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Abstract: Centrality is one of the most studied concepts in network analysis. Despite an abundance
of methods for measuring centrality in social networks has been proposed, each approach exclusively
characterizes limited parts of what it implies for an actor to be “vital” to the network. In this paper,
a novel mechanism is proposed to quantitatively measure centrality using the re-defined entropy
centrality model, which is based on decompositions of a graph into subgraphs and analysis on the
entropy of neighbor nodes. By design, the re-defined entropy centrality which describes associations
among node pairs and captures the process of influence propagation can be interpreted explained as
a measure of actor potential for communication activity. We evaluate the efficiency of the proposed
model by using four real-world datasets with varied sizes and densities and three artificial networks
constructed by models including Barabasi-Albert, Erdos-Renyi and Watts-Stroggatz. The four datasets
are Zachary’s karate club, USAir97, Collaboration network and Email network URV respectively.
Extensive experimental results prove the effectiveness of the proposed method.
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1. Introduction

A variety of problems in, e.g., management science, mathematics, computer science, chemistry,
biology, sociology, epidemiology etc. deal with quantifying centrality in complex networks.
Thus, numerous measures have been proposed including Freeman’s degree centrality [1], Katz’s
centrality [2], Hubbell’s centrality [3], Bonacich’s eigenvector centrality designed for systematic
networks [4], Bonacich and Lloyd’s alpha centrality conceptualized for asymmetric networks [5],
Stephenson and Zelen’s information centrality [6], etc. Generally, methods mentioned above
exclusively characterize limited parts of what it implies for an actor to be “vital” to the network.
As was noted by Borgatti [7], centrality measures, or these measures’ probably well-known
understandings, make certain presumptions about the way in which traffic flows through a network.
For instance, Freeman’s closeness [1] counts exclusively geodesic routes, evidently accepting that nodes
communicate with other nodes via the shortest routes. Other approaches such as flow betweenness [8]
do not assume shortest paths but do assume proper paths in which no node is visited more than once
(for more details, see [7]). Google’s PageRank algorithm [9] is constructed on the assumption that the
probability of individuals surfing heterogeneous websites is equal, which does not correspond to reality.
Thus, it is obvious to draw the following conclusions that centrality’s measures are then coordinated to
the sorts of moves that they are suitable which implies a specific centrality is ideal for one application,
yet is regularly imperfect for an alternate application. Despite that, methods mentioned above also
has its” own limitations and shortcomings. For instance, Freeman’s degree [1] focuses on a node’s
local activity while the global activity is ignored and fails to describe the propagation of influence.
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Supposing that plenty of nodes are not included in other node pairs’ shortest path, consequently,
the value of betweenness centrality will be zero. Since Katz centrality [2] takes all the paths between
the nodes pairs in the process of calculating influence, its high computational complexity makes it
hard to be applied in large-scale networks. Eigenvector centrality [4] owns slow convergence rate and
may produce an endless loop. In addition, what is not often recognized by the neighborhood-based
and path-based centrality measures mentioned above is that structural complexity and uncertainty
plays a significant role in the analysis of network centrality. The graph entropy—the concept of which
was first presented by Rashevsky [10] and Trucco [11]—has been applied extensively to evaluate
networks’ structural complexity and uncertainty and describe social influence. Rashevsky treated
the entropy of a graph G as its topological information content [10]. The value of graph entropy
can be obtained by using various graph invariants such as the number of vertices [12], the vertex
degree sequence [13] and extended degree sequences (i.e., second neighbor, third neighbor etc.) [14].
Bonchev [15] suggested that the structure of a given network can be treated as a consequence of an
arbitrary function. Inspired by this novel insight, for a given network, Shannon’s information entropy
is applied to compute its structural information content and measure its uncertainty. Since then,
graph entropy based on Shannon’s theory plays an essential role in social networks analysis. However
relatively little work [16-18] has been done to prove the efficiency of the application of Shannon’s
theory to calculate network centrality.

Motivated by the above discussion, this paper is aimed to introduce a novel entropy centrality
model based on decompositions of a graph into subgraphs and calculation on the entropy of neighbor
nodes. By using entropy theory, the proposed method can be well qualified to depict the uncertain
of social influence, consequently can be useful for detecting vital nodes. By quantifying the local
influence of a node on its neighbors and the indirect influence on its two-hop neighbors (the definition
of two-hop neighbor can be seen in Section 3), the proposed methods characterizes associations among
node pairs and captures the process of influence propagation. We also provide the performance
evaluation for our proposed model by using four real-world datasets and three artificial networks
built by using Barabasi-Albert, Erdos-Renyi and Watts-Stroggatz. Other five methods including degree
centrality, betweenness centrality, closeness centrality, eigenvector centrality and PageRank are also
applied to the same selected networks for comparison. The extensive analytical results prove the
effectiveness of the proposed model.

In the next section, we start our survey on centrality methods. In Section 3, we give a brief
introduction of the definitions of graph. In Section 4 we provide an overview of Shannon'’s entropy.
In Section 5, we use entropy centrality to design an algorithm to quantify the influence of nodes in
networks. In Section 6, we conduct experiments based on four real-world datasets with varied sizes and
densities to validate the efficiency of the model presented by various models such as Barabasi-Albert,
Erdos-Renyi and Watts-Stroggatz. Conclusion and future work of this paper can be seen in Section 7.

