What Signals Are You Sending? How Signal Consistency Influences Consumer Purchase Behavior in Live Streaming Commerce
Abstract
:1. Introduction
2. Theoretical Background
2.1. Live Streaming Commerce
2.2. Signaling Theory
2.3. Performance Response
3. Hypotheses Development
3.1. Hypotheses on Signal Consistency and Perceived Performance Expectancy
3.2. Hypotheses on Signal Consistency and Perceived Satisfaction
3.3. Hypotheses on Perceived Performance Expectancy and Perceived Satisfaction
3.4. Hypotheses on Performance Response and Purchase Intention
4. Research Method
4.1. Research Design and Data Collection
4.2. Measurements
4.3. Data Analysis
5. Results
5.1. Results of Hypothesis Testing
5.2. Additional Analysis for Mediating Effects
6. Discussion
6.1. Theoretical Contributions
6.2. Practical Insights
6.3. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadi, R.; Melumad, S.; Park, E.S. The Metaverse: A new digital frontier for consumer behavior. J. Consum. Psychol. 2024, 34, 142–166. [Google Scholar] [CrossRef]
- Panda, L.; Khatua, P. E-commerce evolution: Tracing the impact on travel and tourism through time. IGI Global 2025, 105–134. [Google Scholar] [CrossRef]
- Bray, G.A. Capturing consumer attention: An in-depth analysis of TikTok live shopping. Law Econ. 2024, 3, 32–46. [Google Scholar] [CrossRef]
- Feng, J.; Tang, Y. Supply chain dynamics and challenges in e-commerce live broadcasting. J. Policy Option 2024, 7, 30–37. [Google Scholar]
- Liu, Y.; Sun, X. Tourism e-commerce live streaming: The effects of live streamer authenticity on purchase intention. Tour. Rev. 2024, 79, 1147–1165. [Google Scholar] [CrossRef]
- Wang, H.; Lee, K. Effects of relational bonds on continuance purchase behavior in live streaming commerce. Soc. Behav. Personal. Int. J. 2023, 51, 1–13. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, W. The influence of network anchor traits on shopping intentions in a live streaming marketing context: The mediating role of value perception and the moderating role of consumer involvement. Econ. Anal. Policy 2023, 78, 332–342. [Google Scholar] [CrossRef]
- Xu, B.; Dastane, O.; Aw, E.C.X.; Jha, S. The future of live-streaming commerce: Understanding the role of AI-powered virtual streamers. Asia Pac. J. Mark. Logist. 2024, 37, 1175–1196. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Xin, L.; Wang, H.; Park, H.W. Effects of AI virtual anchors on brand image and loyalty: Insights from perceived value theory and SEM-ANN analysis. Systems 2025, 13, 79. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Ming, L.; Cheng, Y. The sales impacts of traffic acquisition promotion in live-streaming commerce. Prod. Oper. Manag. 2024. [Google Scholar] [CrossRef]
- Buckley, O.; Ashman, R.; Haenlein, M. Leveraging livestreaming to enrich influencer marketing. Calif. Manage. Rev. 2025, 67, 111–140. [Google Scholar] [CrossRef]
- Theodorakopoulos, L.; Theodoropoulou, A. Leveraging big data analytics for understanding consumer behavior in digital marketing: A systematic review. Hum. Behav. Emerg. Technol. 2024, 2024, 3641502. [Google Scholar] [CrossRef]
- Chen, X.; Shen, J.; Wei, S. What reduces product uncertainty in live streaming e-commerce? From a signal consistency perspective. J. Retail. Consum. Serv. 2023, 74, 103441. [Google Scholar] [CrossRef]
- Ma, X.; Liu, S. Information disclosure strategies of live-streaming supply chains in the digi-economy era. Manag. Decis. Econ. 2024, 45, 5696–5713. [Google Scholar] [CrossRef]
- Tong, X.; Chen, Y.; Zhou, S.; Yang, S. How background visual complexity influences purchase intention in live streaming: The mediating role of emotion the moderating role of gender. J. Retail. Consum. Serv. 2022, 67, 103031. [Google Scholar] [CrossRef]
