# How to Identify the Most Powerful Node in Complex Networks? A Novel Entropy Centrality Approach

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

## 3. Preliminaries

## 4. Preliminaries of Information Entropy

## 5. Model Description

#### 5.1. Computing on Local Influence

**Definition**

**1.**

#### 5.2. Computing on Indirect Influence

Algorithm 1 Influence calculating algorithm |

Input: A connected network represented by graph $G\left(V,E\right)$ with $V$ vertices and $E$ edges. Output: The overall influence of node $i$. for $i=1$ to $V$ do identify the subgraph ${G}_{i}$ constructed by node $i$ and its one-hop neighbors; calculate the local influence of node $i$ on its one-hop neighbors using Equation (7); calculate the indirect influence of node $i$ using Equation (11); calculate the overall influence of node $i$ using Equation (12); end for |

#### 5.3. Example Explanation

## 6. Performance Evaluation

## 7. Conclusions and Discussion

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Freeman, L.C. Centrality in networks: I. Conceptual clarification. Soc. Netw.
**1979**, 1, 215–239. [Google Scholar] [CrossRef] - Katz, L. A new index derived from sociometric data analysis. Psychometrika
**1953**, 18, 39–43. [Google Scholar] [CrossRef] - Hubbell, C.H. An input-output approach to clique identification. Sociometry
**1965**, 28, 377–399. [Google Scholar] [CrossRef] - Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol.
**1972**, 2, 113–120. [Google Scholar] [CrossRef] - Bonacich, P.; Lloyd, P. Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw.
**2001**, 23, 191–201. [Google Scholar] [CrossRef] - Stephenson, K.; Zelen, M. Rethinking centrality: Methods and examples. Soc. Netw.
**1989**, 11, 1–37. [Google Scholar] [CrossRef] - Borgatti, S.P. Centrality and network flow. Soc. Netw.
**2005**, 27, 55–71. [Google Scholar] [CrossRef] - Freeman, L.C.; Borgatti, S.P.; White, D.R. Centrality in valued graphs: A measure of betweenness based on network flow. Soc. Netw.
**1991**, 13, 141–154. [Google Scholar] [CrossRef] - Langville, A.N.; Meyer, C.D. Google’s PageRank and Beyond: The Science of Search Engine Rankings; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Rashevsky, N. Life information theory and topology. Bull. Math. Biophys.
**1955**, 17, 229–235. [Google Scholar] [CrossRef] - Trucco, E. A note on the information content of graphs. Bull. Math. Biol.
**1956**, 18, 129–135. [Google Scholar] [CrossRef] - Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput.
**2008**, 201, 82–94. [Google Scholar] [CrossRef] - Dehmer, M.; Kraus, V. On extremal properties of graph entropies. Match Commun. Math. Comput. Chem.
**2012**, 68, 889–912. [Google Scholar] - Dehmer, M.; Mowshowitz, A. A history of graph entropy measures. Inf. Sci.
**2011**, 181, 57–78. [Google Scholar] [CrossRef] - Bonchev, D. Complexity in Chemistry, Introduction and Fundamentals; Taylor & Francis: Boca Raton, FL, USA, 2003. [Google Scholar]
- Cao, S.; Dehmer, M.; Shi, Y. Extremality of degree-based graph entropies. Inf. Sci.
**2014**, 278, 22–33. [Google Scholar] [CrossRef] - Chen, Z.; Dehmer, M.; Shi, Y. Bounds for degree-based network entropies. Appl. Math. Comput.
**2015**, 265, 983–993. [Google Scholar] [CrossRef] - Nikolaev, A.G.; Razib, R.; Kucheriya, A. On efficient use of entropy centrality for social network analysis and community detection. Soc. Netw.
**2015**, 40, 154–162. [Google Scholar] [CrossRef] - Estrada, E.; Rodríguez-Velázquez, J.A. Spectral measures of bipartivity in complex networks. Phys. Rev. E
**2005**, 72, 046105. [Google Scholar] [CrossRef] [PubMed] - Gómez, D.; González-Arangüena, E.; Manuel, C.; Owen, G.; Pozo, M.D.; Tejada, J. Centrality and power in social networks: A game theoretic approach. Math. Soc. Sci.
**2003**, 46, 27–54. [Google Scholar] [CrossRef] - Gómez, D.; Figueira, J.R.; Eusébio, A. Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems. Eur. J. Oper. Res.
**2013**, 226, 354–365. [Google Scholar] [CrossRef] - Newman, M.E.J. A measure of betweenness centrality based on random walks. Soc. Netw.
