From Big Data to Cultural Intelligence: An AI-Powered Framework and Machine Learning Validation for Global Marketing
Abstract
1. Introduction
- RQ1: How does a user’s national culture, through its influence on their impression management motivations, systematically predict the substantive topics they focus on in negative online reviews?
- RQ2: How is this relationship moderated by the service-market context (i.e., budget vs. luxury), potentially via context-induced shifts in construal level?
2. Theoretical Framework and Hypotheses Development
2.1. Cultural Schemas, Impression Management, and Online Consumer Expression
2.2. A Construal Level Theory Perspective
2.3. Hypotheses Development
- The Main Effects of Culture-Driven Impression Management
- The Moderating Effect of Context-Induced Construal Level
3. Research Methodology
3.1. Data and Sample
3.2. Measurement of Variables
3.3. Analytical Strategy: A Two-Stage Approach
3.3.1. Stage 1: Econometric Modeling for Robust Identification
3.3.2. Stage 2: Machine Learning for Predictive Validation
4. Results
4.1. Econometric Modeling Results
4.2. Machine Learning Validation Results
5. Discussion
5.1. Theoretical Contributions
5.2. Managerial Implications
5.3. Limitations and Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Construct | Seed Words |
|---|---|
| Service | staff, service, manager, frontdesk, attitude, rude, friendly, helpful, professional, customer, reception, concierge, management, welcome, checkin, checkout |
| Value | price, pay, cost, money, expensive, cheap, charge, rate, paid, worth, value, fee, deposit, booking, reservation |
| Room Features | room, bed, bathroom, shower, clean, dirty, small, old, ac, wifi, internet, comfortable, noise, amenities, condition, view, smell, maintenance |
Appendix B
| Profile | Dimension | Score |
|---|---|---|
| Sample Weighted Average | PDI | 46.27 |
| IND | 72.64 | |
| MAS | 57.81 | |
| UAI | 47.81 | |
| LTO | 44.58 | |
| IVR | 59.73 | |
| Population Average | PDI | 66.0 |
| IND | 37.9 | |
| MAS | 46.7 | |
| UAI | 67.1 | |
| LTO | 38.2 | |
| IVR | 36.3 |
Appendix C
- 1.
- Data Source and Matching Protocol
- 2.
- Handling of Intra-Country Variation
- 3.
- Justification for Using Raw Scores
References
- Ledro, C.; Nosella, A.; Vinelli, A. Artificial intelligence in customer relationship management: Literature review and future research directions. J. Bus. Ind. Mark. 2022, 37, 48–63. [Google Scholar] [CrossRef]
- Babić Rosario, A.; De Valck, K.; Sotgiu, F. Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation. J. Acad. Mark. Sci. 2020, 48, 422–448. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rana, N.P.; Tamilmani, K.; Sharma, A. The effect of AI-based CRM on organization performance and competitive advantage: An empirical analysis in the B2B context. Ind. Mark. Manag. 2021, 97, 205–219. [Google Scholar] [CrossRef]
- Schuckert, M.; Liu, X.; Law, R. Hospitality and tourism online reviews: Recent trends and future directions. J. Travel Tour. Mark. 2015, 32, 608–621. [Google Scholar] [CrossRef]
- Haenlein, M. How to date your clients in the 21st century: Challenges in managing customer relationships in today’s world. Bus. Horiz. 2017, 60, 577–586. [Google Scholar] [CrossRef]
- Luo, Q.; Zhong, D. Using social network analysis to explain communication characteristics of travel-related electronic word-of-mouth on social networking sites. Tour. Manag. 2015, 46, 274–282. [Google Scholar] [CrossRef]
- Verma, S.; Yadav, N. Past, present, and future of electronic word of mouth (EWOM). J. Interact. Mark. 2021, 53, 111–128. [Google Scholar] [CrossRef]
- Steenkamp, J.B.E. Global brand building and management in the digital age. J. Int. Mark. 2020, 28, 13–27. [Google Scholar] [CrossRef]
