Interaction Information Along Lifespan of the Resting Brain Dynamics Reveals a Major Redundant Role of the Default Mode Network
Abstract
1. Introduction
2. Methodology
2.1. Participants
2.2. Imaging Acquisition
2.3. Imaging Preprocessing
2.4. Brain Hierarchical Atlas
2.5. Shannon Entropy
2.6. Interaction Information
2.7. Calculation of II
2.8. Per Module R and S
2.9. Statistical Analysis
2.10. Mask of the Resting State Networks
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
II | interaction information |
MI | mutual information |
R | redundancy |
S | synergy |
MRI | magnetic resonance imaging |
DMN | default mode network |
RSN | resting state network |
BHA | brain hierarchical atlas |
References
- McGill, W.J. Multivariate Information Transmission. Psychometrika 1954, 19, 97–116. [Google Scholar] [CrossRef]
- Erramuzpe, A.; Ortega, G.; Pastor, J.; de Sola, R.; Marinazzo, D.; Stramaglia, S.; Cortes, J. Identification of redundant and synergetic circuits in triplets of electrophysiological data. J. Neural Eng. 2015, 12, 066007. [Google Scholar] [CrossRef] [PubMed]
- Schneidman, E.; Bialek, W.; Berry, M. Synergy, redundancy, and independence in population codes. J. Neurosci. 2003, 23, 11539–11553. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E 2015, 91, 052802. [Google Scholar] [CrossRef] [PubMed]
- Kay, W.; Ince, R. Exact Partial Information Decompositions for Gaussian Systems Based on Dependency Constraints. Entropy 2018, 20, 240. [Google Scholar] [CrossRef]
- Lizier, J.T.; Atay, F.M.; Jost, J. Information Storage, Loop Motifs, and Clustered Structure in Complex Networks. Phys. Rev. E 2012, 86, 026110. [Google Scholar] [CrossRef] [PubMed]
- Wibral, M.; Lizier, J.T.; Vögler, S.; Priesemann, V.; Galuske, R. Local Active Information Storage as a Tool to Understand Distributed Neural Information Processing. Front. Neuroinform. 2014, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, L.; Gintautas, V.; Ham, M. Information Subgraphs in Complex Networks. Phys. Rev. Lett. 2008, 100, 238701. [Google Scholar] [CrossRef] [PubMed]
- Stramaglia, S.; Cortes, J.; Marinazzo, D. Synergy and redundancy in the Granger causal analysis of dynamical networks. New J. Phys. 2014, 16, 105003. [Google Scholar] [CrossRef]
- Stramaglia, S.; Wu, G.R.; Pellicoro, M.; Marinazzo, D. Expanding the transfer entropy to identify information circuits in complex systems. Phys. Rev. E 2012, 86, 066211. [Google Scholar] [CrossRef] [PubMed]
- Conger, A.J. A Revised Definition for Suppressor Variables: A Guide To Their Identification and Interpretation. Educ. Psychol. Meas. 1974, 34, 35–46. [Google Scholar] [CrossRef]
- Antonov, A.V.; Tetko, I.V.; Mader, M.T.; Budczies, J.; Mewes, H.W. Optimization Models for Cancer Classification: Extracting Gene Interaction Information from Microarray Expression Data. Bioinformatics 2004, 20, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Saito, M.; Bisikirska, B.C.; Alvarez, M.J.; Lim, W.K.; Rajbhandari, P.; Shen, Q.; Nemenman, I.; Basso, K.; Margolin, A.A.; et al. Genome-Wide Identification of Post-Translational Modulators of Transcription Factor Activity in Human B Cells. Nat. Biotechnol. 2009, 27, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Marinazzo, D.; Gosseries, O.; Boly, M.; Ledoux, D.; Rosanova, M.; Massimini, M.; Noirhomme, Q.; Laureys, S. Directed information transfer in scalp electroencephalographic recordings: Insights on disorders of consciousness. Clin. EEG Neurosci. 2014, 45, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Stramaglia, S.; Angelini, L.; Wu, G.; Cortes, J.M.; Faes, L.; Marinazzo, D. Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI. IEEE Trans. Biomed. Eng. 2016, 63, 2518–2524. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.; Snyder, A.; Vincent, J.; Corbetta, M.; Essen, D.V.; Raichle, M. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M.; Mintum, M. Brain work and brain imaging. Annu. Rev. Neurosci. 2006, 29, 449–476. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.; Zerrin Yetkin, F.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med. 1995, 34, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, C.F.; DeLuca, M.; Devlin, J.T.; Smith, S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. Ser. B 2005, 360, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.R.; Lobaugh, N.J. Partial least squares analysis of neuroimaging data: Applications and advances. NeuroImage 2004, 23 (Suppl. 1), S250–S263. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Fox, P.T.; Miller, K.L.; Glahn, D.C.; Fox, P.M.; Mackay, C.E.; Filippini, N.; Watkins, K.E.; Toro, R.; Laird, A.R.; et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 2009, 106, 13040–13045. [Google Scholar] [CrossRef] [PubMed]
- Boveroux, P.; Vanhaudenhuyse, A.; Bruno, M.A.; Noirhomme, Q.; Lauwick, S.; Luxen, A.; Degueldre, C.; Plenevaux, A.; Schnakers, C.; Phillips, C.; et al. Breakdown of Within- and between-Network Resting State Functional Magnetic Resonance Imaging Connectivity during Propofol-Induced Loss of Consciousness. Anesthesiology 2010, 113, 1038–1053. [Google Scholar] [CrossRef] [PubMed]
- Noirhomme, Q.; Soddu, A.; Lehembre, R.; Vanhaudenhuyse, A.; Boveroux, P.; Boly, M.; Laureys, S. Brain Connectivity in Pathological and Pharmacological Coma. Front. Syst. Neurosci. 2010, 4, 160. [Google Scholar] [CrossRef] [PubMed]
- Heine, L.; Soddu, A.; Gómez, F.; Vanhaudenhuyse, A.; Tshibanda, L.; Thonnard, M.; Charland-Verville, V.; Kirsch, M.; Laureys, S.; Demertzi, A. Resting State Networks and Consciousness. Front. Psychol. 2012, 3, 295. [Google Scholar] [CrossRef] [PubMed]
- Mäki-Marttunen, V.; Diez, I.; Cortes, J.M.; Chialvo, D.R.; Villarreal, M. Disruption of Transfer Entropy and Inter-Hemispheric Brain Functional Connectivity in Patients with Disorder of Consciousness. Front. Neuroinform. 2013, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Woodward, N.D.; Rogers, B.; Heckers, S. Functional Resting-State Networks Are Differentially Affected in Schizophrenia. Schizophr. Res. 2011, 130, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Karbasforoushan, H.; Woodward, N.D. Resting-State Networks in Schizophrenia. Curr. Top. Med. Chem. 2012, 12, 2404–2414. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Zhang, Z.; Pan, Z.; Mantini, D.; Ding, J.; Duan, X.; Luo, C.; Lu, G.; Chen, H. Altered Functional Connectivity and Small-World in Mesial Temporal Lobe Epilepsy. PLoS ONE 2010, 5, e8525. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Li, Z.; Wu, G.; Zhang, M.J.; Franczak, M.; Antuono, P.G. Alzheimer Disease: Evaluation of a Functional MR Imaging Index as a Marker. Radiology 2002, 225, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-Mode Network Activity Distinguishes Alzheimer’s Disease from Healthy Aging: Evidence from Functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, S.A.; Barkhof, F.; Goekoop, R.; Stam, C.J.; Scheltens, P. Altered Resting State Networks in Mild Cognitive Impairment and Mild Alzheimer’s Disease: An fMRI Study. Hum. Brain Mapp. 2005, 26, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Binnewijzend, M.A.; Schoonheim, M.M.; Sanz-Arigita, E.; Wink, A.M.; van der Flier, W.M.; Tolboom, N.; Adriaanse, S.M.; Damoiseaux, J.S.; Scheltens, P.; van Berckel, B.N.; et al. Resting-State fMRI Changes in Alzheimer’s Disease and Mild Cognitive Impairment. Neurobiol. Aging 2012, 33, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Sheline, Y.I.; Raichle, M.E. Resting State Functional Connectivity in Preclinical Alzheimer’s Disease. Biol. Psychiatry 2013, 74, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Andrews-Hanna, J.; Snyder, A.; Vincent, J.; Lustig, C.; Head, D.; Raichle, M.; Buckner, R. Disruption of large-scale brain systems in advanced aging. Neuron 2008, 56, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Damoiseaux, J.; Beckmann, C.; Arigita, E.; Barkhof, F.; Scheltens, P.; Stam, C.; Smith, S.; Rombouts, S. Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 2007, 18, 1856–1864. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Park, D.; Savalia, N.; Petersen, S.; Wig, G. Decreased segregation of brain systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. USA 2014, 111, E4997–E5006. [Google Scholar] [CrossRef] [PubMed]
