# Quantum Probability and Randomness

^{1}

^{2}

^{*}

It is not surprising that R does not have a sharp value …, and that a positive dispersion exists. However, two different reasons for this behavior a priori conceivable:

- 1.
The individual systems $S1,\dots ,SN$ of our ensemble can be in different states, so that the ensemble $[S1,\dots ,SN]$ is defined by their relative frequencies. The fact that we do not obtain sharp values for the physical quantities in this case is caused by our lack of information: we do not know in which state we are measuring, and therefore we cannot predict the results.- 2.
All individual systems $S1,\dots ,SN$ are in the same state, but the laws of nature are not causal. Then, the cause of the dispersion is not our lack of information, but nature itself, which has disregarded the principle of sufficient cause.

- unpredictability (von Mises),
- complexity-incompressibility (Kolmogorov, Solomonof, Chaitin),
- typicality (Martin-Löf).

## Acknowledgments

## Conflicts of Interest

## References

- Khrennikov, A.; Weihs, G. Preface of the special issue Quantum foundations: Theory and experiment. Found. Phys.
**2012**, 42, 721–724. [Google Scholar] [CrossRef] - Bengtsson, I.; Khrennikov, A. Preface. Found. Phys.
**2011**, 41, 281. [Google Scholar] [CrossRef] - D’Ariano, G.M.; Jaeger, G.; Khrennikov, A.; Plotnitsky, A. Preface of the special issue Quantum theory: Advances and problems. Phys. Scr.
**2014**, T163, 010301. [Google Scholar] - Khrennikov, A.; de Raedt, H.; Plotnitsky, A.; Polyakov, S. Preface of the special issue Probing the limits of quantum mechanics: Theory and experiment, Volume 1. Found. Phys.
**2015**, 45, 707–710. [Google Scholar] [CrossRef] - Khrennikov, A.; de Raedt, H.; Plotnitsky, A.; Polyakov, S. Preface of the special issue Probing the limits of quantum mechanics: Theory and experiment, Volume 2. Found. Phys.
**2015**. [Google Scholar] [CrossRef] - Von Schweidler, E. Über Schwankungen der Radioaktiven Umwandlung; H. Dunod & E. Pinat: Paris, France, 1906; pp. 1–3. (In German) [Google Scholar]
- Hiebert, E.N. Common frontiers of the exact sciences and the humanities. Phys. Perspect.
**2000**, 2, 6–29. [Google Scholar] [CrossRef] - Stöltzner, M. Vienna indeterminism: Mach, Boltzmann, Exner. Synthese
**1999**, 119, 85–111. [Google Scholar] [CrossRef] - Exner, F.S. Über Gesetze in Naturwissenschaft und Humanistik: Inaugurationsrede Gehalten am 15. Oktober 1908; A. Hölder: Wien, Austria, 2016. [Google Scholar]
- Exner, F.S. Vorlesungen über die Physikalischen Grundlagen der Naturwissenschaften; F. Deuticke: Leipzig und Wien, Germany, 1922. [Google Scholar]
- Schrödinger, E. Was ist ein Naturgesetz? Naturwissenschaften
**1929**, 17, 1. [Google Scholar] [CrossRef] - Born, M. Zur Quantenmechanik der Stoßvorgänge. Z. Phys.
**1926**, 37, 863–867. [Google Scholar] [CrossRef] - Von Neuman, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Von Mises, R. Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z.
**1919**, 5, 52–99. [Google Scholar] [CrossRef] - Von Mises, R. The Mathematical Theory of Probability and Statistics; Academic Press: London, UK, 1964. [Google Scholar]
- Planck, M. The concept of causality. Proc. Phys. Soc.
**1932**, 44, 529–539. [Google Scholar] [CrossRef] - Earman, J. Aspects of determinism in modern physics. In Part B: Philosophy of Physics, Handbook of the Philosophy of Science; Butterfield, J., Earman, J., Eds.; North-Holland: Amsterdam, The Netherlands, 2007; pp. 1369–1434. [Google Scholar]
- Fuchs, C.A. Quantum mechanics as quantum information (and only a little more). In Quantum Theory: Reconsideration of Foundations; Växjö University Press: Växjö, Schweden, 2002; pp. 463–543. [Google Scholar]