2. Literature Review

In this section, we investigated some of the most well-known methods that had been presented
to identify the vital nodes in different network topologies such as the classical centrality measures
and many other approaches. Diverse measures of centrality catch distinctive parts of what it implies
for an actor to be “powerful” to the given networks. Thus, the definition of centrality varies from
person to person. Freeman [1] argued that the centrality of a node could be determined by reference to
any of three different structural attributes of that node: its degree, its betweenness, or its closeness.
While degree centrality, the number of adjacencies for a node, is a straightforward index of the node’s
activity; betweenness centrality, based upon the number of the shortest paths between pairs of other
nodes that pass through the node is useful as an index of the potential of a node for network control;
and closeness centrality, computed as the sum of shortest paths between the node and all other nodes,
indicates its effectiveness or correspondence autonomy.
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Katz [2] introduced a measure of centrality known as Katz centrality which computed influence
by taking into consideration the number of walks between a pair of nodes. As noted by Katz,
the attenuation factor & can be interpreted as the chance that an edge is effectively traversed. Also,
the parameter & shows the relative significance of endogenous versus exogenous factors in the
determination of centrality. Eigenvector centrality first suggested by Bonacich [4] has turned out
to be one of symmetric network centrality’s standard measures and can identify the centrality power of
a node in the light of the idea that associations with high-scoring nodes contribute more to the node’s
score being referred to than rise to associations with low-scoring nodes. To deal with the condition of
asymmetric network, Bonacich and Lloyd [5] supposed that the eigenvectors of asymmetric matrices
were not orthogonal, so the equations were a bit different and conceptualized alpha centrality approach.
Google’s PageRank [9], among others, is a case of alpha centrality. Stephenson and Zelen [6] defined the
information centrality using the “information” contained in all possible paths between pairs of points.
Estrada and Rodriguez-Veldzquez [19] introduced the subgraph centrality which was obtainable
mathematically from the spectra of the network’s adjacency matrix characterized the involvement of
each actor in all subgraphs in the given network. A novel approach of centrality measuring based on
game theoretical concepts could be found in Gémez et al. [20]. Gémez et al. [21] illustrated how to
extend the classical betweenness centrality measure at the point when the issue is demonstrated as
a bi-criteria network flow optimization issue. Newman [22] extended the conventional conception
of betweenness which implicitly assumed that information spread only along those shortest paths
and proposed a betweenness measure that relaxed this assumption, including contributions from
essentially all paths between nodes, not just the shortest.

Recently, Du et al. [23] firstly introduced TOPIS as a mew measure of centrality. Gao et al. [24]
improved the original evidential centrality by taking node degree distributions and global structure
information into consideration. A novel measure of node influence based on comprehensive use of
the degree method, H-index and coreness metrics was suggested by Lii et al. [25]. Considering the
limitations of degree centrality and restriction of closeness centrality and betweenness centrality in
large-scale networks, Chen et al. [26] proposed a semi-local centrality method. Also, Chen et al. [27]
introduced a so-called ClusterRank method, which takes the influence of neighbor nodes and clustering
coefficient into consideration. Zeng and Zhang [28] improved the established k-shell method by
rethinking the significant connections between nodes and removed nodes and proposed a mixed
degree decomposition method. Pei et al. [29] confirmed that the most influential actors are situated
in the k-core across disparate social platforms. Martin et al. [30] made the point that the eigenvector
centrality has lost the capacity to distinguish among the remaining nodes and introduced an alternative
centrality definition called nonbacktracking centrality. The LeaderRank algorithm was modified by
introducing a variant based on allocating degree-dependent weights onto associations constructed by
ground nodes [31]. Zhao et al. [32] identified the most effective spreaders by using community-based
theory. Consequently, the network is divided into serval independent sets with different colors.
Min et al. [33] studied the human behavior and concluded that individuals who play a significant role
in connecting various communities is expected to be an effective spreader of influence. Gleich [34]
provided a comprehensive summary of the areas in which PageRank can be applied. Lii et al. [35]
conducted a perturbative analysis in the adjacency matrix and explained centrality from the perspective
of link predictability. Morone and Makse [36] recommended that the problem of finding the minimal
set of influential spreaders can be cleverly mapped onto optimal percolation in networks.

Motivated by the original work owing to Shannon [37], Rashevsky [10] first studied the relations
between the topological properties of graphs and their information content and introduced the concept
of graph entropy. Mowshowitz [38] defined a measure of the structural information content of a graph
and explored its mathematical properties. Since then, entropy measures are utilized to investigate
networks’ structural complexity and play an essential part in varieties of application fields, including
biology, chemistry and sociology. Everett [39] presented a new concept of role similarity generated from
structural equivalence and introduced a new measure of structural complexity based on the entropy
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measure developed by Mowshowitz [38]. With the purpose of acquiring a continuous quantitative
measure of robot team diversity, Balch [40] developed the concept of hierarchic social entropy—an
application of Shannon’s information entropy metric to robotic groups. Tutzauer [41] offered an
entropy-based measure of centrality that is suitable for traffic propagating by flows along paths and
proved its extensive applicability. Emmert-Streib and Dehmer [42] elaborated the idea of calculating
hierarchical structures’ topological entropy by assigning two probability distributions—for nodes and
for edges—and proved that these entropic measures could be computed efficiently. Inspired by small
scale-free networks’ discussion, the off-diagonal complexity (OdC) was proposed by Claussen [43]
as a novel approach to quantify the complexity of undirected networks. For deriving graph entropy
measures, Dehmer [44] outlined a different approach which took use of means of certain information
functions to allocate a probability value to each node in a given graph. Kim and Wilhelm [45]
presented various measures that could compute this complexity, such as the relative number of
non-isomorphic one-edge-deleted subgraphs, denoted as Cj,. Anand and Bianconi [46] illustrated
how to characterize a network ensemble’s Shannon entropy and how it was connected with the Gibbs
and von Neumann entropies of network ensembles. Dehmer and Mowshowitz [14] provided a more
extensive overview on methods for measuring the entropy of graphs and demonstrated the wide
applicability of entropy measures.

