## 1. Introduction

## 2. Historical Background

**The**

**Thermodynamic Arrow:**

**The**

**Psychological Arrow:**

**The**

**Historical Arrow:**

## 3. Conceptual Problems

**The**

**Historical Arrow:**

## 4. The Combinatorial Multiverse

**Remark**

**1.**

**Definition**

**1.**

**Definition**

**2.**

## 5. The Strong Arrows of Time in the Combinatorial Multiverse

**The**

**Strong Thermodynamic Arrow:**

**The**

**Strong Historical Arrow:**

## 6. The Weak Arrows of Time in the Combinatorial Multiverse

**The**

**Weak Thermodynamic Arrow:**

**The**

**Weak Historical Arrow:**

## 7. Symmetric Boltzmann Dynamics

**The**

**Symmetric Dynamic Principle (SDP):**

**Remark**

**2.**

**Observation**

**1.**

## 8. The Weak Arrows in the Combinatorial Multiverse

**Claim**

**1.**

**Claim**

**2.**

## 9. Discussion

**Remark**

**3.**

## 10. The Origin of Time’s Arrow in the Multiverse

## 11. Final Remark

## Conflicts of Interest

## References

- Bohm, A.; Antoniou, I.; Kielanowski, P. A quantum mechanical arrow of time and the semigroup time evolution of Gamow vectors. J. Math. Phys.
**1995**, 36, 2593–2604. [Google Scholar] [CrossRef] - Bohm, A.; Scurek, R. The phenomenological preparation-registration arrow of time and its semigroup representation in the RHS quantum theory. In Trends in Quantum Mechanics; Doebner, H.D., Ali, S.T., Keyl, M., Werner, R.F., Eds.; World Scientific: Singapore, 2000. [Google Scholar]
- Prigogine, I.; George, C. The second law as a selection principle: the microscopic theory of dissipative processes in quantum systems. Proc. Natl. Acad. Sci. USA
**1983**, 80, 4590–4594. [Google Scholar] [CrossRef] [PubMed] - Antoniou, I.; Prigogine, I. Intrinsic irreversibility and integrability of dynamics. Physics A
**1993**, 192, 443–455. [Google Scholar] [CrossRef] - Earman, J. An attempt to add a little direction to The problem of the direction of time? Philos. Sci.
**1974**, 41, 15–47. [Google Scholar] [CrossRef] - Castagnino, M.; Lombardi, O.; Lara, L. The global arrow of time as a geometrical property of the universe. Found. Phys.
**2003**, 33, 877–912. [Google Scholar] [CrossRef] - Castagnino, M.; Lara, L.; Lombardi, O. The cosmological origin of time-asymmetry. Class. Quantum Grav.
**2003**, 20, 369–391. [Google Scholar] [CrossRef] - Halliwell, J.J.; Perez-Mercander, J.; Zurek, W.H. Physical Origins of Time Asymmetry; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Zeh, H.D. The Physical Basis of The Direction of Time, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Eddington, A.S. The Nature of the Physical World; Cambridge University Press: Cambridge, UK, 1928. [Google Scholar]
- Boltzmann, L. Theoretical Physics and Philosophical Problems; McGuinness, B., Ed.; Reidel Publishing Co.: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Gold, T. The Arrow of Time. Am. J. Phys.
**1962**, 30. [Google Scholar] [CrossRef] - Hawking, S.W. Arrow of Time in Cosmology. Phys. Rev. D
**1985**, 33, 1–41. [Google Scholar] [CrossRef] - Page, D. Will the entropy decrease if the Universe recollapse? Phys. Rev.
**1985**, 16. [Google Scholar] [CrossRef] - Kastner, R.E. On Quantum Collapse as a Basis for the Second Law of Thermodynamics. Entropy
**2017**, 19. [Google Scholar] [CrossRef] - Čápek, V.; Sheehan, D.P. Challenges to the Second Law of Thermodynamics; Springer: Dordrecht, The Nertherlands, 2005. [Google Scholar]
- Martyushev, L.M. On Interrelation of Time and Entropy. Entropy
**2017**, 19. [Google Scholar] [CrossRef] - Layzer, D. The Arrow of Time. Sci. Am.
**1975**, 233, 56–69. [Google Scholar] [CrossRef] - Everett, H. Relative State Formulation of Quantum Mechanics. Rev. Mod. Phys.
**1957**, 29. [Google Scholar] [CrossRef] - Misner, C.M.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Company: San Fransisco, CA, USA, 1973. [Google Scholar]
- Adams, F.; Laughlin, G. A dying universe: The long-term fate and evolution of astrophysical objects. Rev. Mod. Phys.
**1997**, 69. [Google Scholar] [CrossRef] - Egan, C.; Lineweaver, C. A Larger Estimate of the Entropy of the Universe. Astrophys. J.
**2010**, 710. [Google Scholar] [CrossRef] - Ruelle, D. Thermodynamic Formalism; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Tamm, M. Time’s Arrow from the Multiverse Point of View. Phys. Essays
**2013**, 26, 237–246. [Google Scholar] [CrossRef] - Tamm, M. Time’s Arrow in a Finite Universe. Int. J. Astron. Astrophys.
**2015**, 5, 70–78. [Google Scholar] [CrossRef] - Tamm, M. A Combinatorial Approach to Time Asymmetry. Symmetry
**2016**, 8. [Google Scholar] [CrossRef]

**Figure 1.**This picture illustrates Observation 1 with $W=9$ and $K=3$. The state P at time ${t}_{0}$ with entropy $S=1$ connects to 3 states with $S=2$ at time ${t}_{0}-1$ and equally many at time ${t}_{0}+1$. However, there is no edge connecting to the (in this case) unique state with $S=0$ at time ${t}_{0}-1$ and only one edge connecting to the unique state with $S=0$ at time ${t}_{0}+1$.

**Figure 2.**A schematic picture of the entropy as a function of time for four different universes in a small combinatorial multiverse. The blue graphs represent the highly probable asymmetric cases, whereas the red ones represent highly improbable cases with low entropy at both ends.

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).