**2005**, 27, 39–54. [Google Scholar] [CrossRef] - Du, Y.; Gao, C.; Hu, Y.; Mahadevan, S.; Deng, Y. A new method of identifying influential nodes in complex networks based on topsis. Physica A
**2014**, 399, 57–69. [Google Scholar] [CrossRef] - Gao, C.; Wei, D.; Hu, Y.; Mahadevan, S.; Deng, Y. A modified evidential methodology of identifying influential nodes in weighted networks. Physica A
**2013**, 392, 5490–5500. [Google Scholar] [CrossRef] - Lü, L.; Zhou, T.; Zhang, Q.M.; Stanley, H.E. The H-index of a network node and its relation to degree and coreness. Nat. Commun.
**2016**, 7, 10168. [Google Scholar] [CrossRef] [PubMed] - Chen, D.; Lü, L.; Shang, M.S.; Zhang, Y.C.; Zhou, T. Identifying influential nodes in complex networks. Physica A
**2012**, 391, 1777–1787. [Google Scholar] [CrossRef] - Chen, D.B.; Gao, H.; Lü, L.; Zhou, T. Identifying influential nodes in large-scale directed networks: The role of clustering. PLoS ONE
**2013**, 8, e77455. [Google Scholar] [CrossRef] [PubMed] - Zeng, A.; Zhang, C.J. Ranking spreaders by decomposing complex networks. Phys. Lett. A
**2013**, 377, 1031–1035. [Google Scholar] [CrossRef] - Pei, S.; Muchnik, L.; Andrade, J.S., Jr.; Zheng, Z.; Makse, H.A. Searching for superspreaders of information in real-world social media. Sci. Rep.
**2014**, 4, 5547. [Google Scholar] [CrossRef] [PubMed] - Martin, T.; Zhang, X.; Newman, M.E. Localization and centrality in networks. Phys. Rev. E
**2014**, 90, 052808. [Google Scholar] [CrossRef] [PubMed] - Li, Q.; Zhou, T.; Lü, L.; Chen, D. Identifying influential spreaders by weighted leaderrank. Physica A
**2014**, 404, 47–55. [Google Scholar] [CrossRef] - Zhao, X.Y.; Huang, B.; Tang, M.; Zhang, H.F.; Chen, D.B. Identifying effective multiple spreaders by coloring complex networks. EPL
**2014**, 108, 6. [Google Scholar] [CrossRef] - Min, B.; Liljeros, F.; Makse, H.A. Finding influential spreaders from human activity beyond network location. PLoS ONE
**2015**, 10, e0136831. [Google Scholar] [CrossRef] [PubMed] - Gleich, D.F. Pagerank beyond the web. SIAM Rev.
**2015**, 57, 321–363. [Google Scholar] [CrossRef] - Lü, L.; Pan, L.; Zhou, T.; Zhang, Y.C.; Stanley, H.E. Toward link predictability of complex networks. Proc. Natl. Acad. Sci. USA
**2015**, 112, 2325–2330. [Google Scholar] [CrossRef] [PubMed] - Morone, F.; Makse, H. Influence maximization in complex networks through optimal percolation. Nature
**2015**, 527, 544. [Google Scholar] [CrossRef] [PubMed] - Shannon, C.E.; Weaver, W.; Wiener, N. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Mowshowitz, A. Entropy and the complexity of graphs. II. The information content of digraphs and infinite graphs. Bull. Math. Biophys.
**1968**, 30, 225–240. [Google Scholar] [CrossRef] - Everett, M.G. Role similarity and complexity in social networks. Soc. Netw.
**1985**, 7, 353–359. [Google Scholar] [CrossRef] - Balch, T. Hierarchic social entropy: An information theoretic measure of robot group diversity. Autonom. Robot.
**2000**, 8, 209–238. [Google Scholar] [CrossRef] - Tutzauer, F. Entropy as a measure of centrality in networks characterized by path-transfer flow. Soc. Netw.
**2007**, 29, 249–265. [Google Scholar] [CrossRef] - Emmert-Streib, F.; Dehmer, M. Global information processing in gene networks: Fault tolerance. Physica A
**2008**, 388, 541–548. [Google Scholar] [CrossRef] - Claussen, J.C. Offdiagonal complexity: A computationally quick complexity measure for graphs and networks. Physica A
**2007**, 375, 365–373. [Google Scholar] [CrossRef] - Dehmer, M. Information-theoretic concepts for the analysis of complex networks. Appl. Artif. Intell.
**2008**, 22, 684–706. [Google Scholar] [CrossRef] - Kim, J.; Wilhelm, T. What is a complex graph? Physica A
**2008**, 387, 2637–2652. [Google Scholar] [CrossRef] - Anand, K.; Bianconi, G. Entropy measures for networks: Toward an information theory of complex topologies. Phys. Rev. E
**2009**, 80, 045102. [Google Scholar] [CrossRef] [PubMed] - Cao, S.; Dehmer, M. Degree-based entropies of networks revisited. Appl. Math. Comput.