- Del Vecchio, P.; Mele, G.; Siachou, E.; Schito, G. A structured literature review on Big Data for customer relationship management (CRM): Toward a future agenda in international marketing. Int. Mark. Rev. 2022, 39, 1069–1092. [Google Scholar] [CrossRef]
- Markus, H.R.; Kitayama, S. Cultural variation in the self-concept. In The Self: Interdisciplinary Approaches; Springer: New York, NY, USA, 1991; pp. 18–48. [Google Scholar]
- Shavitt, S.; Barnes, A.J. Culture and the consumer journey. J. Retail. 2020, 96, 40–54. [Google Scholar] [CrossRef]
- Filimowicz, M. (Ed.) Digital Totalitarianism: Algorithms and Society; Routledge: Oxfordshire, UK, 2022. [Google Scholar]
- Noble, S.U. Algorithms of oppression: How search engines reinforce racism. In Algorithms of Oppression; New York University Press: New York, NY, USA, 2018. [Google Scholar]
- Filieri, R.; Mariani, M. The role of cultural values in consumers’ evaluation of online review helpfulness: A big data approach. Int. Mark. Rev. 2021, 38, 1267–1288. [Google Scholar] [CrossRef]
- Lin, H.C.; Kalwani, M.U. Culturally contingent electronic word-of-mouth signaling and screening: A comparative study of product reviews in the United States and Japan. J. Int. Mark. 2018, 26, 80–102. [Google Scholar] [CrossRef]
- Dang, A.; Raska, D. National cultures and their impact on electronic word of mouth: A systematic review. Int. Mark. Rev. 2022, 39, 1182–1225. [Google Scholar] [CrossRef]
- Sann, R.; Lai, P.C.; Chang, H.C. Does culture of origin have an impact on online complaining behaviors? The perceptions of Asians and non-Asians. Sustainability 2020, 12, 1838. [Google Scholar] [CrossRef]
- Jia, S.S. Motivation and satisfaction of Chinese and US tourists in restaurants: A cross-cultural text mining of online reviews. Tour. Manag. 2020, 78, 104071. [Google Scholar] [CrossRef]
- Tang, L. Mine your customers or mine your business: The moderating role of culture in online word-of-mouth reviews. J. Int. Mark. 2017, 25, 88–110. [Google Scholar] [CrossRef]
- Popelnukha, A.; Weng, Q.; Ali, A.; Atamba, C. When do low-power customers complain? The joint effects of chronic sense of personal power and complaint success on complaining intentions. J. Consum. Behav. 2021, 20, 101–118. [Google Scholar] [CrossRef]
- Rohden, S.F.; Matos, C.A.D. Online service failure: How consumers from emerging countries react and complain. J. Consum. Mark. 2022, 39, 44–54. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, E.; Yoon, Y. Bringing culture into the picture: Cross-cultural differences in online customer reviews. Int. Mark. Rev. 2023, 40, 528–546. [Google Scholar] [CrossRef]
- Hofstede, G. Culture and organizations. Int. Stud. Manag. Organ. 1980, 10, 15–41. [Google Scholar] [CrossRef]
- Brand, B.M.; Kopplin, C.S.; Rausch, T.M. Cultural differences in processing online customer reviews: Holistic versus analytic thinkers. Electron. Mark. 2022, 32, 1039–1060. [Google Scholar] [CrossRef]
- Mariani, M.; Predvoditeleva, M. How do online reviewers’ cultural traits and perceived experience influence hotel online ratings? An empirical analysis of the Muscovite hotel sector. Int. J. Contemp. Hosp. Manag. 2019, 31, 4543–4573. [Google Scholar] [CrossRef]
- Lee, J.; Park, C. The effects of corporate, review and reviewer characteristics on the helpfulness of online reviews: The moderating role of culture. Internet Res. 2022, 32, 1562–1594. [Google Scholar] [CrossRef]
- Hofstede, G. Dimensionalizing cultures: The Hofstede model in context. Online Read. Psychol. Cult. 2011, 2, 8. [Google Scholar] [CrossRef]
- Leary, M.R.; Kowalski, R.M. Impression management: A literature review and two-component model. Psychol. Bull. 1990, 107, 34. [Google Scholar] [CrossRef]
- Oh, H.J.; LaRose, R. Impression management concerns and support-seeking behavior on social network sites. Comput. Hum. Behav. 2016, 57, 38–47. [Google Scholar] [CrossRef]
