New Equilibrium Ensembles for Isolated Quantum Systems
Abstract
1. Introduction
2. Isolated Quantum Systems
3. Results
4. Meaning of the Approximation
- First, since we are maximizing the entropy, adding constraints can not increase the optimal value:Therefore, the different levels of the hierarchy have a specific order, which is set by the value of their von Neumann entropy:
- Second, given that we are including progressively higher moments of the energy probability distribution , the moment generating function of the n-th level ensemble provides increasingly better approximations to the moment generating functions of the diagonal ensemble. These are defined as:The Taylor series of is:and the first n derivatives of are the same as the ones of . For this reason:From the physical perspective, this is relevant to provide predictions about the out-of-equilibrium behaviour of the quantum system. Indeed, the moment-generating function is the fidelity of the state at the time t with the initial state: . For pure states, the trace-distance reduces to a simple function of the fidelity: . Hence, evaluates how much the state at time t becomes distinguishable from the initial state. We conclude that the approximation scheme proposed before is clearly able to catch the behaviour of the fidelity at small times, where only the first few derivatives (up to n) are relevant.
- Third, we now prove that the provide progressively better approximation to the diagonal ensemble . This is relevant to make predictions about the equilibrium physics, which go beyond the thermal ansatz. We note that, thanks to the exponential form of the , we have:where is the relative entropy . Together with Equation (16), this means that:Therefore, the sequence , for , converges monotonically to zero as n approaches D. The relative entropy is undoubtedly an important quantity, as it provides a measure for the distinguishability of two quantum states. Despite that, it is not a metric. Hence, it does not provide a good definition of distance in the convex set of density matrices. Because of that, we resort to the trace-distance. In order to prove convergence to the predictions of the diagonal ensemble, we define the sequence , for . The Pinsker Inequality provides an upper bound to the trace-distance of two quantum states which depends on the relative entropy:Therefore, thanks to the Pinsker inequality and to the fact that , the sequence converges to zero as n goes to D:Even though we could not prove that the sequence is monotonic, the fact that it is upper-bounded by the monotonically decreasing sequence of the relative entropies is sufficient to conclude that as n increases, the provide increasingly better approximations to the diagonal ensemble .
5. Examples
5.1. First Example: L = 4
5.2. Second Example: L = 10
6. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Constrained Entropy Maximization
References
- Greiner, W.; Neise, L.; Stöcker, H. Thermodynamics and Statistical Mechanics; Springer: New York, NY, USA, 1995. [Google Scholar]
- Schrödinger, E. Statistical Thermodynamics; Dover Publications: Mineola, NY, USA, 1989; p. 95. [Google Scholar]
- Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 1994, 50, 888–901. [Google Scholar] [CrossRef]
- Srednicki, M. The approach to thermal equilibrium in quantized chaotic systems. J. Phys. A Math. Gen. 1999, 32, 1163–1175. [Google Scholar] [CrossRef]
- Srednicki, M. Thermal fluctuations in quantized chaotic systems. J. Phys. A Math. Gen. 1996, 29, L75–L79. [Google Scholar] [CrossRef]
- Deutsch, J.M. Quantum statistical mechanics in a closed system. Phys. Rev. A 1991, 43, 2046–2049. [Google Scholar] [CrossRef] [PubMed]