**2015**, 261, 141–147. [Google Scholar] [CrossRef] - Nie, T.; Guo, Z.; Zhao, K.; Lu, Z.M. Using mapping entropy to identify node centrality in complex networks. Physica A
**2016**, 453, 290–297. [Google Scholar] [CrossRef] - Fei, L.; Deng, Y. A new method to identify influential nodes based on relative entropy. Chaos Solitons Fractals
**2017**, 104, 257–267. [Google Scholar] [CrossRef] - Peng, S.; Yang, A.; Cao, L.; Yu, S.; Xie, D. Social influence modeling using information theory in mobile social networks. Inf. Sci.
**2017**, 379, 146–159. [Google Scholar] [CrossRef] - Bonchev, D.; Trinajstić, N. Information theory, distance matrix and molecular branching. J. Chem. Phys.
**1977**, 67, 4517–4533. [Google Scholar] [CrossRef] - Dehmer, M.; Varmuza, K.; Borgert, S.; Emmert-streib, F. On entropy-based molecular descriptors: Statistical analysis of real and synthetic chemical structures. J. Chem. Inf. Model.
**2009**, 49, 1655–1663. [Google Scholar] [CrossRef] [PubMed] - Christakis, N.A.; Fowler, J.H. Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives; Little, Brown: New York, NY, USA, 2011. [Google Scholar]
- Christakis, N.A.; Fowler, J.H. Social contagion theory: Examining dynamic social networks and human behavior. Stat. Med.
**2013**, 32, 556–577. [Google Scholar] [CrossRef] [PubMed] - Brown, J.J.; Reingen, P.H. Social ties and word of mouth referral behavior. J. Consum. Res.
**1987**, 14, 350–362. [Google Scholar] [CrossRef] - Singh, J. Collaborative networks as determinants of knowledge diffusion patterns. Manag. Sci.
**2005**, 51, 756–770. [Google Scholar] [CrossRef] - Bliss, C.A.; Kloumann, I.M.; Harris, K.D.; Danforth, C.M.; Dodds, P.S. Twitter reciprocal reply networks exhibit assortativity with respect to happiness. J. Comput. Sci.
**2012**, 3, 388–397. [Google Scholar] [CrossRef] - McDermott, R.; Fowler, J.H.; Christakis, N.A. Breaking up is hard to do, unless everyone else is doing it too: Social network effects on divorce in a longitudinal sample. Soc. Forces
**2013**, 92, 491. [Google Scholar] [CrossRef] [PubMed] - Mednick, S.C.; Christakis, N.A.; Fowler, J.H. The spread of sleep loss influences drug use in adolescent social networks. PLoS ONE
**2010**, 5, e9775. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res.
**1977**, 33, 452–473. [Google Scholar] [CrossRef] - Newman, M.E.J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E
**2006**, 74, 036104. [Google Scholar] [CrossRef] [PubMed] - Guimerà, R.; Danon, L.; Díaz-Guilera, A.; Giralt, F.; Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev. E
**2003**, 68, 065103. [Google Scholar] [CrossRef] [PubMed] - Grindrod, P.; Higham, D.J. A matrix iteration for dynamic network summaries. SIAM Rev.
**2013**, 55, 118–128. [Google Scholar] [CrossRef] [Green Version] - Grindrod, P.; Higham, D.J. A dynamical systems view of network centrality. Proc. Math. Phys. Eng. Sci.
**2014**, 470, 20130835. [Google Scholar] [CrossRef] [PubMed] - Barrat, A.; Fernandez, B.; Lin, K.K.; Young, L.S. Modeling temporal networks using random itineraries. Phys. Rev. Lett.
**2013**, 110, 158702. [Google Scholar] [CrossRef] [PubMed] - Lentz, H.H.; Selhorst, T.; Sokolov, I.M. Unfolding accessibility provides a macroscopic approach to temporal networks. Phys. Rev. Lett.
**2013**, 110, 118701. [Google Scholar] [CrossRef] [PubMed] - Gómez, S.; Díazguilera, A.; Gómezgardeñes, J.; Pérezvicente, C.J.; Moreno, Y.; Arenas, A. Diffusion dynamics on multiplex networks. Phys. Rev. Lett.
**2013**, 110, 028701. [Google Scholar] [CrossRef] [PubMed] - Lambiotte, R.; Sinatra, R.; Delvenne, J.C.; Evans, T.S.; Barahona, M.; Latora, V. Flow graphs: Interweaving dynamics and structure. Phys. Rev. E
**2011**, 84, 017102. [Google Scholar] [CrossRef] [PubMed] - Liu, J.G.; Lin, J.H.; Guo, Q.; Zhou, T. Locating influential nodes via dynamics-sensitive centrality. Sci. Rep.
**2015**, 6, 032812. [Google Scholar] [CrossRef] [PubMed]