In a more recent contribution, Cao and Dehmer [16] showed a new graph entropy measure which
depends on the number of vertex by introducing arbitrary information functional and investigated
its’ mathematical properties. Furthermore, Cao and Dehmer [47] proved further extremal properties
of the re-defined graph entropies. Chen and Dehmer [17] proved bounds for entropies based on the
study of Cao and Dehmer [16] and came up with interrelations between different measures. Nikolaev
et al. [18] presented a measure of centrality as flow destination’s entropy in a random walk flow with
Markovian property. Nie et al. [48] investigated strategies for network attack and established a new
design known as mapping entropy (ME) to recognize the significance of a node in the complex network
based on the knowledge of the neighbors of a node. Fei and Deng [49] addressed the problem of how
to identify influential nodes in complex networks by using relative entropy and the TOPSIS method,
which combines the advantages of existing centrality measures and demonstrated the effectiveness
of the proposed method based on experimental results. Peng et al. [50] characterized the features of
mobile social networks and presented an evaluation model to quantify influence by analyzing and
calculating the friend entropy and communication frequency entropy between users to depict the
uncertainty and complexity of social influence.

3. Preliminaries

Given an undirected, unweighted graph G(V,E), where V represents finite, nonempty set of
nodes (vertices) and E are the set of edges. It is known that if ¢;; € E, which means node i is adjacent
to node j. Furthermore, node j is known as the neighbor of node i. The neighborhood of i € V is
the set of the neighbors of i € V. Also, we can use the incidence matrix to characterize the incident
relationship between nodes. The elements of incidence matrix bi]- has two values which is 1 and 0,
described as follows.

1, ifiand j are connected with e;;
bij = { 0 . / €
, otherwise

Now we introduce the definition of one-hop neighbors and two-hop neighbors. Given a directed
or undirected graph G(V, E) with V nodes and E edges, if node i and node j are directly connected
with edge e;j, namely, b;; = 1, we call node i and node j are one-hop neighbors. That means node i
only need to perform a simple one-hop jump in order to reach node j. The idea is inspired by wireless
multi-hop network. In wireless multi-hop networks, node communicates neighbor nodes within its
communication range. Consistent with wireless multi-hop networks, in social network, because of
limited social power, individuals construct connections only with other individuals located in the
neighborhood area or in so called local-world. Motivated by the above discussions, we now suppose
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that if node i and j are directly linked in the network, i possesses the effective power to influence j.
Then the local influence of node i on its adjacent nodes can be defined as LI;. Analogously consider
a connected network represented by graph G(V, E) with V nodes and E edges, if node i and node
k are not directly connected, namely, b;; = 0, while node i and k have common neighbor node j,
which means there is a path from node i to k, that is, i has one two-hop neighbor node k, or k has
one two-hop neighbor node i. Communication or information transmission is achieved by two hops
between node i and k. Similarly, individual i has the capability to affect the way that k thinks or
behaves through influencing their common neighbor node j and vice versa. According to the above
analysis, thus the indirect impact of node i having on its two-hop neighbors can be defined as I1;. So,
a network represented by a responding graph G(V, E) can be decomposed into sub-network, which is
constructed by nodes and its” neighbors. Based on these mathematical preliminaries, we present the
following model to assess the power of each node via degree-based entropies.

4. Preliminaries of Information Entropy

We start this section by stating definition of Shannon’s entropy. of Given discrete random variables
X with possible values x; whose probabilities of occurrence are p;, i = 1,...,1n,namely, 0 < p; <1
and Y/ ; p; = 1, the entropy H of X is defined as follows [37].

H(X) = =) pilogypi 2)
=

Commonly 2, 10 and e is chosen to be the base of the logarithm. Dehmer suggested
introducing a non-negative integer’s tuple (A1, Ay, ..., A,) in order to form a probability distribution
p = (p1,p2, .., pn) which is described as follows [12].

pl - ;1:1 /\]

i=1,2,...,n 3)

where A; represents the ith non-negative integer. Thus, the entropy can be written as

n n n Al
H(X) = — ) pilogypi = logy <2 Ai) -) s o8 4)
i=1 i1 im1 =17

In the literature, Bonchev and Trinajsti¢ [51] introduced a magnitude-based information
measure to obtain the tuple (A1, Ay, ..., Ay). Also, Dehmer [12,52] proposed a partition-independent
graph entropies approach which used an arbitrary information functional to capture the structural
information of graphs. Recently, Cao et al. [16,47] defined an information functional based on degree
powers of graphs. In this paper, a novel approach is introduced to get the tuple (A1, Ay, ..., A,) by
using degree centrality. We are now ready to propose the evaluation model on nodes’ influence to
reveal the characteristics of interactions among nodes.

5. Model Description

5.1. Computing on Local Influence

Let G(V, E) be an undirected, unweighted graph with V vertices and E edges. For a vertexv; € V,
v; and its one-hop neighbor which belongs to the one-hop neighbor set M of node v; construct a
sub-network represented by a subgraph G;.