- Hagmann, P.; Sporns, O.; Madan, N.; Cammoun, L.; Pienaar, R.; Wedeen, V.; Meuli, R.; Thiran, J.; Grant, P. White matter maturation reshapes structural connectivity in the late developing human brain. Proc. Natl. Acad. Sci. USA 2010, 107, 19067–19072. [Google Scholar] [CrossRef] [PubMed]
- Marinazzo, D.; Pellicoro, M.; Wu, G.; Angelini, L.; Cortés, J.M.; Stramaglia, S. Information Transfer and Criticality in the Ising Model on the Human Connectome. PLoS ONE 2014, 9, e93616. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Montes, C.; Diez, I.; Remaki, L.; Escudero, I.; Mateos, B.; Rosseel, Y.; Marinazzo, D.; Stramaglia, S.; Cortes, J.M. Lagged and Instantaneous Dynamical Influences Related to Brain Structural Connectivity. Front. Psychol. 2015, 6, 1024. [Google Scholar] [CrossRef] [PubMed]
- Amor, T.A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J.M.; de Arcangelis, L.; Chialvo, D.R. Extreme Brain Events: Higher-Order Statistics of Brain Resting Activity and Its Relation with Structural Connectivity. EPL Europhys. Lett. 2015, 111, 68007. [Google Scholar] [CrossRef]
- Diez, I.; Erramuzpe, A.; Escudero, I.N.; Mateos, B.; Cabrera, A.; Marinazzo, D.; Sanz-Arigita, E.J.; Stramaglia, S.; Cortes Diaz, J.M.; Alzheimer’s Disease Neuroimaging Initiative. Information Flow Between Resting-State Networks. Brain Connect. 2015, 5, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Rasero, J.; Pellicoro, M.; Angelini, L.; Cortes, J.M.; Marinazzo, D.; Stramaglia, S. Consensus Clustering Approach to Group Brain Connectivity Matrices. Netw. Neurosci. 2017, 1, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Stramaglia, S.; Pellicoro, M.; Angelini, L.; Amico, E.; Aerts, H.; Cortés, J.M.; Laureys, S.; Marinazzo, D. Ising Model with Conserved Magnetization on the Human Connectome: Implications on the Relation Structure-Function in Wakefulness and Anesthesia. Chaos 2017, 27, 047407. [Google Scholar] [CrossRef] [PubMed]
- Cordes, D.; Haughton, V.M.; Arfanakis, K.; Carew, J.D.; Turski, P.A.; Moritz, C.H.; Quigley, M.A.; Meyerand, M.E. Frequencies Contributing to Functional Connectivity in the Cerebral Cortex in “Resting-State” Data. Am. J. Neuroradiol. 2001, 22, 1326–1333. [Google Scholar] [PubMed]
- Yan, C.G.; Cheung, B.; Kelly, C.; Colcombe, S.; Craddock, R.C.; Di Martino, A.; Li, Q.; Zuo, X.N.; Castellanos, F.X.; Milham, M.P. A Comprehensive Assessment of Regional Variation in the Impact of Head Micromovements on Functional Connectomics. NeuroImage 2013, 76, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Diez, I.; Bonifazi, P.; Escudero, I.n.; Mateos, B.; Muñoz, M.A.; Stramaglia, S.; Cortes, J.M. A Novel Brain Partition Highlights the Modular Skeleton Shared by Structure and Function. Sci. Rep. 2015, 5, 10532. [Google Scholar] [CrossRef] [PubMed]
- Diez, I.; Drijkoningen, D.; Stramaglia, S.; Bonifazi, P.; Marinazzo, D.; Gooijers, J.; Swinnen, S.P.; Cortes, J.M. Enhanced Prefrontal Functional–Structural Networks to Support Postural Control Deficits after Traumatic Brain Injury in a Pediatric Population. Netw. Neurosci. 2017, 1, 116–142. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, P.; Erramuzpe, A.; Diez, I.; Gabilondo, I.; Boisgontier, M.; Pauwels, L.; Stramaglia, S.; Swinnen, S.; Cortes, J. Structure-function multi-scale connectomics reveals a major role of the fronto-striato-thalamic circuit in brain aging. Hum. Brain Mapp. 2018. [Google Scholar] [CrossRef]
- NITRC. Brain Hierarchical Atlas: A brain atlas where the regions of interest are relevant for both structure and function. Available online: https://www.nitrc.org/projects/biocr_hcatlas/ (accessed on 31 July 2018).