- Rigol, M.; Dunjko, V.; Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 2008, 452, 854–858. [Google Scholar] [CrossRef] [PubMed]
- Gring, M.; Kuhnert, M.; Langen, T.; Kitagawa, T.; Rauer, B.; Schreitl, M.; Mazets, I.; Smith, D.A.; Demler, E.; Schmiedmayer, J. Relaxation and Prethermalization in an Isolated Quantum System. Science 2012, 337, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Trotzky, S.; Chen, Y.A.; Flesch, A.; McCulloch, I.P.; Schollwöck, U.; Eisert, J.; Bloch, I. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 2012, 8, 325–330. [Google Scholar] [CrossRef]
- Pertot, D.; Sheikhan, A.; Cocchi, E.; Miller, L.A.; Bohn, J.E.; Koschorreck, M.; Köhl, M.; Kollath, C. Relaxation Dynamics of a Fermi Gas in an Optical Superlattice. Phys. Rev. Lett. 2014, 113, 170403. [Google Scholar] [CrossRef] [PubMed]
- Polkovnikov, A.; Sels, D. Thermalization in small quantum systems. Science 2016, 353, 752–753. [Google Scholar] [CrossRef] [PubMed]
- Reimann, P. Canonical thermalization. New J. Phys. 2010, 12, 055027. [Google Scholar] [CrossRef]
- Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 2011, 83, 863–883. [Google Scholar] [CrossRef]
- D’Alessio, L.; Kafri, Y.; Polkovnikov, A.; Rigol, M. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 2016, 65, 239–362. [Google Scholar] [CrossRef]
- Eisert, J.; Friesdorf, M.; Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 2015, 11, 124–130. [Google Scholar] [CrossRef]
- Reimann, P. Foundation of Statistical Mechanics under Experimentally Realistic Conditions. Phys. Rev. Lett. 2008, 101, 190403. [Google Scholar] [CrossRef] [PubMed]
- Reimann, P. Generalization of von Neumann’s Approach to Thermalization. Phys. Rev. Lett. 2015, 115, 010403. [Google Scholar] [CrossRef] [PubMed]
- Reimann, P. Typical fast thermalization processes in closed many-body systems. Nat. Commun. 2016, 7, 10821. [Google Scholar] [CrossRef] [PubMed]
- Reimann, P.; Kastner, M. Equilibration of isolated macroscopic quantum systems. New J. Phys. 2012, 14, 043020. [Google Scholar] [CrossRef]
- Balz, B.N.; Reimann, P. Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize. Phys. Rev. Lett. 2017, 118, 190601. [Google Scholar] [CrossRef] [PubMed]
- Torres-Herrera, E.J.; Karp, J.; Távora, M.; Santos, L. Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties. Entropy 2016, 18, 359. [Google Scholar] [CrossRef]
- Torres-Herrera, E.J.; Kollmar, D.; Santos, L.F. Relaxation and thermalization of isolated many-body quantum systems. Phys. Scr. 2015, T165, 014018. [Google Scholar] [CrossRef]
- Borgonovi, F.; Izrailev, F.M.; Santos, L.F.; Zelevinsky, V.G. Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep. 2016, 626, 1–58. [Google Scholar] [CrossRef]
- Santos, L.F.; Rigol, M. Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E 2010, 81, 036206. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.F.; Polkovnikov, A.; Rigol, M. Entropy of Isolated Quantum Systems after a Quench. Phys. Rev. Lett. 2011, 107, 040601. [Google Scholar] [CrossRef] [PubMed]
- Borgonovi, F.; Mattiotti, F.; Izrailev, F.M. Temperature of a single chaotic eigenstate. Phys. Rev. E 2017, 95, 042135. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.F.; Borgonovi, F.; Izrailev, F.M. Onset of chaos and relaxation in isolated systems of interacting spins: Energy shell approach. Phys. Rev. E 2012, 85, 036209. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.F.; Borgonovi, F.; Izrailev, F.M. Chaos and Statistical Relaxation in Quantum Systems of Interacting Particles. Phys. Rev. Lett. 2012, 108, 094102. [Google Scholar] [CrossRef] [PubMed]