Definition 1. The subgraph degree centrality (SDC) measure of node i and its one-hop neighbor node j in G;,
denoted as SDC;, is defined as:
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M
SDC; =) _bj (5)
j

where M is the number of one-hop neighbors of node i. And b;; = 1, if there is an edge between node i and node j,
otherwise, the value of b;; will be 0. Notice that SDC; = DC;, where node i is the central node in the subgraph

G;. Observe that E p; = 1 in Equation (1), hence, the quantities p; can be interpreted as vertex probabilities.
We now obtain one deﬁnztlon of the tuple (A1, Ay, ..., Apy1), described as follows.

A = SDG; (6)

Based on our definition, A; which reflects the number of one-hop neighbors of node i can be
interpreted as a measure of immediate influence. Generally, the scale of A; is a reliable index to measure
the power of a node in a given subgraph or so-called local world. As a result, the local influence of
node i on its one-hop neighbors, denoted as LI; which equals the entropy of neighbor nodes I} for
node i is depicted as follows.

Ts0e) - X
LI =1 =log, SDC; | — ———10gpSDC; 7)
C i1 l = £Mspc l

5.2. Computing on Indirect Influence

Consider a connected network represented by graph G(V, E), if i has one two-hop neighbor node
k, as discussed above, let Nj; represent the common one-hop neighbor nodes between i and k. It is
evident that Nj; also denotes the number of paths from node i to k. Now assuming that node j is
one of common neighbor nodes between i and k, we have already calculated the LI; and LI; based
on our proposed model. Here is the question: how to quantify the influence of node i on k. In this
paper, we treat LI; as influential probability of i on its one-hop neighbors, consequently, the higher of
value of LI;, the more powerful effect of i on its one-hop neighbors. Let us take Nj; = 1 for example,
which means there is a path from node i to k. Thus, the indirect influence of node i on k is described
as follows.
[Ty = Iij x Iy, = LI; x LI; 8)

Likewise, if Ny = 2, there are two paths from node i to k, which is shown in Figure 1.
\‘@ /

Figure 1. Double path.

Suppose we grant both path the same weight, accordingly, the indirect influence of node i on k is
described as follows.
Iij X I]k + Ly, X Imk B LI; x Llj + LI; x LI,
2 B 2

e = )
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Evidently, assumption that each path holds the equal weight will lead to

Nie LI; x LI;
Iy =Y, ——! (10)
iz Ni
Respectively, the indirect influence of node i denoted as I1; is expressed as follows.
M:
Zk—zl IIzk
Il = == 11
= an

where M, indicates the number of i’s two-hop neighbor nodes.

The idea that we consider two-hop subgraphs to quantify the indirect influence of each node
is initially motivated by the three degrees of influence rule, the seminal work done by Christakis
and Fowler [53,54]. Extensive exploration of various large datasets reveals that there is evidence that
the association decays within a few degrees across networks [54]. Also, researchers like Brown [55]
and Singh [56] reached a similar conclusion—that meaningful impacts can no longer be detected
beyond a boundary of three degrees. Furthermore, Bliss et al. [57] made the point that happiness
can be clustered to three degrees of separation by analyzing twitter datasets. Interestingly, Christakis
confirmed that clustering of divorce to two degrees of separation [58] and clustering of sleep and drug
use to four degrees of separation [59]. Thus, what matters most is not the true value of separation
but the decay in the detectable influence individuals may have on others. With respect to the decline
in meaningful impacts in social network, Christakis gave a reasonable explanation that relationships
could be cut which makes associations beyond three degrees unstable [54]. In this paper, we assume
that we could not affect nor be affected by people at three degrees and beyond. Let us take Figure 2
for example. Figure 2 depicts a simple friendship network with 5 nodes. The links represent the
friendship. The assumption discussed above indicates that Bob might not influence nor be influenced
by Naomi or Peter. In conclusion, the two degrees of influence that is used in this research is suitable
for characterizing a decline in a meaningful effect to the extent where the effect cannot be detected and
depicting the process of influence propagation.

0 0 0 0

Bob John Jane Naomi Peter

Figure 2. A friendship network for example.

On the basis of the above illustration, the overall influence of node i, denoted as I; can be calculated
by Equation (12) as follows.
Ii = (UlLIl‘ + (UZIII' (12)

where w; and w, the weight of the local influence and indirect influence. Note that w; + wy = 1.
Algorithm 1 shows the computing process of power for all nodes.

Algorithm 1 Influence calculating algorithm

Input: A connected network represented by graph G(V, E) with V vertices and E edges.
Output: The overall influence of node i.

fori =1to Vdo

identify the subgraph G; constructed by node i and its one-hop neighbors;

calculate the local influence of node i on its one-hop neighbors using Equation (7);
calculate the indirect influence of node i using Equation (11);

calculate the overall influence of node i using Equation (12);

end for
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5.3. Example Explanation

To illustrate how to identify influential nodes based on Algorithm 1, a small network is constructed
to show the detailed steps of the proposed method as an example. The constructed network is shown
in Figure 3.

/

Figure 3. A network for example.

\

\Z/

/

Let us take node 1 for example, the subgraph G; constructed by node 1 and its one-hop neighbors
is shown in Figure 4. Firstly, the values of SDC; of each node are calculated and the results are shown
in Table 1.

[

\6

\

Figure 4. The subgraph G; constructed by node 1 and its one-hop neighbors.

l\)\
[ 4~

Table 1. The values of SDC; of nodes in the subgraph G;.

