrontegui, E.; Kosloff, R. Quest for absolute zero in the presence of external noise. Phys. Rev. E
**2013**, 88, 032103. [Google Scholar] [CrossRef][Green Version] - Gardas, B.; Deffner, S.; Saxena, A. Non-hermitian quantum thermodynamics. Sci. Rep.
**2016**, 6, 23408. [Google Scholar] [CrossRef] - Hatano, T.; Sasa, S.I. Steady-State Thermodynamics of Langevin Systems. Phys. Rev. Lett.
**2001**, 86, 3463. [Google Scholar] [CrossRef] - Oono, Y.; Paniconi, M. Steady State Thermodynamics. Prog. Theor. Phys. Suppl.
**1998**, 130, 29. [Google Scholar] [CrossRef] - Horowitz, J.M.; Sagawa, T. Equivalent Definitions of the Quantum Nonadiabatic Entropy Production. J. Stat. Phys.
**2014**, 156, 55. [Google Scholar] [CrossRef] - Yuge, T.; Sagawa, T.; Sugita, A.; Hayakawa, H. Geometrical Excess Entropy Production in Nonequilibrium Quantum Systems. J. Stat. Phys.
**2013**, 153, 412. [Google Scholar] [CrossRef] - Binder, F.; Vinjanampathy, S.; Modi, K.; Goold, J. Quantum thermodynamics of general quantum processes. Phys. Rev. E
**2015**, 91, 032119. [Google Scholar] [CrossRef][Green Version] - Niedenzu, W.; Mukherjee, V.; Ghosh, A.; Kofman, A.G.; Kurizki, G. Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun.
**2018**, 9, 165. [Google Scholar] [CrossRef] - Pusz, W.; Woronowicz, S.L. Passive states and KMS states for general quantum systems. Commun. Math. Phys.
**1978**, 58, 273. [Google Scholar] [CrossRef] - Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal work extraction from finite quantum systems. EPL (Europhys. Lett.)
**2004**, 67, 565. [Google Scholar] [CrossRef] - Manzano, G. Squeezed thermal reservoir as a generalized equilibrium reservoir. Phys. Rev. E
**2018**, 98, 042123. [Google Scholar] [CrossRef][Green Version] - Rouxinol, F.; Hao, Y.; Brito, F.; Caldeira, A.O.; Irish, E.K.; LaHaye, M.D. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system. Nanotechnology
**2016**, 27, 364003. [Google Scholar] [CrossRef][Green Version] - Callen, H.B. Thermodynamics and an Introduction to Thermostatistics; Wiley: Hoboken, NJ, USA, 1985. [Google Scholar]
- Kok, P.; Munro, W.J.; Nemoto, K.; Ralph, T.C.; Dowling, J.P.; Milburn, G.J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys.
**2007**, 79, 135. [Google Scholar] [CrossRef] - Hofheinz, M.; Weig, E.M.; Ansmann, M.; Bialczak, R.C.; Lucero, E.; Neeley, M.; O’Connell, A.D.; Wang, H.; Martinis, J.M.; Cleland, A.N. Generation of Fock states in a superconducting quantum circuit. Nature
**2008**, 454, 310. [Google Scholar] [CrossRef] - Mallet, F.; Ong, F.R.; Palacios-Laloy, A.; Nguyen, F.; Bertet, P.; Vion, D.; Esteve, D. Single-shot qubit readout in circuit Quantum Electrodynamics. Nat. Phys.
**2009**, 5, 791. [Google Scholar] [CrossRef] - Majer, J.; Chow, J.M.; Gambetta, J.M.; Koch, J.; Johnson, B.R.; Schreier, J.A.; Frunzio, L.; Schuster, D.I.; Houck, A.A.; Wallraff, A.; et al. Coupling Superconducting Qubits via a Cavity Bus. Nature
**2007**, 449, 443. [Google Scholar] [CrossRef] - Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Deffner, S.; Jarzynski, C. Information Processing and the Second Law of Thermodynamics: An Inclusive, Hamiltonian Approach. Phys. Rev. X
**2013**, 3, 041003. [Google Scholar] [CrossRef][Green Version] - Sasa, S.I.; Tasaki, H. Steady State Thermodynamics. J. Stat. Phys.
**2006**, 125, 125. [Google Scholar] [CrossRef] - Alicki, R. The quantum open system as a model of the heat engine. J. Phys. A Math. Gen.
**1979**, 12, L103. [Google Scholar] [CrossRef] - Geva, E.; Kosloff, R. A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid. J. Chem. Phys
**1998**, 96, 3054. [Google Scholar] [CrossRef] - Kieu, T.D. The Second Law, Maxwell’s Demon, and Work Derivable from Quantum Heat Engines. Phys. Rev. Lett.
**2004**, 93, 140403. [Google Scholar] [CrossRef] [PubMed] - Quan, H.T.; Liu, Y.X.; Sun, C.P.; Nori, F. Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E
**2007**, 76, 031105. [Google Scholar] [CrossRef][Green Version] - Linden, N.; Popescu, S.; Skrzypczyk, P. How Small Can Thermal Machines Be? The Smallest Possible Refrigerator. Phys. Rev. Lett.
**2010**, 105, 130401. [Google Scholar] [CrossRef] - Correa, L.A.; Palao, J.P.; Alonso, D.; Adesso, G. Quantum-enhanced absorption refrigerators. Sci. Rep.
**2014**, 4, 3949. [Google Scholar] [CrossRef][Green Version] - Uzdin, R.; Levy, A.; Kosloff, R. Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures. Phys. Rev. X
**2015**, 5, 031044. [Google Scholar] [CrossRef] - Abah, O.; Roßnagel, J.; Jacob, G.; Deffner, S.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Single-Ion Heat Engine at Maximum Power. Phys. Rev. Lett.
**2012**, 109, 203006. [Google Scholar] [CrossRef] - Zhang, K.; Bariani, F.; Meystre, P. Quantum Optomechanical Heat Engine. Phys. Rev. Lett.
**2014**, 112, 150602. [Google Scholar] [CrossRef][Green Version] - Dawkins, S.T.; Abah, O.; Singer, K.; Deffner, S. Single Atom Heat Engine in a Tapered Ion Trap. In Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions; Binder, F., Correa, L.A., Gogolin, C., Anders, J., Adesso, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 887–896. [Google Scholar] [CrossRef]
- Peterson, J.P.S.; Batalhão, T.B.; Herrera, M.; Souza, A.M.; Sarthour, R.S.; Oliveira, I.S.; Serra, R.M. Experimental characterization of a spin quantum heat engine. arXiv
**2018**, arXiv:1803.06021. [Google Scholar] - Roßnagel, J.; Dawkins, S.T.; Tolazzi, K.N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine. Science
**2016**, 352, 325. [Google Scholar] [CrossRef]