- Trope, Y.; Liberman, N. Construal-level theory of psychological distance. Psychol. Rev. 2010, 117, 440. [Google Scholar] [CrossRef] [PubMed]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Yuna, D.; Xiaokun, L.; Jianing, L.; Lu, H. Cross-cultural communication on social media: Review from the perspective of cultural psychology and neuroscience. Front. Psychol. 2022, 13, 858900. [Google Scholar] [CrossRef]
- LaBrie, R.C.; Steinke, G.H.; Li, X.; Cazier, J.A. Big data analytics sentiment: US-China reaction to data collection by business and government. Technol. Forecast. Soc. Change 2018, 130, 45–55. [Google Scholar] [CrossRef]
- Waqas, M.; Hamzah, Z.L.B.; Salleh, N.A.M. Customer experience: A systematic literature review and consumer culture theory-based conceptualisation. Manag. Rev. Q. 2021, 71, 135–176. [Google Scholar] [CrossRef]
- Wamba, S.F.; Gunasekaran, A.; Akter, S.; Ren, S.J.F.; Dubey, R.; Childe, S.J. Big data analytics and firm performance: Effects of dynamic capabilities. J. Bus. Res. 2017, 70, 356–365. [Google Scholar] [CrossRef]
- Davenport, T.; Harris, J. Competing on Analytics: Updated, with a New Introduction: The New Science of Winning; Harvard Business Press: Brighton, MA, USA, 2017. [Google Scholar]
- Schoefer, K.; Wäppling, A.; Heirati, N.; Blut, M. The moderating effect of cultural value orientations on behavioral responses to dissatisfactory service experiences. J. Retail. Consum. Serv. 2019, 48, 247–256. [Google Scholar] [CrossRef]
- Goffman, E. The Presentation of Self in Everyday Life; Doubleday: New York, NY, USA, 1959. [Google Scholar]
- Berger, J. Word of mouth and interpersonal communication: A review and directions for future research. J. Consum. Psychol. 2014, 24, 586–607. [Google Scholar] [CrossRef]
- Blunden, H.; Brodsky, A. A review of virtual impression management behaviors and outcomes. J. Manag. 2024, 50, 2197–2236. [Google Scholar] [CrossRef]
- Hennig-Thurau, T.; Gwinner, K.P.; Walsh, G.; Gremler, D.D. Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the internet? J. Interact. Mark. 2004, 18, 38–52. [Google Scholar] [CrossRef]
- Arkin, R.M. Self-presentation styles. In Impression Management Theory and Social Psychological Research; Academic Press: New York, NY, USA, 1981; pp. 311–333. [Google Scholar]
- Bolino, M.C.; Kacmar, K.M.; Turnley, W.H.; Gilstrap, J.B. A multi-level review of impression management motives and behaviors. J. Manag. 2008, 34, 1080–1109. [Google Scholar] [CrossRef]
- Kim, H.S.; Sherman, D.K. “Express yourself”: Culture and the effect of self-expression on choice. J. Personal. Soc. Psychol. 2007, 92, 1. [Google Scholar] [CrossRef]
- Vignoles, V.L.; Owe, E.; Becker, M.; Smith, P.B.; Easterbrook, M.J.; Brown, R.; González, R.; Didier, N.; Carrasco, D.; Cadena, M.P.; et al. Beyond the ‘east–west’ dichotomy: Global variation in cultural models of selfhood. J. Exp. Psychol. Gen. 2016, 145, 966. [Google Scholar] [CrossRef]
- Aaker, J.L.; Lee, A.Y. “I” seek pleasures and “we” avoid pains: The role of self-regulatory goals in information processing and persuasion. J. Consum. Res. 2001, 28, 33–49. [Google Scholar] [CrossRef]
- Lalwani, A.K.; Wang, J.J. How do consumers’ cultural backgrounds and values influence their coupon proneness? A multimethod investigation. J. Consum. Res. 2019, 45, 1037–1050. [Google Scholar] [CrossRef]
- Ngai, E.W.; Heung, V.C.; Wong, Y.H.; Chan, F.K. Consumer complaint behaviour of Asians and non-Asians about hotel services: An empirical analysis. Eur. J. Mark. 2007, 41, 1375–1391. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, J.; Bao, Y.; Zhu, Q. Towards effective online review systems in the Chinese context: A cross-cultural empirical study. Electron. Commer. Res. Appl. 2013, 12, 208–220. [Google Scholar] [CrossRef]