**Figure 5.**(

**a**) Degree distributions of Erdos-Renyi network; (

**b**) Degree distributions of Watts-Stroggatz network; (

**c**) Degree distributions of Barabasi-Albert network.

**Figure 6.**The frequency of nodes with the same centrality value using different measures in the karate club network.

**Figure 7.**The frequency of nodes with the same centrality value using different measures in USAir club network.

**Figure 8.**The frequency of nodes with the same centrality value using different measures in Collaboration network.

**Figure 9.**The frequency of nodes with the same centrality value using different measures in Email network.

**Figure 10.**The frequency of nodes with the same centrality value using different measures in Erdos-Renyi network.

**Figure 11.**(

**a**) The frequency of nodes with the same centrality value using different measures in Watts-Stroggatz network; (

**b**) The frequency of nodes with the same centrality value using EC, BC, CC and the proposed measures in Watts-Stroggatz network.

**Figure 12.**The frequency of nodes with the same centrality value using different measures in Barabasi-Albert network.

**Figure 13.**Comparing the spreading capacity of single node in karate club network between the proposed model and EC, PR.

**Figure 14.**(

**a**) A comparison of the spreading capacity of single node in USAir network between the proposed model and EC, PR; (

**b**) A comparison of the spreading capacity of single node in USAir network between the proposed model and BC.

**Figure 15.**(

**a**) A comparison of the spreading capacity of single node in Collaboration network between the proposed model and BC; (

**b**) A comparison of the spreading capacity of single node in Collaboration network between the proposed model and CC; (

**c**) A comparison of the spreading capacity of single node in Collaboration network between the proposed model and EC; (

**d**) A comparison of the spreading capacity of single node in Collaboration network between the proposed model and PR.

**Figure 16.**(

**a**) A comparison of the spreading capacity of single node in Email network between the proposed model and BC; (

**b**) A comparison of the spreading capacity of single node in Email network between the proposed model and CC; (

**c**) A comparison of the spreading capacity of single node in Email network between the proposed model and EC; (

**d**) A comparison of the spreading capacity of single node in Email network between the proposed model and PR.

**Figure 17.**(

**a**) A comparison of the spreading capacity of single node in Erdos-Renyi network between the proposed model and BC; (

**b**) A comparison of the spreading capacity of single node in Erdos-Renyi network between the proposed model and CC; (

**c**) A comparison of the spreading capacity of single node in Erdos-Renyi network between the proposed model and EC; (

**d**) A comparison of the spreading capacity of single node in Erdos-Renyi network between the proposed model and PR.

**Figure 18.**(

**a**) A comparison of the spreading capacity of single node in Watts-Stroggatz network between the proposed model and BC; (

**b**) A comparison of the spreading capacity of single node in Watts-Stroggatz network between the proposed model and CC; (

**c**) A comparison of the spreading capacity of single node in Watts-Stroggatz network between the proposed model and EC; (

**d**) A comparison of the spreading capacity of single node in Watts-Stroggatz network between the proposed model and PR.