Node SDC;
1 3
2 2
4 2
6 1

Then, we set b = 10, hence, the entropy of neighbor nodes I} is obtained by Equation (7) as follows.
< L SDG;
LL =1 =logio| ), SDC; | — Y —;———10810SDC; = 0.5737 (13)
i1 i=1 2 SDC;i

Next, using Equation (11), the indirect influence of node 1 denoted as II; is given by:
Il = (LI x LI+ (L) x LI + LI} x LIy + LI} x LIg)/3+ LI; x Llg)/3 = 0.3584.
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At last, In the light of Equation (12), we set specific values for wq and wy: wq = 0.6 and w, = 0.4.
The overall influence of node 1 denoted as I can be computed as follows.

I; = wiL} + wy Il = 0.4876 (14)

According to above illustration, the overall influence of each node can be obtained and the results
is listed in Table 2. Based on the value of overall influence for each node, the ranking results are
illustrated in Table 3.

Table 2. Value of total influence for each node.

Node Local Influence Indirect Influence Total Influence
1 0.5737 0.3584 0.4876
2 0.6836 0.4510 0.5906
3 0.5737 0.3934 0.5016
4 0.5933 0.4193 0.5237
5 0.7457 0.4439 0.6250
6 0.5737 0.3785 0.4956
7 0.5737 0.3820 0.4970
8 0.4515 0.2590 0.3745

Table 3. The results of ranking.

Node No.
5 1
2 2
4 3
3 4
7 5
6 6
1 7
8 8

6. Performance Evaluation

To verify the efficiency of the proposed model, in this paper, we conduct several experiments on
real social network data and compare with other centrality models to examine the relative drawbacks
and disadvantages. The experiment is conducted using four datasets with varying sizes and densities
including: (i) Zachary’s karate club (for more details, see [60]): in Zachary’s study [60], 34 members
of a university-based karate club were observed for a period of three years, from 1970 to 1972. Also,
the network was built on the basis of friendships between members; (ii) USAir97 (The data can be
downloaded from http://mrvar.fdv.uni-lj.si/pajek/): the undirected network, which is constructed by
332 nodes and 2126 edges, depicts the direct air line between American airports. Each node indicates an
airport and an edge represents a direct route between the two airports; (iii) Co-authorships in network
science [61]: the undirected network compiled by M. Newman reflects collaboration of scientists
engaged in research of network theory; (iv) E-mail network URV: the social network describes email
exchanges among users in University at Rovira i Virgili [62].

We also analyze how the proposed method works for artificial networks modeled by the following
three models including: Erdos-Renyi, Watts-Stroggatz and Barabasi-Albert. The description of the
three artificial networks are stated as follows: (i) Erdos-Renyi graph in G(100,0.0625). The network
consists of 100 nodes and 308 edges; (ii) A small world network constructed by using Watts-Stroggatz
model. The network has 500 nodes and 1000 edges. Each node in this network owns 5 neighbors and
the random reconnection probability is 0.3; (iii) We generate a Barabasi-Albert scale-free network with
500 nodes, 996 edges. Degree distributions of the three artificial networks are illustrated in Figure 5.
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Degree Distributions of Erdos-Renyi Network Degree Distribution of Watts-Stroggatz Network Degree Distributions of Barabasi-Albert Network
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Figure 5. (a) Degree distributions of Erdos-Renyi network; (b) Degree distributions of Watts-Stroggatz
network; (c) Degree distributions of Barabasi-Albert network.

In order to evaluate the efficiency of the proposed model, other five classical centrality measures
which comprise Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality (CC),
Eigenvector Centrality (EC) and PageRank (PR) are also applied to the same networks for comparison.
First, we employ the proposed model and the other measures mentioned above to identify the ten
most vital nodes of the karate club network. The results are shown in Table 4. Similarly, the results of
the remaining networks are shown in Tables 5-10 respectively.

Table 4. The top-10 ranked nodes of karate club network by degree centrality (DC), closeness centrality
(CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

Karate Club Network
Rank DC BC CC EC PR Proposed Model

1 34 1 1 34 34 1
2 1 34 3 1 1 34
3 33 33 34 3 33 33
4 3 3 32 33 3 3
5 2 32 9 2 2 2
6 4 9 14 9 32 4
7 32 2 33 14 4 32
8 9 14 20 4 24 9
9 14 20 2 32 9 14
10 24 6 4 31 14 24

Table 5. The top-10 ranked nodes of USAir97 network by degree centrality (DC), closeness centrality
(CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

USAIir97 Network
Rank DC BC CC EC PR Proposed Model

1 118 118 118 118 118 118
2 261 8 261 261 261 261
3 255 261 67 255 182 255
4 182 201 255 182 152 152
5 152 47 201 152 255 182
6 230 182 182 230 230 230
7 166 255 47 112 166 166
8 67 152 248 67 201 147
9 112 313 166 166 67 112
10 201 13 112 147 8 67
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Table 6. The top-10 ranked nodes of the collaboration network by degree centrality (DC), closeness
centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the

proposed method.
Collaboration Network
Rank DC BC CC EC PR Proposed Model
1 33 78 78 33 78 33
2 34 150 281 34 33 34
3 78 516 150 54 34 54
4 54 281 756 53 281 53
5 294 216 301 132 294 78
6 62 34 151 133 216 62
7 216 756 34 134 54 219
8 219 301 131 561 96 216
9 281 131 759 562 150 294
10 53 203 1123 840 46 281

Table 7. The top-10 ranked nodes of e-mail network URV by degree centrality (DC), closeness centrality
(CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

E-mail Network URV

Rank DC BC CcC EC PR Proposed Model
1 105 333 333 105 105 105
2 333 105 23 16 23 16
3 16 23 105 196 333 42
4 23 578 42 204 41 196
5 42 76 41 42 42 3
6 41 233 76 49 16 333
7 196 135 233 56 233 49
8 233 41 52 116 355 41
9 21 355 135 333 21 354

10 76 42 378 3 24 332

Table 8. The top-10 ranked nodes of Erdos-Renyi network by degree centrality (DC), closeness centrality

(CCQC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the proposed method.