- Han, L.; Fang, J.; Zheng, Q.; George, B.T.; Liao, M.; Hossin, M.A. Unveiling the effects of livestream studio environment design on sales performance: A machine learning exploration. Ind. Mark. Manag. 2024, 117, 161–172. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Yao, X.; Yan, X.; Li, R. How do influencers’ impression management tactics affect purchase intention in live commerce?–Trust transfer and gender differences. Inf. Manag. 2025, 62, 104094. [Google Scholar] [CrossRef]
- Jia, M. Do nonlinear and interactive effects exist in live-streaming sellers’ disclosure of two-sided product information on consumers’ trust and purchase intention? Asia Pac. J. Mark. Logist. 2024, 36, 2889–2906. [Google Scholar] [CrossRef]
- Pan, S.; Qin, Z.; Zhang, Y. More realistic, more better? How anthropomorphic images of virtual influencers impact the purchase intentions of consumers. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 3229–3252. [Google Scholar] [CrossRef]
- Li, C.; Huang, F. The Impact of virtual streamer anthropomorphism on consumer purchase intention: Cognitive trust as a mediator. Behav. Sci. 2024, 14, 1228. [Google Scholar] [CrossRef]
- Sun, L.; Tang, Y. Avatar effect of AI-enabled virtual streamers on consumer purchase intention in e-commerce livestreaming. J. Consum. Behav. 2024, 23, 2999–3010. [Google Scholar] [CrossRef]
- Tang, X.; Li, X.; Hao, Z. The impact of live background visual complexity on consumer purchase intention: An eye-tracking study. Asia Pac. J. Mark. Logist. 2024, 36, 2539–2557. [Google Scholar] [CrossRef]
- Tian, H. Influence of mobile app live streaming characteristics on clothing impulse purchase intention: Mediation of swift guanxi and perceived trust. Sage Open 2024, 14, 21582440241290005. [Google Scholar] [CrossRef]
- Chen, H.; Dou, Y.; Xiao, Y. Understanding the role of live streamers in live-streaming e-commerce. Electron. Commer. Res. Appl. 2023, 59, 101266. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, J.; Zhao, C. Exploring how the application of live-streaming in E-commerce influences consumers’ trust-building. IEEE Access. 2024, 12, 102649–102659. [Google Scholar] [CrossRef]
- Liang, X.; Li, G.; Ma, J.; Jiang, G. How do signaling and reputation function as critical clues to e-commerce platform governance? Evidence from Chinese rice transaction data. Electron. Commer. Res. 2024, 1–25. [Google Scholar] [CrossRef]
- Yang, H.; Xu, X.; Wang, B. The power of body language: Understanding anchor’s body language and the success of live-streaming e-commerce. Nankai Bus. Rev. Int. 2025, 16, 332–358. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, F.; Wang, G.A.; Luo, C. The impact of live video streaming on online purchase intention. Serv. Ind. J. 2020, 40, 656–681. [Google Scholar] [CrossRef]
- Gilstrap, C.A.; Gilstrap, C.M. Mobile technologies and live streaming commerce: A systematic review and lexical analysis. In Proceedings of the 2023 46th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 22–26 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 36–44. [Google Scholar]
- Golan, O.; Martini, M. Religious live-streaming: Constructing the authentic in real time. Inf. Commun. Soc. 2019, 22, 437–454. [Google Scholar] [CrossRef]
- Kang, K.; Lu, J.; Guo, L.; Li, W. The dynamic effect of interactivity on customer engagement behavior through tie strength: Evidence from live streaming commerce platforms. Int. J. Inf. Manag. 2021, 56, 102251. [Google Scholar] [CrossRef]