**Figure 19.**(

**a**) A comparison of the spreading capacity of single node in Barabasi-Albert network between the proposed model and BC; (

**b**) A comparison of the spreading capacity of single node in Barabasi-Albert network between the proposed model and CC; (

**c**) A comparison of the spreading capacity of single node in Barabasi-Albert network between the proposed model and EC; (

**d**) A comparison of the spreading capacity of single node in Barabasi-Albert network between the proposed model and PR.

Node | $\mathit{S}\mathit{D}{\mathit{C}}_{\mathit{i}}$ |
---|---|

1 | 3 |

2 | 2 |

4 | 2 |

6 | 1 |

Node | Local Influence | Indirect Influence | Total Influence |
---|---|---|---|

1 | 0.5737 | 0.3584 | 0.4876 |

2 | 0.6836 | 0.4510 | 0.5906 |

3 | 0.5737 | 0.3934 | 0.5016 |

4 | 0.5933 | 0.4193 | 0.5237 |

5 | 0.7457 | 0.4439 | 0.6250 |

6 | 0.5737 | 0.3785 | 0.4956 |

7 | 0.5737 | 0.3820 | 0.4970 |

8 | 0.4515 | 0.2590 | 0.3745 |

Node | No. |
---|---|

5 | 1 |

2 | 2 |

4 | 3 |

3 | 4 |

7 | 5 |

6 | 6 |

1 | 7 |

8 | 8 |

**Table 4.**The top-10 ranked nodes of karate club network by degree centrality (DC), closeness centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

Karate Club Network | ||||||
---|---|---|---|---|---|---|

Rank | DC | BC | CC | EC | PR | Proposed Model |

1 | 34 | 1 | 1 | 34 | 34 | 1 |

2 | 1 | 34 | 3 | 1 | 1 | 34 |

3 | 33 | 33 | 34 | 3 | 33 | 33 |

4 | 3 | 3 | 32 | 33 | 3 | 3 |

5 | 2 | 32 | 9 | 2 | 2 | 2 |

6 | 4 | 9 | 14 | 9 | 32 | 4 |

7 | 32 | 2 | 33 | 14 | 4 | 32 |

8 | 9 | 14 | 20 | 4 | 24 | 9 |

9 | 14 | 20 | 2 | 32 | 9 | 14 |

10 | 24 | 6 | 4 | 31 | 14 | 24 |

**Table 5.**The top-10 ranked nodes of USAir97 network by degree centrality (DC), closeness centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

USAir97 Network | ||||||
---|---|---|---|---|---|---|

Rank | DC | BC | CC | EC | PR | Proposed Model |

1 | 118 | 118 | 118 | 118 | 118 | 118 |

2 | 261 | 8 | 261 | 261 | 261 | 261 |

3 | 255 | 261 | 67 | 255 | 182 | 255 |

4 | 182 | 201 | 255 | 182 | 152 | 152 |

5 | 152 | 47 | 201 | 152 | 255 | 182 |

6 | 230 | 182 | 182 | 230 | 230 | 230 |

7 | 166 | 255 | 47 | 112 | 166 | 166 |

8 | 67 | 152 | 248 | 67 | 201 | 147 |

9 | 112 | 313 | 166 | 166 | 67 | 112 |

10 | 201 | 13 | 112 | 147 | 8 | 67 |

**Table 6.**The top-10 ranked nodes of the collaboration network by degree centrality (DC), closeness centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

Collaboration Network | ||||||
---|---|---|---|---|---|---|

Rank | DC | BC | CC | EC | PR | Proposed Model |

1 | 33 | 78 | 78 | 33 | 78 | 33 |

2 | 34 | 150 | 281 | 34 | 33 | 34 |

3 | 78 | 516 | 150 | 54 | 34 | 54 |

4 | 54 | 281 | 756 | 53 | 281 | 53 |

5 | 294 | 216 | 301 | 132 | 294 | 78 |

6 | 62 | 34 | 151 | 133 | 216 | 62 |

7 | 216 | 756 | 34 | 134 | 54 | 219 |

8 | 219 | 301 | 131 | 561 | 96 | 216 |

9 | 281 | 131 | 759 | 562 | 150 | 294 |

10 | 53 | 203 | 1123 | 840 | 46 | 281 |

**Table 7.**The top-10 ranked nodes of e-mail network URV by degree centrality (DC), closeness centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