- Hong, Y.; Huang, N.; Burtch, G.; Li, C. Culture, conformity, and emotional suppression in online reviews. J. Assoc. Inf. Syst. 2016, 17, 2. [Google Scholar] [CrossRef]
- Koh, N.S.; Hu, N.; Clemons, E.K. Do online reviews reflect a product’s true perceived quality? An investigation of online movie reviews across cultures. Electron. Commer. Res. Appl. 2010, 9, 374–385. [Google Scholar] [CrossRef]
- Moriuchi, E.; Moriyoshi, N. A cross-cultural study on online reviews and decision making: An eye-tracking approach. J. Consum. Behav. 2024, 23, 156–170. [Google Scholar] [CrossRef]
- Lalwani, A.K.; Shavitt, S. The “me” I claim to be: Cultural self-construal elicits self-presentational goal pursuit. J. Personal. Soc. Psychol. 2009, 97, 88. [Google Scholar] [CrossRef]
- Wong, J.; Newton, J.D.; Newton, F.J. Powerlessness following service failure and its implications for service recovery. Mark. Lett. 2016, 27, 63–75. [Google Scholar] [CrossRef]
- Donthu, N.; Yoo, B. Cultural influences on service quality expectations. J. Serv. Res. 1998, 1, 178–186. [Google Scholar] [CrossRef]
- Yuksel, A.; Kilinc, U.; Yuksel, F. Cross-national analysis of hotel customers’ attitudes toward complaining and their complaining behaviours. Tour. Manag. 2006, 27, 11–24. [Google Scholar] [CrossRef]
- Hofstede, G. Culture’s recent consequences: Using dimension scores in theory and research. Int. J. Cross Cult. Manag. 2001, 1, 11–17. [Google Scholar] [CrossRef]
- Hur, W.M.; Kang, S.; Kim, M. The moderating role of Hofstede’s cultural dimensions in the customer-brand relationship in China and India. Cross Cult. Manag. 2015, 22, 487–508. [Google Scholar] [CrossRef]
- Bearden, W.O.; Money, R.B.; Nevins, J.L. A measure of long-term orientation: Development and validation. J. Acad. Mark. Sci. 2006, 34, 456–467. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, M.; Ming, Y. Understanding the effect of tourists’ attribute-level experiences on satisfaction–a cross-cultural study leveraging deep learning. Curr. Issues Tour. 2023, 26, 105–121. [Google Scholar] [CrossRef]
- Gao, B.; Li, X.; Liu, S.; Fang, D. How power distance affects online hotel ratings: The positive moderating roles of hotel chain and reviewers’ travel experience. Tour. Manag. 2018, 65, 176–186. [Google Scholar] [CrossRef]
- Gelfand, M.J.; Erez, M.; Aycan, Z. Cross-cultural organizational behavior. Annu. Rev. Psychol. 2007, 58, 479–514. [Google Scholar] [CrossRef]
- Samaha, S.A.; Beck, J.T.; Palmatier, R.W. The role of culture in international relationship marketing. J. Mark. 2014, 78, 78–98. [Google Scholar] [CrossRef]
- Rosendo-Rios, V.; Shukla, P. When luxury democratizes: Exploring the effects of luxury democratization, hedonic value and instrumental self-presentation on traditional luxury consumers’ behavioral intentions. J. Bus. Res. 2023, 155, 113448. [Google Scholar] [CrossRef]
- Liberman, N.; Trope, Y. The role of feasibility and desirability considerations in near and distant future decisions: A test of temporal construal theory. J. Personal. Soc. Psychol. 1998, 75, 5. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, X.; Mattila, A.S. Improving service management in budget hotels. Int. J. Hosp. Manag. 2015, 49, 139–148. [Google Scholar] [CrossRef]
- Hu, X.; Winter, S. The effects of abstract vs. concrete mindsets on the persuasiveness of online reviews: A construal level perspective. In Advances in Advertising Research X: Multiple Touchpoints in Brand Communication; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; pp. 43–52. [Google Scholar]
- Han, Y.J.; Nunes, J.C.; Drèze, X. Signaling status with luxury goods: The role of brand prominence. J. Mark. 2010, 74, 15–30. [Google Scholar] [CrossRef]
- Adler, S.; Sarstedt, M. Mapping the jungle: A bibliometric analysis of research into construal level theory. Psychol. Mark. 2021, 38, 1367–1383. [Google Scholar] [CrossRef]