- Borgonovi, F.; Izrailev, F.M. Localized thermal states. AIP Conf. Proc. 2017, 10, 020003. [Google Scholar]
- Gogolin, C.; Eisert, J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 2016, 79, 056001. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S. Pure State Quantum Statistical Mechanics and Black Holes. Ph.D. Thesis, The Rockefeller University, New York, NY, USA, 1988. [Google Scholar]
- Mori, T.; Ikeda, T.N.; Kaminishi, E.; Ueda, M. Thermalization and prethermalization in isolated quantum systems: A theoretical overview. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 112001. [Google Scholar] [CrossRef]
- Reimann, P. Eigenstate thermalization: Deutsch’s approach and beyond. New J. Phys. 2015, 17, 055025. [Google Scholar] [CrossRef]
- Anza, F.; Gogolin, C.; Huber, M. Eigenstate Thermalization for Degenerate Observables. Phys. Rev. Lett. 2018, 120, 150603. [Google Scholar] [CrossRef] [PubMed]
- Anza, F.; Vedral, V. Information-theoretic equilibrium and observable thermalization. Sci. Rep. 2017, 7, 44066. [Google Scholar] [CrossRef] [PubMed]
- Reimann, P. Typicality for Generalized Microcanonical Ensembles. Phys. Rev. Lett. 2007, 99, 160404. [Google Scholar] [CrossRef] [PubMed]
- Gemmer, J.; Michel, M.; Mahler, G. Quantum Thermodynamics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 784. [Google Scholar]
- Goldstein, S.; Lebowitz, J.L.; Mastrodonato, C.; Tumulka, R.; Zanghi, N. Normal typicality and von Neumann’s quantum ergodic theorem. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 3203–3224. [Google Scholar] [CrossRef]
- Goldstein, S.; Lebowitz, J.L.; Tumulka, R.; Zanghì, N. Long-time behavior of macroscopic quantum systems. Eur. Phys. J. H 2010, 35, 173–200. [Google Scholar] [CrossRef]
- Goldstein, S.; Lebowitz, J.L.; Tumulka, R.; Zanghì, N. Canonical Typicality. Phys. Rev. Lett. 2006, 96, 050403. [Google Scholar] [CrossRef] [PubMed]
- Goold, J.; Huber, M.; Riera, A.; del Rio, L.; Skrzypczyk, P. The role of quantum information in thermodynamics—A topical review. J. Phys. A Math. Theor. 2016, 49, 143001. [Google Scholar] [CrossRef]
- Klages, R.; Just, W.W.; Jarzynski, C. Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond; Wiley-VCH: Weinheim, Germany, 2013; p. 418. [Google Scholar]
- Jarzynski, C. Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale. Annu. Rev. Condens. Matter Phys. 2011, 2, 329–351. [Google Scholar] [CrossRef]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, R. Quantum thermodynamics: A dynamical viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. II. Phys. Rev. 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Sels, D.; Wouters, M. Stationary ensemble approximations of dynamic quantum states: Optimizing the generalized Gibbs ensemble. Phys. Rev. E 2015, 92, 022123. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Polkovnikov, A.; Yuzbashyan, E.A. Gaussian ensemble for quantum integrable dynamics. Ann. Phys. 2017, 381, 107–120. [Google Scholar] [CrossRef]
- Linden, N.; Popescu, S.; Short, A.J.; Winter, A. Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 2009, 79, 061103. [Google Scholar] [CrossRef] [PubMed]
- Gogolin, C.; Müller, M.P.; Eisert, J. Absence of Thermalization in Nonintegrable Systems. Phys. Rev. Lett. 2011, 106, 040401. [Google Scholar] [CrossRef] [PubMed]
- Horn, R.A.; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Macon, N.; Spitzbart, A. Inverses of Vandermonde Matrices. Am. Math. Mon. 1958, 65, 95. [Google Scholar] [CrossRef]
- Kim, H.; Huse, D.A. Ballistic Spreading of Entanglement in a Diffusive Nonintegrable System. Phys. Rev. Lett. 2013, 111, 127205. [Google Scholar] [CrossRef] [PubMed]