**Figure 1.**Sketch of the quantum engine with a transmon qubit as working substance interacting with an externally pumped (E(t)) transmission line (cavity). Both systems are embedded in the same cryogenic environment, which plays the role of a standard thermal bath of temperature T. Such a setup gives a dynamics of a working substance in the presence of a controllable non-thermal environment.

**Figure 2.**Sketch of the thermodynamic cycle obtained by varying the tunable parameters ${\omega}_{\mathrm{T}}$ and ${E}_{d}$. Each one of the strokes are obtained by keeping one of the variables constant while quasi-statically varying the other one.

**Figure 3.**Stationary state’s von Neumann entropy in the regime of operation of the thermal engine. Any thermodynamic cycle must be contained on this surface.

**Figure 4.**Efficiency $\eta $ as a function of the upper values $({\omega}_{1},{E}_{1})$ for the cycle depicted in Figure 2. The observed highest efficiency of about $47\%$ was attained when $({\omega}_{1},{E}_{1})=({\omega}_{1,\mathrm{max}},{E}_{1,\mathrm{max}})$, with ${\omega}_{1,\mathrm{max}}/2\pi =1000$ MHz and ${E}_{1,\mathrm{max}}/2\pi \hslash =2$ MHz.

Parameter | Value |
---|---|

${\omega}_{\mathrm{CPW}}/2\pi $ | 4.94 GHz |

$\omega /2\pi $ | 4.94 GHz |

$g/2\pi \hslash $ | 120 MHz |

T | 30 mK |

$\Gamma /2\pi $ | 2 MHz |

${\kappa}_{\mathrm{CPW}}/2\pi $ | 1 MHz |

${\omega}_{0}/2\pi $ | 100 MHz |

${\omega}_{1,\mathrm{max}}/2\pi $ | 1000 MHz |

${E}_{0}/2\pi \hslash $ | 0.2 MHz |

${E}_{1,\mathrm{max}}/2\pi \hslash $ | 2 MHz |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cherubim, C.; Brito, F.; Deffner, S.
Non-Thermal Quantum Engine in Transmon Qubits. *Entropy* **2019**, *21*, 545.
https://doi.org/10.3390/e21060545

**AMA Style**

Cherubim C, Brito F, Deffner S.
Non-Thermal Quantum Engine in Transmon Qubits. *Entropy*. 2019; 21(6):545.
https://doi.org/10.3390/e21060545

**Chicago/Turabian Style**

Cherubim, Cleverson, Frederico Brito, and Sebastian Deffner.
2019. "Non-Thermal Quantum Engine in Transmon Qubits" *Entropy* 21, no. 6: 545.
https://doi.org/10.3390/e21060545