Next Article in Journal
Effects of Mo, Nb, Ta, Ti, and Zr on Mechanical Properties of Equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys
Previous Article in Journal
Analysis and Comparison of Spatial–Temporal Entropy Variability of Tehran City Microclimate Based on Climate Change Scenarios
Previous Article in Special Issue
Anomaly Detection in Paleoclimate Records Using Permutation Entropy
Article Menu

Export Article

Open AccessArticle
Entropy 2019, 21(1), 14; https://doi.org/10.3390/e21010014

Assessing Water Resources Vulnerability by Using a Rough Set Cloud Model: A Case Study of the Huai River Basin, China

1
College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China
2
School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, USA
3
Teachers and Teaching Development Center, Nanjing University of Information Science and Technology, Nanjing 210044, China
*
Author to whom correspondence should be addressed.
Received: 7 November 2018 / Revised: 14 December 2018 / Accepted: 21 December 2018 / Published: 24 December 2018
(This article belongs to the Special Issue Applications of Information Theory in the Geosciences II)
Full-Text   |   PDF [3868 KB, uploaded 24 December 2018]   |  
  |   Review Reports

Abstract

Assessing water resources vulnerability is the foundation of local water resources management. However, as one of the major water systems in China, there is no existing evaluation index system that can effectively assess water resource vulnerability for the Huai River basin. To address this issue, we identified key vulnerability factors, constructed an evaluation index system, and applied such system to evaluate water resources vulnerability for the Huai River basin empirically in this paper. Specifically, our evaluation index system consists of 18 indexes selected from three different aspects: water shortage, water pollution, and water-related natural disaster. Then, the improved blind deletion rough set method was used to reduce the size of the evaluation index while keep the evaluation power. In addition, the improved conditional information entropy rough set method was employed to calculate the weights of evaluation indexes. Based on the reduced index system and calculated weights, a rough set cloud model was applied to carry out the vulnerability evaluation. The empirical results show that the Huai River basin water resources were under severe vulnerability conditions for most of the time between 2000 and 2016, and the Most Stringent Water Resources Management System (MS-WRMS) established in 2012 did not work effectively as expected. View Full-Text
Keywords: Huai River basin water system; water resources vulnerability evaluation; key vulnerable factor identification; rough set-cloud model Huai River basin water system; water resources vulnerability evaluation; key vulnerable factor identification; rough set-cloud model
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Chen, Y.; Feng, Y.; Zhang, F.; Wang, L. Assessing Water Resources Vulnerability by Using a Rough Set Cloud Model: A Case Study of the Huai River Basin, China. Entropy 2019, 21, 14.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top