- Lemon, K.N.; Verhoef, P.C. Understanding customer experience throughout the customer journey. J. Mark. 2016, 80, 69–96. [Google Scholar] [CrossRef]
- Eyal, T.; Liberman, N.; Trope, Y. Judging near and distant virtue and vice. J. Exp. Soc. Psychol. 2008, 44, 1204–1209. [Google Scholar] [CrossRef]
- Torelli, C.J.; Shavitt, S. Culture and concepts of power. J. Personal. Soc. Psychol. 2010, 99, 703. [Google Scholar]
- Steele, C.M. The psychology of self-affirmation: Sustaining the integrity of the self. In Advances in Experimental Social Psychology; Academic Press: Cambridge, MA, USA, 1988; Volume 21, pp. 261–302. [Google Scholar]
- Oliver, R.L.; Swan, J.E. Equity and disconfirmation perceptions as influences on merchant and product satisfaction. J. Consum. Res. 1989, 16, 372–383. [Google Scholar] [CrossRef]
- Fang, J.; Partovi, F.Y. Criteria determination of analytic hierarchy process using a topic model. Expert Syst. Appl. 2021, 169, 114306. [Google Scholar] [CrossRef]
- Min, H.K.; Kim, H.J. When service failure is interpreted as discrimination: Emotion, power, and voice. Int. J. Hosp. Manag. 2019, 82, 59–67. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, T.; Gao, B.; Bose, I. What do hotel customers complain about? Text analysis using structural topic model. Tour. Manag. 2019, 72, 417–426. [Google Scholar] [CrossRef]
- Blazquez, D.; Domenech, J. Big Data sources and methods for social and economic analyses. Technol. Forecast. Soc. Change 2018, 130, 99–113. [Google Scholar] [CrossRef]
- Kapil, G.; Agrawal, A.; Khan, R.A. A study of big data characteristics. In Proceedings of the 2016 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 21–22 October 2016; pp. 1–4. [Google Scholar]
- Jagarlamudi, J.; Daumé III, H.; Udupa, R. Incorporating lexical priors into topic models. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, 23–27 April 2012; pp. 204–213. [Google Scholar]
- Chang, J.; Gerrish, S.; Wang, C.; Boyd-Graber, J.; Blei, D. Reading tea leaves: How humans interpret topic models. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2009; Volume 22. [Google Scholar]
- Sivakumar, K.; Nakata, C. The stampede toward Hofstede’s framework: Avoiding the sample design pit in cross-cultural research. J. Int. Bus. Stud. 2001, 32, 555–574. [Google Scholar] [CrossRef]
- Kirkman, B.L.; Lowe, K.B.; Gibson, C.B. A quarter century of culture’s consequences: A review of empirical research incorporating Hofstede’s cultural values framework. J. Int. Bus. Stud. 2006, 37, 285–320. [Google Scholar] [CrossRef]
- Pennebaker, J.W.; Boyd, R.L.; Jordan, K.; Blackburn, K. The Development and Psychometric Properties of LIWC2015. 2015. Available online: https://repositories.lib.utexas.edu/items/705e81ca-940d-4c46-94ec-a52ffdc3b51f?utm_source=TodayInDigital.com&utm_medium=referral&utm_campaign=what-your-copy-should-be-doing (accessed on 20 October 2025).
- Lee, J.; Jung, O.; Lee, Y.; Kim, O.; Park, C. A comparison and interpretation of machine learning algorithm for the prediction of online purchase conversion. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1472–1491. [Google Scholar] [CrossRef]
- Erevelles, S.; Fukawa, N.; Swayne, L. Big Data consumer analytics and the transformation of marketing. J. Bus. Res. 2016, 69, 897–904. [Google Scholar] [CrossRef]
- Trivedi, J. Examining the customer experience of using banking chatbots and its impact on brand love: The moderating role of perceived risk. J. Internet Commer. 2019, 18, 91–111. [Google Scholar] [CrossRef]
- Sia, C.L.; Lim, K.H.; Leung, K.; Lee, M.K.; Huang, W.W.; Benbasat, I. Web strategies to promote internet shopping: Is cultural-customization needed? Mis Q. 2009, 33, 491–512. [Google Scholar] [CrossRef]