- GitHub. Available online: https://github.com/compneurobilbao/bha (accessed on 31 July 2018).
- Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ince, R.; Giordano, B.; Kayser, C.; Rousselet, G.; Gross, J.; Schyns, P. A statistical framework for neuroimaging data analysis based on mutual information estimated via a Gaussian copula. Hum. Brain Mapp. 2017, 38, 1541–1573. [Google Scholar] [CrossRef] [PubMed]
- GitHub. Available online: https://github.com/robince/gcmi/ (accessed on 31 July 2018).
- Smith, S.; Fox, P.; Miller, K.; Glahn, D.; Fox, P.; Mackay, C.; Filippini, N.; Watkins, K.; Toro, R.; Laird, A.; et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 2009, 106, 13040–13045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Johnson, B.; Gay, M.; Horovitz, S.; Hallett, M.; Sebastianelli, W.; Slobounov, S. Default mode network in concussed individuals in response to the YMCA physical stress test. J. Neurotrauma 2012, 29, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Abbas, K.; Shenk, T.; Poole, V.; Breedlove, E.; Leverenz, L.; Nauman, E.; Talavage, T.; Robinson, M. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: A resting-state functional magnetic resonance imaging study. Brain Connect. 2015, 5, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Schultz, A.; Chhatwal, J.; Hedden, T.; Mormino, E.; Hanseeuw, B.; Sepulcre, J.; Huijbers, W.; LaPoint, M.; Buckley, R.; Johnson, K.; et al. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks. J. Neurosci. 2017, 37, 4323–4331. [Google Scholar] [CrossRef] [PubMed]
- Mevel, K.; Chételat, G.; Eustache, F.; Desgranges, B. The default mode network in healthy aging and Alzheimer’s disease. Int. J. Alzheimers Dis. 2011, 2011, 13040–13045. [Google Scholar] [CrossRef] [PubMed]
- Scolari, M.; Seidl-Rathkopf, K.; Kastner, S. Functions of the human frontoparietal attention network: Evidence from neuroimaging. Curr. Opin. Behav. Sci. 2015, 1, 32–39. [Google Scholar] [CrossRef] [PubMed]
Infra-Balanced (%) | Balanced (%) | Supra-Balanced (%) | |
---|---|---|---|
Default Mode | 0.2246 | 19.0583 | 69.1893 |
Auditory | 0.0284 | 38.1631 | 55.2979 |
Cerebellum | 0 | 84.3334 | 0.8268 |
Executive Control | 5.176 | 37.3482 | 30.9205 |
Frontoparietal | 9.5896 | 39.358 | 39.5368 |
Sensorimotor | 1.72 | 11.7076 | 57.8549 |
Visual | 0 | 77.7678 | 5.9748 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camino-Pontes, B.; Diez, I.; Jimenez-Marin, A.; Rasero, J.; Erramuzpe, A.; Bonifazi, P.; Stramaglia, S.; Swinnen, S.; Cortes, J.M. Interaction Information Along Lifespan of the Resting Brain Dynamics Reveals a Major Redundant Role of the Default Mode Network. Entropy 2018, 20, 742. https://doi.org/10.3390/e20100742
Camino-Pontes B, Diez I, Jimenez-Marin A, Rasero J, Erramuzpe A, Bonifazi P, Stramaglia S, Swinnen S, Cortes JM. Interaction Information Along Lifespan of the Resting Brain Dynamics Reveals a Major Redundant Role of the Default Mode Network. Entropy. 2018; 20(10):742. https://doi.org/10.3390/e20100742
Chicago/Turabian StyleCamino-Pontes, Borja, Ibai Diez, Antonio Jimenez-Marin, Javier Rasero, Asier Erramuzpe, Paolo Bonifazi, Sebastiano Stramaglia, Stephan Swinnen, and Jesus M. Cortes. 2018. "Interaction Information Along Lifespan of the Resting Brain Dynamics Reveals a Major Redundant Role of the Default Mode Network" Entropy 20, no. 10: 742. https://doi.org/10.3390/e20100742
APA StyleCamino-Pontes, B., Diez, I., Jimenez-Marin, A., Rasero, J., Erramuzpe, A., Bonifazi, P., Stramaglia, S., Swinnen, S., & Cortes, J. M. (2018). Interaction Information Along Lifespan of the Resting Brain Dynamics Reveals a Major Redundant Role of the Default Mode Network. Entropy, 20(10), 742. https://doi.org/10.3390/e20100742