Erdos-Renyi Network

Rank DC BC CcC EC PR Proposed Model
1 74 74 74 74 74 74
2 88 88 63 88 88 88
3 23 23 23 63 23 23
4 99 99 88 39 99 63
5 68 68 68 68 68 68
6 25 63 39 23 46 39
7 46 39 26 69 39 46
8 63 42 99 25 25 5
9 39 76 27 26 63 6
10 42 13 2 27 86 99
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Table 9. The top-10 ranked nodes of Watts-Stroggatz network by degree centrality (DC), closeness
centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the
proposed method.

Watts-Stroggatz Network
Rank DC BC CC EC PR Proposed Model

1 466 466 466 466 466 183
2 183 198 54 183 183 466
3 221 54 291 185 162 398
4 54 130 130 428 221 428
5 322 13 128 429 322 221
6 162 162 198 54 198 54
7 198 221 167 198 54 97
8 404 11 433 76 271 172
9 11 183 211 467 294 198
10 13 128 13 369 63 454

Table 10. The top-10 ranked nodes of Barabasi-Albert network by degree centrality (DC), closeness
centrality (CC), betweenness centrality (BC), eigenvector centrality (EC), pagerank (PR) and the
proposed method.

Barabasi-Albert Network
Rank DC BC CC EC PR Proposed Model

1 2 2 2 2 2 2
2 0 0 0 0 0 0
3 9 9 9 4 9 3
4 4 4 3 3 4 9
5 5 3 4 9 5 4
6 3 6 6 6 3 5
7 11 5 11 5 11 6
8 6 11 1 11 10 14
9 10 10 5 7 6 10
10 14 14 10 60 14 11

According to the results shown in Table 4, in karate club network there are eight and nine same
nodes between the proposed method and BC and CC in the top-10 list. Furthermore, the proposed
method shares the same nine nodes with EC. Note that the top 10 nodes are the same using the
proposed methods, DC approach and PR measure. It can be concluded that the top-10 ranked nodes
categorized by our proposed model are more vital than other nodes in the karate club network. Based
on the result shown in Table 5, in UsAir97 network, the number of the same nodes in the top-10
list between the proposed model and other five centrality measures is nine, five, seven and seven,
respectively in DC, BC, CC and PR. It is worth noting the top 10 nodes are the same using the proposed
methods and EC measure. In collaboration network, the seven same nodes are identified by the
proposed model and PR. What’s more, the proposed model and EC has detected the same top 4 nodes.
In addition, the fact that the 10 most vital nodes are the same based on the DC and proposed methods
is really noteworthy. In E-mail network URYV, five same nodes in the top-10 list are identified by the
proposed model, EC, DC as well as PR. Furthermore, the most influential node is the same by using
the proposed model, EC, DC and PR.

As is shown in Table 8, in Erdos-Renyi network, in comparison with the proposed model and
DC, CC or BC, there are seven same actors in the top-10 list. Moreover, there are eight same nodes
in the top-10 list between the proposed model and BC. The top-3 lists applying DC, BC, CC, PR and
the proposed model are the same. In Watts-Stroggatz network, in comparison with the proposed
model and DC, PR or EC, there are five same actors in the top-10 list. Also, the most vital nodes are
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the same by using DC, EC, PR and the proposed model. In Barabasi-Albert network, the fact the
10 most influential nodes identified by PR, BC, DC and the proposed model are the same is notable.
Also, the number of the same actors in the top-10 list between the proposed model and the other two
measures are eight and nine, respectively in EC and CC. As deliberated above, it can be concluded
that the proposed method is proved to be effective on identifying the ten most influential nodes in the
selected networks.

When applying the centrality method such as DC and CC, the situation that multiple nodes
possess the same centrality value appear. Moreover, if a node does not belong to the shortest path
of other node pairs, consequently, the value of BC of that node will be zero, which is exactly the
dilemma we face when betweenness centrality is utilized to identify the powerful nodes in Zachary’s
karate club network and USAir network. What occurs when we use a measure that leads to multiple
nodes with the same centrality value? One of two things must happen: either the capability to explain
the given measure is completely lost or we can only obtain poor answers. Consistent with what
we have discussed above, we can draw the conclusion that an effective or a distinguished approach
grant the overwhelming majority of nodes different weight during the calculation so that nodes in a
given network can be categorized. Therefore, the frequency of nodes with the same centrality value
is considered as a key indicator to assess the efficiency of a certain model. Clearly, the relationship
between the efficiency and the frequency is negative. Motivated by this idea, we explore other
properties of the proposed model and other centrality methods mentioned above by computing the
frequency of nodes with the same centrality value in the selected networks. The results are shown in
Figures 6-12.