- Chakraborty, U. The impact of source credible online reviews on purchase intention: The mediating roles of brand equity dimensions. J. Res. Interact. Mark. 2019, 13, 142–161. [Google Scholar] [CrossRef]


| Variable | N | Mean | Std. Dev. | Min | Median | Max |
|---|---|---|---|---|---|---|
| Cultural Variables | ||||||
| Power Distance (PDI) | 284,746 | 46.27 | 17.75 | 11.00 | 39.00 | 100.00 |
| Individualism (IND) | 284,746 | 72.64 | 24.45 | 11.00 | 89.00 | 91.00 |
| Masculinity (MAS) | 284,746 | 57.81 | 13.67 | 5.00 | 62.00 | 100.00 |
| Uncertainty Avoidance (UAI) | 284,746 | 47.81 | 18.56 | 8.00 | 46.00 | 100.00 |
| Long-Term Orientation (LTO) | 284,746 | 44.58 | 18.15 | 4.00 | 51.00 | 100.00 |
| Indulgence (IVR) | 284,746 | 59.73 | 15.72 | 4.00 | 68.00 | 100.00 |
| Control Variables | ||||||
| Word Count (WC) | 284,746 | 179.92 | 142.02 | 5.00 | 138.00 | 1005.00 |
| Words Per Sentence (WPS) | 284,746 | 19.68 | 16.92 | 1.80 | 16.50 | 822.00 |
| Hotel Star Rating | 284,746 | 3.51 | 1.30 | 0.00 | 4.00 | 5.00 |
| Country GDP p.c. | 284,746 | 33,652.27 | 18,589.40 | 1095.04 | 36,085.84 | 94,277.96 |
| Dependent Variables | ||||||
| Value | 284,746 | 0.30 | 0.23 | 0.001 | 0.27 | 0.96 |
| Service | 284,746 | 0.06 | 0.08 | 0.001 | 0.03 | 0.87 |
| Room Features | 284,746 | 0.06 | 0.09 | 0.001 | 0.03 | 0.88 |
| (1) Value | (2) Service | (3) Room_Features | |
|---|---|---|---|
| Cultural Variables | |||
| IND | 0.00017 * | 0.00006 ** | 0.00002 |
| (0.00008) | (0.00002) | (0.00003) | |
| MAS | −0.00006 | −0.00006 *** | 0.00009 *** |
| (0.00007) | (0.00002) | (0.00003) | |
| LTO | 0.00018 *** | −0.00008 *** | 0.00014 *** |
| (0.00004) | (0.00001) | (0.00002) | |
| Controls | YES | YES | YES |
| Fixed Effects | YES | YES | YES |
| Observations | 284,746 | 284,746 | 284,746 |
| R2 (within) | 0.0370 | 0.0206 | 0.0155 |
| (1) Value | (2) Service | (3) Room_Features | |
|---|---|---|---|
| Cultural Main Effects | |||
| IND | 0.00019 ** | 0.00006 ** | 0.00002 |
| (0.00007) | (0.00002) | (0.00003) | |
| MAS | −0.00007 | −0.00006 *** | 0.00009 *** |
| (0.00007) | (0.00002) | (0.00003) | |
| LTO | 0.00017 *** | −0.00008 *** | 0.00014 *** |
| (0.00004) | (0.00001) | (0.00002) | |
| Interaction Terms | |||
| IND × hotel_star_rating | −0.00006 * | 0.00003 ** | 0.00002 |
| (0.00003) | (0.00001) | (0.00001) | |
| MAS × hotel_star_rating | −0.00005 | 0.00000 | −0.00002 |
| (0.00004) | (0.00001) | (0.00002) | |
| LTO × hotel_star_rating | 0.00003 | −0.00001 | 0.00002 |
| (0.00003) | (0.00001) | (0.00001) | |
| Controls | YES | YES | YES |
| Fixed Effects | YES | YES | YES |
| Observations | 284,746 | 284,746 | 284,746 |
| R2 (within) | 0.0371 | 0.0208 | 0.0155 |
| Model | Accuracy | Kappa | Specificity |
|---|---|---|---|
| 1. Baseline (Style Only) | 0.7547 | 0.0600 | 0.0425 |
| 2. Full Model (+Topics) | 0.7566 | 0.1014 | 0.0858 |
| 3. Optimized (Weighted) | 0.6399 | 0.1925 | 0.5578 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J. From Big Data to Cultural Intelligence: An AI-Powered Framework and Machine Learning Validation for Global Marketing. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 288. https://doi.org/10.3390/jtaer20040288
Lee J. From Big Data to Cultural Intelligence: An AI-Powered Framework and Machine Learning Validation for Global Marketing. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(4):288. https://doi.org/10.3390/jtaer20040288
Chicago/Turabian StyleLee, Jungwon. 2025. "From Big Data to Cultural Intelligence: An AI-Powered Framework and Machine Learning Validation for Global Marketing" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 4: 288. https://doi.org/10.3390/jtaer20040288
APA StyleLee, J. (2025). From Big Data to Cultural Intelligence: An AI-Powered Framework and Machine Learning Validation for Global Marketing. Journal of Theoretical and Applied Electronic Commerce Research, 20(4), 288. https://doi.org/10.3390/jtaer20040288