- Schmudgen, K. The Moment Problem; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Mead, L.R.; Papanicolaou, N. Maximum entropy in the problem of moments. J. Math. Phys. 1984, 25, 2404–2417. [Google Scholar] [CrossRef]
- Tagliani, A. Inverse Z transform and moment problem. Probab. Eng. Inf. Sci. 2000, 14, 393–404. [Google Scholar] [CrossRef]
- Weidenmüller, H.A.; Mitchell, G.E. Random matrices and chaos in nuclear physics: Nuclear structure. Rev. Mod. Phys. 2009, 81, 539–589. [Google Scholar] [CrossRef]
- Zelevinsky, V.; Karampagia, S. Nuclear Level Density, Quantum Chaos and Related Physics. J. Phys. Conf. Ser. 2018, 966, 012032. [Google Scholar] [CrossRef]
- Zelevinsky, V.; Horoi, M.; Sen’kov, R.A. Moments Method for Shell-Model Level Density. J. Phys. Conf. Ser. 2016, 665, 012048. [Google Scholar] [CrossRef]
- Zelevinsky, V.; Brown, B.; Frazier, N.; Horoi, M. The nuclear shell model as a testing ground for many-body quantum chaos. Phys. Rep. 1996, 276, 85–176. [Google Scholar] [CrossRef]
- Sen’kov, R.; Horoi, M.; Zelevinsky, V. A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities. Comput. Phys. Commun. 2013, 184, 215–221. [Google Scholar] [CrossRef]
- Karampagia, S.; Senkov, R.; Zelevinsky, V. Level density of the sd-nuclei—Statistical shell-model predictions. At. Data Nucl. Data Tables 2018, 120, 1–120. [Google Scholar] [CrossRef]
- Gómez, J.; Kar, K.; Kota, V.; Molina, R.; Relaño, A.; Retamosa, J. Many-body quantum chaos: Recent developments and applications to nuclei. Phys. Rep. 2011, 499, 103–226. [Google Scholar] [CrossRef]
- Koltun, D.; Kota, V.K.B.; ul Haq, R. Spectral Distributions in Nuclei and Statistical Spectroscopy; World Scientific: Singapore, 2010. [Google Scholar]
- Wong, S.S.M. Nuclear Statistical Spectroscopy; Oxford University Press: Oxford, UK, 1986; p. 241. [Google Scholar]
- Sen’kov, R.A.; Zelevinsky, V.G.; Horoi, M. Statistical Approach to Nuclear Level Density; AIP Publishing LLC: Melville, NY, USA, 2014; Volume 1619, pp. 152–158. [Google Scholar]
- Calabrese, P.; Essler, F.H.L.; Mussardo, G. Introduction to ‘Quantum Integrability in Out of Equilibrium Systems’. J. Stat. Mech. Theory Exp. 2016, 2016, 064001. [Google Scholar] [CrossRef]
- Vidmar, L.; Rigol, M. Generalized Gibbs ensemble in integrable lattice models. J. Stat. Mech. Theory Exp. 2016, 2016, 064007. [Google Scholar] [CrossRef]
- Vasseur, R.; Moore, J.E. Nonequilibrium quantum dynamics and transport: from integrability to many-body localization. J. Stat. Mech. Theory Exp. 2016, 2016, 064010. [Google Scholar] [CrossRef]
- Caux, J.S. The Quench Action. J. Stat. Mech. Theory Exp. 2016, 2016, 064006. [Google Scholar] [CrossRef]
- Ilievski, E.; Medenjak, M.; Prosen, T.; Zadnik, L. Quasilocal charges in integrable lattice systems. J. Stat. Mech. Theory Exp. 2016, 2016, 064008. [Google Scholar] [CrossRef]
- Biroli, G.; Kollath, C.; Läuchli, A.M. Effect of Rare Fluctuations on the Thermalization of Isolated Quantum Systems. Phys. Rev. Lett. 2010, 105, 250401. [Google Scholar] [CrossRef] [PubMed]




© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anza, F. New Equilibrium Ensembles for Isolated Quantum Systems. Entropy 2018, 20, 744. https://doi.org/10.3390/e20100744
Anza F. New Equilibrium Ensembles for Isolated Quantum Systems. Entropy. 2018; 20(10):744. https://doi.org/10.3390/e20100744
Chicago/Turabian StyleAnza, Fabio. 2018. "New Equilibrium Ensembles for Isolated Quantum Systems" Entropy 20, no. 10: 744. https://doi.org/10.3390/e20100744
APA StyleAnza, F. (2018). New Equilibrium Ensembles for Isolated Quantum Systems. Entropy, 20(10), 744. https://doi.org/10.3390/e20100744

