Next Article in Journal
Biological Networks Entropies: Examples in Neural Memory Networks, Genetic Regulation Networks and Social Epidemic Networks
Next Article in Special Issue
Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle
Previous Article in Journal
Entropy of Iterated Function Systems and Their Relations with Black Holes and Bohr-Like Black Holes Entropies
Previous Article in Special Issue
Exergy Analysis of a Pilot Parabolic Solar Dish-Stirling System
Open AccessArticle

Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation

Department of Cryogenic, Aeronautic and Process Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
*
Author to whom correspondence should be addressed.
Entropy 2018, 20(1), 59; https://doi.org/10.3390/e20010059
Received: 9 December 2017 / Revised: 5 January 2018 / Accepted: 11 January 2018 / Published: 13 January 2018
(This article belongs to the Special Issue Work Availability and Exergy Analysis)
LNG (Liquefied Natural Gas) shares in the global energy market is steadily increasing. One possible application of LNG is as a fuel for transportation. Stricter air pollution regulations and emission controls have made the natural gas a promising alternative to liquid petroleum fuels, especially in the case of heavy transport. However, in most LNG-fueled vehicles, the physical exergy of LNG is destroyed in the regasification process. This paper investigates possible LNG exergy recovery systems for transportation. The analyses focus on “cold energy” recovery systems as the enthalpy of LNG, which may be used as cooling power in air conditioning or refrigeration. Moreover, four exergy recovery systems that use LNG as a low temperature heat sink to produce electric power are analyzed. This includes single-stage and two-stage direct expansion systems, an ORC (Organic Rankine Cycle) system, and a combined system (ORC + direct expansion). The optimization of the above-mentioned LNG power cycles and exergy analyses are also discussed, with the identification of exergy loss in all components. The analyzed systems achieved exergetic efficiencies in the range of 20 % to 36 % , which corresponds to a net work in the range of 214 to 380 kJ/kg L N G . View Full-Text
Keywords: LNG; cryogenic power cycles; exergetic analysis; LNG fueled vehicles LNG; cryogenic power cycles; exergetic analysis; LNG fueled vehicles
Show Figures

Figure 1

MDPI and ACS Style

Dorosz, P.; Wojcieszak, P.; Malecha, Z. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation. Entropy 2018, 20, 59.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop