When Positive Service Logistics Encounter Enhanced Purchase Intention: The Reverse Moderating Effect of Image–Text Similarity
Abstract
1. Introduction
2. Literature Review and Hypotheses
2.1. Impact of Online Reviews
2.2. Logistics Service Encounter and Consumer Decision
2.3. Image–Text Similarity in Comments Reduces Consumer Uncertainty
3. Methodology
3.1. Data Description
3.2. Logistics Service Encounters Are Extracted Through LDA
- 1.
- For document d, the LDA model first draws a topic distribution from a Dirichlet distribution, controlled by the parameter α.
- 2.
- Based on the topic distribution for document d, a topic is sampled from the corresponding topic multinomial distribution for document d.
- 3.
- A word multinomial distribution associated with the topic is then drawn from a Dirichlet distribution, controlled by the parameter .
- 4.
- A word is selected from the multinomial distribution corresponding to the chosen topic .
3.3. Use the CLIP Model to Obtain Image and Text Similarity
3.4. Model of Product Sales
4. Results
4.1. Results of LDA
4.2. Regression Model Results
4.3. Robustness Analysis
5. Discussion
5.1. Theoretical Contributions
5.2. Practical Implications
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LDA | Latent Dirichlet Allocation |
CLIP | Contrastive Language-Image Pretraining |
TF-IDF | Term Frequency-Inverse Document Frequency |
NMF | Non-negative Matrix Factorisation |
VAE | Variational Autoencoder |
Appendix A. LDA Logical Structure Diagram
References
- Liu, M.; Jia, W.; Yan, W.; He, J. Factors influencing consumers’ repurchase behavior on fresh food e-commerce platforms: An empirical study. Adv. Eng. Inform. 2023, 56, 101936. [Google Scholar] [CrossRef]
- Theofanous, G.; Thrassou, A.; Uzunboylu, N. Digital Inclusivity: Advancing Accessible Tourism via Sustainable E-Commerce and Marketing Strategies. Sustainability 2024, 16, 1680. [Google Scholar] [CrossRef]
- Cheng, C.; Liang, X.; Wei, W.; Zhang, N.; Yao, G.; Yan, R. Enhanced shelf life quality of peaches (Prunus persica L.) using ethylene manipulating active packaging in e-commerce logistics. Sci. Hortic. 2024, 326, 112701. [Google Scholar] [CrossRef]
- Kawa, A.; Zdrenka, W. Logistics value in e-commerce and its impact on customer satisfaction, loyalty and online retailers’ performance. Int. J. Logist. Manag. 2024, 35, 577–600. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, H.; Chen, H. How much is a picture worth? Online review picture background and its impact on purchase intention. J. Bus. Res. 2022, 139, 134–144. [Google Scholar] [CrossRef]
- Zinko, R.; Stolk, P.; Furner, Z.; Almond, B. A picture is worth a thousand words: How images influence information quality and information load in online reviews. Electron. Mark. 2020, 30, 775–789. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Ngai, E.W.T. Presentational effects of photos and text in electronic word-of-mouth on consumer decisions. Internet Res. 2023, 33, 473–499. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, Z.; Li, Y. Requirement analysis and service optimization of multiple category fresh products in online retailing using importance-Kano analysis. J. Retail. Consum. Serv. 2023, 72, 103253. [Google Scholar] [CrossRef]
- Ballerini, J.; Yahiaoui, D.; Giovando, G.; Ferraris, A. E-commerce channel management on the manufacturers’ side: Ongoing debates and future research pathways. Rev. Manag. Sci. 2024, 18, 413–447. [Google Scholar] [CrossRef]
- Pocchiari, M.; Proserpio, D.; Dover, Y. Online reviews: A literature review and roadmap for future research. Int. J. Res. Mark. 2024, 42, 275–297. [Google Scholar] [CrossRef]
- Ji, F.; Cao, Q.; Li, H.; Fujita, H.; Liang, C.; Wu, J. An online reviews-driven large-scale group decision making approach for evaluating user satisfaction of sharing accommodation. Expert Syst. Appl. 2022, 213, 118875. [Google Scholar] [CrossRef]
- Alzate, M.; Arce-Urriza, M.; Cebollada, J. Mining the text of online consumer reviews to analyze brand image and brand positioning. J. Retail. Consum. Serv. 2022, 67, 102989. [Google Scholar] [CrossRef]
- Choi, H.S.; Leon, S. When trust cues help helpfulness: Investigating the effect of trust cues on online review helpfulness using big data survey based on the amazon platform. Electron. Commer. Res. 2025, 25, 1657–1684. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Han, W.; Qiu, L. Do Emotions Sell? The Impact of Emotional Expressions on Sales in the Space-Sharing Economy. Prod. Oper. Manag. 2022, 31, 65–82. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, W.; Li, J.; Mai, F.; Ma, Z. Effect of online review sentiment on product sales: The moderating role of review credibility perception. Comput. Hum. Behav. 2022, 133, 107272. [Google Scholar] [CrossRef]
- Namvar, M.; Chua, A.Y.K. The impact of context clues on online review helpfulness. Internet Res. 2023, 33, 1015–1030. [Google Scholar] [CrossRef]
- Te’eni, D. Review: A Cognitive-Affective Model of Organizational Communication for Designing IT. MIS Q. 2001, 25, 251. [Google Scholar] [CrossRef]
- Wang, F.; Du, Z.; Wang, S. Information multidimensionality in online customer reviews. J. Bus. Res. 2023, 159, 113727. [Google Scholar] [CrossRef]
- An, Q.; Ozturk, A.B.; Okumus, F. Uncovering the influences of user-generated photos and user profiles on customers’ online hotel review perceptions and booking intentions. J. Vacat. Mark. 2025, 13567667251362485. [Google Scholar] [CrossRef]
- Bigne, E.; Chatzipanagiotou, K.; Ruiz, C. Pictorial content, sequence of conflicting online reviews and consumer decision-making: The stimulus-organism-response model revisited. J. Bus. Res. 2020, 115, 403–416. [Google Scholar] [CrossRef]
- Vazquez, E.E.; Patel, C.; Alvidrez, S.; Siliceo, L. Images, reviews, and purchase intention on social commerce: The role of mental imagery vividness, cognitive and affective social presence. J. Retail. Consum. Serv. 2023, 74, 103415. [Google Scholar] [CrossRef]
- Simonetti, A.; Bigne, E. How visual attention to social media cues impacts visit intention and liking expectation for restaurants. Int. J. Contemp. Hosp. Manag. 2022, 34, 2049–2070. [Google Scholar] [CrossRef]
- Cai, X.; Cebollada, J.; Cortiñas, M. Impact of seller- and buyer-created content on product sales in the electronic commerce platform: The role of informativeness, readability, multimedia richness, and extreme valence. J. Retail. Consum. Serv. 2023, 70, 103141. [Google Scholar] [CrossRef]
- Moriuchi, E.; Moriyoshi, N. A cross-cultural study on online reviews and decision making: An eye-tracking approach. J. Consum. Behav. 2024, 23, 156–170. [Google Scholar] [CrossRef]
- Shostack, G.L. Service Positioning through Structural Change. J. Mark. 1987, 51, 34–43. [Google Scholar] [CrossRef]
- Surprenant, C.F.; Solomon, M.R. Predictability and Personalization in the Service Encounter. J. Mark. 1987, 51, 86. [Google Scholar] [CrossRef]
- Munasinghe, S.; Hemmington, N.; Schänzel, H.; Poulston, J. Hospitality beyond the commercial domain: A triadic conceptualisation of hospitality in tourism from a host-guest encounter perspective. Int. J. Hosp. Manag. 2022, 107, 103316. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Z.-S.; Feng, K.; Tang, Q.-Y. Investigating the crucial role of logistics service quality in customer satisfaction for fresh e-commerce: A mutually validating method based on SERVQUAL and service encounter theory. J. Retail. Consum. Serv. 2024, 81, 103940. [Google Scholar] [CrossRef]
- Sheth, J.N.; Jain, V.; Ambika, A. The growing importance of customer-centric support services for improving customer experience. J. Bus. Res. 2023, 164, 113943. [Google Scholar] [CrossRef]
- Bulchand-Gidumal, J.; William Secin, E.; O’Connor, P.; Buhalis, D. Artificial intelligence’s impact on hospitality and tourism marketing: Exploring key themes and addressing challenges. Curr. Issues Tour. 2024, 27, 2345–2362. [Google Scholar] [CrossRef]
- Huang, D.; Markovitch, D.G.; Stough, R.A. Can chatbot customer service match human service agents on customer satisfaction? An investigation in the role of trust. J. Retail. Consum. Serv. 2024, 76, 103600. [Google Scholar] [CrossRef]
- Arkadan, F.; Macdonald, E.K.; Wilson, H.N. Customer experience orientation: Conceptual model, propositions, and research directions. J. Acad. Mark. Sci. 2024, 52, 1560–1584. [Google Scholar] [CrossRef]
- Wang, L.; Tang, Y.-M.; Chau, K.-Y.; Zheng, X. Empirical Research of Cold-Chain Logistics Service Quality in Fresh Product E-Commerce. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 2543–2556. [Google Scholar] [CrossRef]
- Lin, X.; Mamun, A.A.; Yang, Q.; Masukujjaman, M. Examining the effect of logistics service quality on customer satisfaction and re-use intention. PLoS ONE 2023, 18, e0286382. [Google Scholar] [CrossRef]
- Mentzer, J.T.; Flint, D.J.; Hult, G.T.M. Logistics Service Quality as a Segment-Customized Process. J. Mark. 2001, 65, 82–104. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, R.K.; Mathiyazhagan, K.; Suri, P.K.; Dwivedi, Y.K. Exploring relationships between service quality dimensions and customers satisfaction: Empirical study in context to Indian logistics service providers. Int. J. Logist. Manag. 2022, 34, 1858–1889. [Google Scholar] [CrossRef]
- Yingfei, Y.; Mengze, Z.; Zeyu, L.; Ki-Hyung, B.; Andriandafiarisoa Ralison Ny Avotra, A.; Nawaz, A. Green logistics performance and infrastructure on service trade and environment-Measuring firm’s performance and service quality. J. King Saud Univ.–Sci. 2022, 34, 101683. [Google Scholar] [CrossRef]
- Deshpande, V.; Pendem, P.K. Logistics Performance, Ratings, and Its Impact on Customer Purchasing Behavior and Sales in E-Commerce Platforms. Manuf. Serv. Oper. Manag. 2023, 25, 827–845. [Google Scholar] [CrossRef]
- Liu, S.; Hua, G.; Cheng, T.C.E.; Choi, T.-M. Optimal Pricing and Quality Decisions in Supply Chains With Consumers’ Anticipated Regret and Online Celebrity Retailers. IEEE Trans. Eng. Manag. 2024, 71, 1115–1129. [Google Scholar] [CrossRef]
- Wei, J.; Chang, M. Are price matching and logistics service enhancement always effective strategies for improving profitability? Eur. J. Oper. Res. 2023, 307, 103–115. [Google Scholar] [CrossRef]
- Ngo, T.T.A.; An, G.K.; Dao, D.K.; Nguyen, N.Q.N.; Nguyen, N.Y.V.; Phong, B.H. Roles of logistics service quality in shaping generation Z customers’ repurchase intention and electronic word of mouth in E-commerce industry. PLoS ONE 2025, 20, e0323962. [Google Scholar] [CrossRef]
- Hu, K.-C.; Chia, K.-C.; Lu, M.; Liang, Y.-L. Using importance–performance analysis, goal difficulty and the Kano model to prioritize improvements in the quality of home delivery logistics services. Int. J. Logist. Manag. 2022, 33, 477–498. [Google Scholar] [CrossRef]
- Do, Q.H.; Kim, T.Y.; Wang, X. Effects of logistics service quality and price fairness on customer repurchase intention: The moderating role of cross-border e-commerce experiences. J. Retail. Consum. Serv. 2023, 70, 103165. [Google Scholar] [CrossRef]
- Pelet, J.-E.; Taieb, B.; Alkhudary, R. Measuring consumer perceptions of home-delivery convenience—The case of cargo bikes. Int. J. Retail Distrib. Manag. 2023, 51, 1371–1387. [Google Scholar] [CrossRef]
- Belwal, R.; Belwal, S.; Morgan, Z.; Al Badi, L.H. Profiling consumers for their shopping motivations in modern retail formats in Oman. Int. J. Retail Distrib. Manag. 2025, 53, 74–93. [Google Scholar] [CrossRef]
- Xie, S.; Sharma, S.; Mehra, A.; Aziz, A. Strategic Expectation Setting of Delivery Time on Marketplaces. Inf. Syst. Res. 2024, 35, 1965–1980. [Google Scholar] [CrossRef]
- Wu, J.; Dong, M. Research on customer satisfaction of pharmaceutical e-commerce logistics service under service encounter theory. Electron. Commer. Res. Appl. 2023, 58, 101246. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, M.; Ming, Y.; Niu, T.; Wang, Y. The effect of image richness on customer engagement: Evidence from Sina Weibo. J. Bus. Res. 2023, 154, 113307. [Google Scholar] [CrossRef]
- Jin, X.-L.; Chen, X.; Zhou, Z. The impact of cover image authenticity and aesthetics on users’ product-knowing and content-reading willingness in social shopping community. Int. J. Inf. Manag. 2022, 62, 102428. [Google Scholar] [CrossRef]
- Xia, H.; An, W.; Liu, G.; Hu, R.; Zhang, J.Z.; Wang, Y. Smart recommendation for tourist hotels based on multidimensional information: A deep neural network model. Enterp. Inf. Syst. 2023, 17, 1959651. [Google Scholar] [CrossRef]
- Chen, D.; Su, W.; Wu, P.; Hua, B. Joint multimodal sentiment analysis based on information relevance. Sci. Talks 2023, 7, 100224. [Google Scholar] [CrossRef]
- Liu, H.; Feng, S.; Hu, X. (Simon) Process vs. outcome: Effects of food photo types in online restaurant reviews on consumers’ purchase intention. Int. J. Hosp. Manag. 2022, 102, 103179. [Google Scholar] [CrossRef]
- Kübler, R.V.; Lobschat, L.; Welke, L.; van der Meij, H. The effect of review images on review helpfulness: A contingency approach. J. Retail. 2024, 100, 5–23. [Google Scholar] [CrossRef]
- Wang, S.; Lim, X.-J.; Luo, X.; Cheah, J.-H. To hesitate or not to hesitate: Can popularity cues minimize the hesitation to checkout in e-commerce? J. Retail. Consum. Serv. 2024, 78, 103730. [Google Scholar] [CrossRef]
- Li, H.; Ji, H.; Liu, H.; Cai, D.; Gao, H. Is a picture worth a thousand words? Understanding the role of review photo sentiment and text-photo sentiment disparity using deep learning algorithms. Tour. Manag. 2022, 92, 104559. [Google Scholar] [CrossRef]
- Zhang, X.; Choi, J. The Importance of Social Influencer-Generated Contents for User Cognition and Emotional Attachment: An Information Relevance Perspective. Sustainability 2022, 14, 6676. [Google Scholar] [CrossRef]
- Chen, T.; Samaranayake, P.; Cen, X.; Qi, M.; Lan, Y.-C. The Impact of Online Reviews on Consumers’ Purchasing Decisions: Evidence From an Eye-Tracking Study. Front. Psychol. 2022, 13, 865702. [Google Scholar] [CrossRef]
- Li, C.; Kwok, L.; Xie, K.L.; Liu, J.; Ye, Q. Let Photos Speak: The Effect of User-Generated Visual Content on Hotel Review Helpfulness. J. Hosp. Tour. Res. 2023, 47, 665–690. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, Z.; Zhang, S.; Geng, Z.; Han, N.; Yang, T. Investigating response behavior through TF-IDF and Word2vec text analysis: A case study of PISA 2012 problem-solving process data. Heliyon 2024, 10, e35945. [Google Scholar] [CrossRef]
- Nugumanova, A.; Akhmed-Zaki, D.; Mansurova, M.; Baiburin, Y.; Maulit, A. NMF-based approach to automatic term extraction. Expert Syst. Appl. 2022, 199, 117179. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Li, S.; Yu, Z.; Guo, Y.; Liu, Q.; Wang, G. Cloud-VAE: Variational autoencoder with concepts embedded. Pattern Recognit. 2023, 140, 109530. [Google Scholar] [CrossRef]
- Kar, A.K.; Tripathi, S.N.; Malik, N.; Gupta, S.; Sivarajah, U. How Does Misinformation and Capricious Opinions Impact the Supply Chain-A Study on the Impacts During the Pandemic. Ann. Oper. Res. 2023, 327, 713–734. [Google Scholar] [CrossRef]
- Akbari, M. Data-driven review of additive manufacturing on supply chains: Regionalization, key research themes and future directions. Comput. Ind. Eng. 2023, 184, 109600. [Google Scholar] [CrossRef]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning Transferable Visual Models From Natural Language Supervision. In Proceedings of the 38th International Conference on Machine Learning, Online, 18–24 July 2021; pp. 8748–8763. [Google Scholar]
- Yang, A.; Pan, J.; Lin, J.; Men, R.; Zhang, Y.; Zhou, J.; Zhou, C. Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese. arXiv 2023, arXiv:2211.01335. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Zhao, J. Effect of user-generated image on review helpfulness: Perspectives from object detection. Electron. Commer. Res. Appl. 2023, 57, 101232. [Google Scholar] [CrossRef]
- Laureate, C.D.P.; Buntine, W.; Linger, H. A systematic review of the use of topic models for short text social media analysis. Artif. Intell. Rev. 2023, 56, 14223–14255. [Google Scholar] [CrossRef] [PubMed]
- Kaswengi, J.; Lambey-Checchin, C. How logistics service quality and product quality matter in the retailer–customer relationship of food drive-throughs: The role of perceived convenience. Int. J. Phys. Distrib. Logist. Manag. 2019, 50, 535–555. [Google Scholar] [CrossRef]
- Venkatakrishnan, J.; Alagiriswamy, R.; Parayitam, S. Web design and trust as moderators in the relationship between e-service quality, customer satisfaction and customer loyalty. TQM J. 2023, 35, 2455–2484. [Google Scholar] [CrossRef]
- Meenu, M.; Kurade, C.; Neelapu, B.C.; Kalra, S.; Ramaswamy, H.S.; Yu, Y. A concise review on food quality assessment using digital image processing. Trends Food Sci. Technol. 2021, 118, 106–124. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Wei, L.-F. The efficiency of mobile media richness across different stages of online consumer behavior. Int. J. Inf. Manag. 2020, 50, 353–364. [Google Scholar] [CrossRef]
- Zhou, C.; Li, K.; Lu, Y. Linguistic characteristics and the dissemination of misinformation in social media: The moderating effect of information richness. Inf. Process. Manag. 2021, 58, 102679. [Google Scholar] [CrossRef]
Number | Min (M) | Max (X) | Average (E) | Standard Deviation | |
---|---|---|---|---|---|
Sales amount | 10,956 | 3.00 | 10,778.00 | 1236.23 | 1529.57 |
topic1 | 10,956 | 0.00 | 0.93 | 0.15 | 0.19 |
topic2 | 10,956 | 0.00 | 0.96 | 0.20 | 0.23 |
topic3 | 10,956 | 0.00 | 0.95 | 0.13 | 0.17 |
topic4 | 10,956 | 0.00 | 0.96 | 0.14 | 0.18 |
topic5 | 10,956 | 0.00 | 0.97 | 0.14 | 0.18 |
topic6 | 10,956 | 0.00 | 0.94 | 0.25 | 0.25 |
Similarity score | 10,956 | 0.00 | 0.58 | 0.45 | 0.04 |
effective N (sample size) | 10,956 |
Number | Topic | Top Words |
---|---|---|
1 | Logistics Speed | Excellent; Fresh; Exceptionally Fresh; Outstanding; Highly Recommended; Valuable; Absence of Damaged Fruit; Efficient Logistics; Highly Satisfied; Logistics are Efficient |
2 | Praise and Recommendation | Satisfactory; Very Fresh; Quite Good; Very Good; Fresh; Positive Feedback; Worthwhile; Recommended; Individually Packaged; Highly Satisfied |
3 | Compensation for Logistics Speed | Positive Feedback; Five-Star Rating; Not Fresh; No Damage; Fast Delivery; Particularly Good; Damaged Fruit; Especially Liked; SF Express; Overall |
4 | Quality Defects | Unsatisfactory; Negative Feedback; Fresh; Positive Feedback; Compensation; Cost-Effective; Not Fresh; Door-to-Door Delivery; Receipt of Goods; No Damage |
5 | Packaging Integrity | Extremely Poor; Negative Feedback; Well-Packaged; Repeat Purchase; Fairly Fresh; Generally; Super Fresh; Extremely Unsatisfactory; Particularly Fast; Partial |
6 | Cost-Effectiveness | Exceptionally Delicious; Very High Quality; Recommended; Very Poor; Effective; Excellent Value for Money; Worth the Price; Excessively Sweet; Easy; Refreshing |
Variables | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
Sentiment Score | −0.069 *** | −0.067 *** | −0.065 *** | −0.065 *** |
Time | 0.169 *** | 0.169 *** | 0.170 *** | 0.170 *** |
Semantic Ambiguity | 0.010 | 0.007 | 0.006 | 0.005 |
Logistics Speed | 1.472 * | 1.368 * | 1.645 ** | |
Praise and Recommendation | 1.875 * | 1.745 * | 1.948 ** | |
Compensation for Logistics Speed | 1.366 * | 1.271 * | 1.488 ** | |
Quality Defects | 1.494 * | 1.392 * | 1.557 ** | |
Packaging Integrity | 1.450 * | 1.350 * | 1.671 ** | |
Cost-Effectiveness | 2.020 * | 1.880 * | 1.891 * | |
Similarity Score | −0.042 *** | 0.042 | ||
Logistics Speed × Similarity Score | −0.270 * | |||
Praise and Recommendation × Similarity Score | −0.195 | |||
Compensation for Logistics Speed × Similarity Score | −0.211 | |||
Quality Defects × Similarity Score | −0.158 | |||
Packaging Integrity × Similarity Score | −0.315 * |
Variables | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
Semantic Ambiguity | 0.010 | 0.008 | 0.006 | 0.006 |
Time | 0.171 *** | 0.171 *** | 0.172 *** | 0.172 *** |
Sentiment Score | −0.069 *** | −0.067 *** | −0.065 *** | −0.065 *** |
Logistics Speed | 1.481 * | 1.377 * | 1.653 ** | |
Praise and Recommendation | 1.887 * | 1.757 * | 1.958 ** | |
Compensation for Logistics Speed | 1.375 * | 1.279 * | 1.498 ** | |
Quality Defects | 1.504 * | 1.401 * | 1.565 ** | |
Packaging Integrity | 1.460 * | 1.359 * | 1.676 ** | |
Cost-Effectiveness | 2.033 * | 1.892 * | 1.904 * | |
Similarity Score | −0.042 *** | 0.041 | ||
Logistics Speed × Similarity Score | −0.269 * | |||
Praise and Recommendation × Similarity Score | −0.192 | |||
Compensation for Logistics Speed × Similarity Score | −0.213 | |||
Quality Defects × Similarity Score | −0.157 | |||
Packaging Integrity × Similarity Score | −0.312 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, S.; Cao, L.; Zhou, J. When Positive Service Logistics Encounter Enhanced Purchase Intention: The Reverse Moderating Effect of Image–Text Similarity. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 220. https://doi.org/10.3390/jtaer20030220
Bai S, Cao L, Zhou J. When Positive Service Logistics Encounter Enhanced Purchase Intention: The Reverse Moderating Effect of Image–Text Similarity. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):220. https://doi.org/10.3390/jtaer20030220
Chicago/Turabian StyleBai, Shizhen, Luwen Cao, and Jiamin Zhou. 2025. "When Positive Service Logistics Encounter Enhanced Purchase Intention: The Reverse Moderating Effect of Image–Text Similarity" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 220. https://doi.org/10.3390/jtaer20030220
APA StyleBai, S., Cao, L., & Zhou, J. (2025). When Positive Service Logistics Encounter Enhanced Purchase Intention: The Reverse Moderating Effect of Image–Text Similarity. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 220. https://doi.org/10.3390/jtaer20030220