E-mail Network URV | ||||||
---|---|---|---|---|---|---|

Rank | DC | BC | CC | EC | PR | Proposed Model |

1 | 105 | 333 | 333 | 105 | 105 | 105 |

2 | 333 | 105 | 23 | 16 | 23 | 16 |

3 | 16 | 23 | 105 | 196 | 333 | 42 |

4 | 23 | 578 | 42 | 204 | 41 | 196 |

5 | 42 | 76 | 41 | 42 | 42 | 3 |

6 | 41 | 233 | 76 | 49 | 16 | 333 |

7 | 196 | 135 | 233 | 56 | 233 | 49 |

8 | 233 | 41 | 52 | 116 | 355 | 41 |

9 | 21 | 355 | 135 | 333 | 21 | 354 |

10 | 76 | 42 | 378 | 3 | 24 | 332 |

**Table 8.**The top-10 ranked nodes of Erdos-Renyi network by degree centrality (DC), closeness centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

Erdos-Renyi Network | ||||||
---|---|---|---|---|---|---|

Rank | DC | BC | CC | EC | PR | Proposed Model |

1 | 74 | 74 | 74 | 74 | 74 | 74 |

2 | 88 | 88 | 63 | 88 | 88 | 88 |

3 | 23 | 23 | 23 | 63 | 23 | 23 |

4 | 99 | 99 | 88 | 39 | 99 | 63 |

5 | 68 | 68 | 68 | 68 | 68 | 68 |

6 | 25 | 63 | 39 | 23 | 46 | 39 |

7 | 46 | 39 | 26 | 69 | 39 | 46 |

8 | 63 | 42 | 99 | 25 | 25 | 5 |

9 | 39 | 76 | 27 | 26 | 63 | 6 |

10 | 42 | 13 | 2 | 27 | 86 | 99 |

**Table 9.**The top-10 ranked nodes of Watts-Stroggatz network by degree centrality (DC), closeness centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

Watts-Stroggatz Network | ||||||
---|---|---|---|---|---|---|

Rank | DC | BC | CC | EC | PR | Proposed Model |

1 | 466 | 466 | 466 | 466 | 466 | 183 |

2 | 183 | 198 | 54 | 183 | 183 | 466 |

3 | 221 | 54 | 291 | 185 | 162 | 398 |

4 | 54 | 130 | 130 | 428 | 221 | 428 |

5 | 322 | 13 | 128 | 429 | 322 | 221 |

6 | 162 | 162 | 198 | 54 | 198 | 54 |

7 | 198 | 221 | 167 | 198 | 54 | 97 |

8 | 404 | 11 | 433 | 76 | 271 | 172 |

9 | 11 | 183 | 211 | 467 | 294 | 198 |

10 | 13 | 128 | 13 | 369 | 63 | 454 |

**Table 10.**The top-10 ranked nodes of Barabasi-Albert network by degree centrality (DC), closeness centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

Barabasi-Albert Network | ||||||
---|---|---|---|---|---|---|

Rank | DC | BC | CC | EC | PR | Proposed Model |

1 | 2 | 2 | 2 | 2 | 2 | 2 |

2 | 0 | 0 | 0 | 0 | 0 | 0 |

3 | 9 | 9 | 9 | 4 | 9 | 3 |

4 | 4 | 4 | 3 | 3 | 4 | 9 |

5 | 5 | 3 | 4 | 9 | 5 | 4 |

6 | 3 | 6 | 6 | 6 | 3 | 5 |

7 | 11 | 5 | 11 | 5 | 11 | 6 |

8 | 6 | 11 | 1 | 11 | 10 | 14 |

9 | 10 | 10 | 5 | 7 | 6 | 10 |

10 | 14 | 14 | 10 | 60 | 14 | 11 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Qiao, T.; Shan, W.; Zhou, C.
How to Identify the Most Powerful Node in Complex Networks? A Novel Entropy Centrality Approach. *Entropy* **2017**, *19*, 614.
https://doi.org/10.3390/e19110614

**AMA Style**

Qiao T, Shan W, Zhou C.
How to Identify the Most Powerful Node in Complex Networks? A Novel Entropy Centrality Approach. *Entropy*. 2017; 19(11):614.
https://doi.org/10.3390/e19110614

**Chicago/Turabian Style**

Qiao, Tong, Wei Shan, and Chang Zhou.
2017. "How to Identify the Most Powerful Node in Complex Networks? A Novel Entropy Centrality Approach" *Entropy* 19, no. 11: 614.
https://doi.org/10.3390/e19110614