From the results illustrated in Figures 6 and 7, it can be reckoned that the proposed model owns
the least nodes with the same centrality value. So do PR and EC. In contrast, other measures have too
many nodes with the same centrality value to identify the influential nodes. As for the collaboration
network, the proposed model has a better performance compared with DC, PR and CC, which can be
seen in Figure 8. As is illustrated in Figure 9, the proposed model is more suitable for detecting vital
nodes than other methods.

As is showed in Figure 10, the proposed model and EC owns the least number of nodes with
same centrality value. As is illustrated in Figure 11a, DC and PR is no longer fit to identify vital
nodes, thus, we remove these two methods and draw a new image of the frequency of nodes with the
same centrality value. The results can be seen in Figure 11b. It is clear that the proposed model beats
all the other four from this perspective. Moreover, the conclusion that the proposed model and EC
outperforms the remaining measures can be drawn based on the results in Figure 12.
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Figure 6. The frequency of nodes with the same centrality value using different measures in the karate
club network.
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Figure 7. The frequency of nodes with the same centrality value using different measures in USAir
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Figure 8. The frequency of nodes with the same centrality value using different measures in
Collaboration network.
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Figure 9. The frequency of nodes with the same centrality value using different measures in
Email network.
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Figure 10. The frequency of nodes with the same centrality value using different measures in
Erdos-Renyi network.
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Figure 11. (a) The frequency of nodes with the same centrality value using different measures in
Watts-Stroggatz network; (b) The frequency of nodes with the same centrality value using EC, BC,
CC and the proposed measures in Watts-Stroggatz network.
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Figure 12. The frequency of nodes with the same centrality value using different measures in
Barabasi-Albert network.
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Consistent with these results, a conclusion can be drawn that the proposed model is more valid
than others to identify vital nodes from this perspective.

Note that even though the top 10 nodes of the karate club network are the same using the proposed
methods and PR measure, the sequences are still different. Then the question arises. How can we prove
that the proposed model is more effective compared with the wildly used PR method? In this research,
we intend to introduce the susceptible-infectious (SI) model which describes the transmission of
infectious diseases between susceptible and infective individuals and also can be used to characterize
social influence’s propagation dynamics process. In the process of epidemic spreading, each node can
be in two discrete states, either susceptible or infected. SI model supposes that nodes in susceptible
can be infected by the infected nodes with the probability, denoted as 8, which indicates the power
of the infected nodes. Fei and Deng [49] point out, in the unweighted network, the value of 5 can be
obtain by using the equation stated as follows.

- (3) (15)

Now let us recall the Zackary’s karate club case, note that node 14, node 32 and node 4 all rank 7th
in the top 10 list when EC, PR and the proposed model are respectively adopted to measure centrality.
The results can also be seen in Table 4. In addition, the same situation in which node 147, node 8 and
node 67 all rank 8th in the top 10 list when EC, PR and the proposed model are respectively adopted to
measure centrality in USAir97 network appears. Also, node 261 and node 8 rank 2nd on the condition
that BC and the proposed model are respectively applied in USAir97 network. The same situation also
appears in Collaboration network and Email network. Inspired by SI model, we treat node 14, node 32
and node 4 as infectious source which spread ¢ (t = 1,2, ..., T) times in karate club network, then the
number of infected nodes N! will be counted when the end of the dissemination. That is the spreading
ability of single node is considered as an index to evaluate the effectiveness of the proposed model
and the existing centrality measures. By introducing SI model, the results of experiments on four real
networks are shown in Figures 13-16, respectively. Figures 17-19 illustrates the results of the other
three artificial networks, respectively.
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Figure 13. Comparing the spreading capacity of single node in karate club network between the
proposed model and EC, PR.
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Figure 14. (a) A comparison of the spreading capacity of single node in USAir network between the
proposed model and EC, PR; (b) A comparison of the spreading capacity of single node in USAir

network between the proposed model and BC.

ps in Network Sci

700

Infected Nodes I(t)

Infected Nodes I(t)

20 25
Time(t)

()

35

ps in Network Sci

I o @ ~
8 8 8 8

Infected Nodes I(t)
w
8

200

700

600

8 8

Infected Nodes I(t)
@
8

200

—&— Node 78
—&— Node 294

15 20 25 30 35 40 45
Time(t)

(d)

Figure 15. (a) A comparison of the spreading capacity of single node in Collaboration network between
the proposed model and BC; (b) A comparison of the spreading capacity of single node in Collaboration
network between the proposed model and CC; (¢) A comparison of the spreading capacity of single
node in Collaboration network between the proposed model and EC; (d) A comparison of the spreading
capacity of single node in Collaboration network between the proposed model and PR.
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Figure 16. (a) A comparison of the spreading capacity of single node in Email network between the
proposed model and BC; (b) A comparison of the spreading capacity of single node in Email network
between the proposed model and CC; (c) A comparison of the spreading capacity of single node in
Email network between the proposed model and EC; (d) A comparison of the spreading capacity of
single node in Email network between the proposed model and PR.
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Figure 17. (a) A comparison of the spreading capacity of single node in Erdos-Renyi network between

the proposed model and BC; (b) A comparison of the spreading capacity of single node in Erdos-Renyi

network between the proposed model and CC; (¢) A comparison of the spreading capacity of single

node in Erdos-Renyi network between the proposed model and EC; (d) A comparison of the spreading

capacity of single node in Erdos-Renyi network between the proposed model and PR.
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Figure 18. (a) A comparison of the spreading capacity of single node in Watts-Stroggatz network

between the proposed model and BC; (b) A comparison of the spreading capacity of single
node in Watts-Stroggatz network between the proposed model and CC; (c) A comparison of the
spreading capacity of single node in Watts-Stroggatz network between the proposed model and EC;
(d) A comparison of the spreading capacity of single node in Watts-Stroggatz network between the

proposed model and PR.
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Figure 19. (a) A comparison of the spreading capacity of single node in Barabasi-Albert network
between the proposed model and BC; (b) A comparison of the spreading capacity of single
node in Barabasi-Albert network between the proposed model and CC; (c) A comparison of the
spreading capacity of single node in Barabasi-Albert network between the proposed model and EC;
(d) A comparison of the spreading capacity of single node in Barabasi-Albert network between the
proposed model and PR.