- Fuchs, C.A.; Schack, R. QBism and the Greeks: why a quantum state does not represent an element of physical reality. Phys. Scr.
**2014**, 90, 015104. [Google Scholar] [CrossRef] [Green Version] - Plotnitsky, A.; Khrennikov, A. Reality without realism: On the ontological and epistemological architecture of quantum mechanics. Found. Phys.
**2015**, 45, 1269–1300. [Google Scholar] [CrossRef] - Dieks, D. Von Neumann’s impossibility proof: Mathematics in the service of rhetorics. Stud. Hist. Philos. Mod. Phys.
**2017**, 60, 136–148. [Google Scholar] [CrossRef] [Green Version] - Khrennikov, A. Probability and Randomness: Quantum Versus Classical; Imperial College Press: London, UK, 2016. [Google Scholar]
- Pavicic, M.; Megill, N.D. Vector Generation of Quantum Contextual Sets in Even Dimensional Hilbert Spaces. Entropy
**2018**, 20, 928. [Google Scholar] [CrossRef] - Martínez, A.C.; Solis, A.; Rojas, R.D.H.; U’ Ren, A.B.; Hirsch, J.G.; Castillo, I.P. Advanced Statistical Testing of Quantum Random Number Generators. Entropy
**2018**, 20, 886. [Google Scholar] [CrossRef] - Dalla Chiara, M.L.; Freytes, H.; Giuntini, R.; Leporini, R.; Sergioli, G. Probabilities and Epistemic Operations in the Logics of Quantum Computation. Entropy
**2018**, 20, 837. [Google Scholar] [CrossRef] - Guo, X.; Liu, R.; Li, P.; Cheng, C.; Wu, M.; Guo, Y. Enhancing Extractable Quantum Entropy in Vacuum-Based Quantum Random Number Generator. Entropy
**2018**, 20, 819. [Google Scholar] [CrossRef] - Enríquez, M.; Delgado, F.; Zyczkowski, K. Entanglement of Three-Qubit Random Pure States. Entropy
**2018**, 20, 745. [Google Scholar] [CrossRef] - Man’ko, M.A.; Man’ko, V.I. New Entropic Inequalities and Hidden Correlations in Quantum Suprematism Picture of Qubit States. Entropy
**2018**, 20, 692. [Google Scholar] [CrossRef] - Plotnitsky, A. The Heisenberg Method: Geometry, Algebra, and Probability in Quantum Theory. Entropy
**2018**, 20, 656. [Google Scholar] [CrossRef] - Delgado, F. SU(2) Decomposition for the Quantum Information Dynamics in 2d-Partite Two-Level Quantum Systems. Entropy
**2018**, 20, 610. [Google Scholar] [CrossRef] - Nagy, M.; Nagy, N. An Information-Theoretic Perspective on the Quantum Bit Commitment Impossibility Theorem. Entropy
**2018**, 20, 193. [Google Scholar] [CrossRef] - Jaeger, G. Developments in Quantum Probability and the Copenhagen Approach. Entropy
**2018**, 20, 420. [Google Scholar] [CrossRef] - Havlicek, H.; Karl Svozil, K. Dimensional Lifting through the Generalized Gram-Schmidt Process. Entropy
**2018**, 20, 284. [Google Scholar] [CrossRef] - Khrennikov, A. Ubiquitous Quantum Structure: From Psychology to Finances; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2010. [Google Scholar]
- Khrennikov, A.; Alodjants, A.; Trofimova, A.; Tsarev, D. On Interpretational Questions for Quantum-Like Modeling of Social Lasing. Entropy
**2018**, 20, 921. [Google Scholar] [CrossRef] - Ballonoff, P. Paths of Cultural Systems. Entropy
**2018**, 20, 8. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Khrennikov, A.; Svozil, K.
Quantum Probability and Randomness. *Entropy* **2019**, *21*, 35.
https://doi.org/10.3390/e21010035

**AMA Style**

Khrennikov A, Svozil K.
Quantum Probability and Randomness. *Entropy*. 2019; 21(1):35.
https://doi.org/10.3390/e21010035

**Chicago/Turabian Style**

Khrennikov, Andrei, and Karl Svozil.
2019. "Quantum Probability and Randomness" *Entropy* 21, no. 1: 35.
https://doi.org/10.3390/e21010035