In general, the number of infected nodes increases as propagation time and finally reaches a
stable value. From Figure 13, in karate club network, PR shows similar efficiency with the proposed
method for their curves are almost overlapping. While the proposed model outperforms PR and EC
for the spreading rate, which means node 32 is more influential compared with node 14 and node 4.
Also, this comparison is in line with our approach. In UsAir97 network, the curve generated from the
proposed method is smoother and steeper in comparison with the curve of BC, which can be seen in
Figure 14b. Indicated by Figure 14a, the same conclusion that the proposed model outperforms slightly
PR and EC and has higher stability. In Collaboration network, time step of this simulation is set for
10,000, in order to reduce calculation time. It is apparent that the proposed model is more effective
for identifying the vital node compared with BC, CC and PR, since the curve of the proposed model
is smoother, which is supported by Figure 15a,b,d. Also, nodes sorted by our method show higher
spread speed and finally infect more nodes in comparison with the nodes ranked by BC, EC and PR.
Moreover, the proposed model indicates comparable effectiveness with EC, which can be concluded
from Figure 15c. In the Email network, the curves of the proposed model, BC, CC and PR almost
completely coincide, which means theses four methods show similar effectiveness. From the results
shown in Figure 16¢, the slope of the curve of the proposed model is slightly higher compared with
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the curves of EC, which indicates that the spread rate of nodes ranked by us is higher. In addition,
the total infectious time of the nodes sorted by the proposed model is significantly shorter.

In the artificial network modeled by Erdos-Renyi, it is apparent that the proposed model is more
suitable for identifying the vital node compared with BC, CC and PR, because the curves generated by
our method is steeper and smoother, which indicates that the spreading speed of nodes ranked by our
method is higher, as well as proves that single node selected by the proposed model is more influential.
In Watts-Stroggatz network, based on the results illustrated in Figure 18a,b,d, it can be concluded that
the single node sorted by our method possess significantly higher spreading rate, consequently infects
all the other nodes in a shorter time. The curves of the proposed model and EC are almost overlapping,
which means they present a similar performance. In Barabasi-Albert network, it is not difficult to come
to the conclusion that the proposed model has a better performance compared with BC, EC and PR
because of the faster speed of the dissemination. Also, the curves generated by the proposed model
are more stable and smoother. In conclusion, the proposed method is validated to be preferable to
other centrality methods referred above.

7. Conclusions and Discussion

In this paper, on the purpose of quantifying influence in networks, we introduce a novel type of
centrality measure based on decompositions of a graph into subgraphs and calculation on the entropy
of neighbor nodes. The efficiency of the proposed model is analyzed on the foundation of real-world
data sets and three artificial networks which consists of Barabasi-Albert network, Erdos-Renyi network
and Watts-Stroggatz network. The four datasets are Zackary’s karate club, USAir97, Collaboration
network and Email network URYV respectively. The extensive analytical results show that the proposed
model outperforms the well-known measures including degree centrality, betweenness centrality,
closeness centrality, eigenvector centrality and PageRank.

In our work, we define a new centrality metric and prove its effectiveness by using various
real-world networks with different sizes and densities. It is obvious that perfect mechanisms, free of
any presumptions or limitations, do not exist. The method proposed by us also has its own limitations
and relies on specific assumptions. We try to summarize the presumptions and biases that present in
our method. First, Equation (11) used to characterize how influence propagates through the network
is subject to certain assumption that paths between nodes and their two-hop neighbors are endowed
with the equal weight. Second, in this paper we assume that we may not hold steady connections to
friends, neighbors or partners at three degrees of separation, which indicates that we could not affect
nor be affected by people at three degrees and beyond. Furthermore, it is clear that the computational
complexity can be significantly reduced by accepting this assumption. Now, we would like to identity
and explore all the potential limitations in our proposed model. The real-world networks based
on which we test the effectiveness of the proposed model are undirected, unweighted and static.
Even though these networks vary from diverse sizes and densities. With respect to weighted networks,
appropriate modifications must be made to Equation (5). Another noteworthy limitation of the
work is an exclusive focus on undirected graphs. The concept that a directed graph can be changed
into another undirected graph may be a reasonable explanation. However, the proposed method
loses the capacity to capture the dynamic process, which is described by scientists such as Grindrod
and Higham [63,64], Barrat et al. [65], Lentz et al. [66], Gomez et al. [67], Lambiotte et al. [68] and
Liu et al. [69]. Albeit with the limitations and constraints, we invite other researchers to innovate and
suggest alternatives. We hope our work will play a role in stimulating interest in this area. Also, we are
fond of applying new and better models regarding how to measure influence in complex networks.

As for the future work, more graphs with different structures will be used to validate our
proposed method. It is also possible that the proposed model which relies on local network
structure characterized by its edges can be functional for social network community detection and
visualization. Besides, we will investigate the potential properties of the proposed model and extend
its application areas.
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