- Xie, C.; Yu, J.; Huang, S.S.; Zhang, J. Tourism e-commerce live streaming: Identifying and testing a value-based marketing framework from the live streamer perspective. Tour. Manag. 2022, 91, 104513. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, X. Impact of live streamer characteristics and customer response on live-streaming performance: Empirical evidence from e-commerce platform. Procedia Comput. Sci. 2022, 214, 1277–1284. [Google Scholar] [CrossRef]
- Joo, E.; Yang, J. How perceived interactivity affects consumers’ shopping intentions in live stream commerce: Roles of immersion, user gratification and product involvement. J. Res. Interact. Mark. 2023, 17, 754–772. [Google Scholar] [CrossRef]
- Bao, Z.; Zhu, Y. Understanding customers’ stickiness of live streaming commerce platforms: An empirical study based on modified e-commerce system success model. Asia Pac. J. Mark. Logist. 2023, 35, 775–793. [Google Scholar] [CrossRef]
- Luo, X.; Cheah, J.H.; Lim, X.J.; Ramayah, T.; Dwivedi, Y.K. Dwivedi. Inducing shoppers’ impulsive buying tendency in live-streaming: Integrating signaling theory with social exchange theory. Internet Res. 2025, 35, 318–348. [Google Scholar] [CrossRef]
- Jiang, H.B.; Fan, Z.Y.; Wang, J.L.; Liu, S.H.; Lin, W.J. The determinants of product trust in live streaming E-commerce: A hybrid method integrating SEM and fsQCA. Asia Pac. J. Mark. Logist. 2025, 37, 273–293. [Google Scholar] [CrossRef]
- Gu, Y.; Cheng, X.; Shen, J. Design shopping as an experience: Exploring the effect of the live-streaming shopping characteristics on consumers’ participation intention and memorable experience. Inf. Manag. 2023, 60, 103810. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, Y.; Yang, B.; Liu, Y. Understanding streamers’ intention to live stream in the context of rural live streaming commerce: A mixed-methods study. Internet Res. 2025; ahead-of-print. [Google Scholar]
- Li, B.; Li, S.; Zhang, J.; Deng, Y. A case study of marketing strategies for live e-commerce streaming scenarios based on SICAS model. In Proceedings of the 2024 4th International Conference on Business Administration and Data Science (BADS 2024), Kashi, China, 25–27 October 2024; Springer Nature: Berlin/Heidelberg, Germany, 2024; Volume 211. [Google Scholar]
- Shang, Q.; Ma, H.; Wang, C.; Gao, L. Effects of background fitting of e-commerce live streaming on consumers’ purchase intentions: A cognitive-affective perspective. Psychol. Res. Behav. Manag. 2023, 16, 149–168. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Xu, Y.; Zeng, K. How live streaming features impact consumers’ purchase intention in the context of cross-border E-commerce? A research based on SOR theory. Front. Psychol. 2021, 12, 767876. [Google Scholar] [CrossRef]
- Mavlanova, T.; Benbunan-Fich, R.; Koufaris, M. Signaling theory and information asymmetry in online commerce. Inf. Manag. 2021, 49, 240–247. [Google Scholar] [CrossRef]
- Long, R.; Yuan, X.; Wu, M. Consumers’ green product purchase intention considering para-social interaction: An experimental study based on live-streaming e-commerce. J. Clean. Prod. 2024, 481, 144169. [Google Scholar] [CrossRef]
- Xin, M.; Liu, W.; Jian, L. Live streaming product display or social interaction: How do they influence consumer intention and behavior? A heuristic-systematic perspective. Electron. Commer. Res. Appl. 2024, 67, 101437. [Google Scholar] [CrossRef]
- Shi, R.; Wang, M.; Qiao, T.; Shang, J. The effects of live streamer’s facial attractiveness and product type on consumer purchase intention: An exploratory study with eye tracking technology. Behav. Sci. 2024, 14, 375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Ruan, C. Danmaku consistency reduces consumer purchases during live streaming: A dual-process model. Psychol. Mark. 2024, 41, 2591–2607. [Google Scholar] [CrossRef]
- Fang, J.; Liu, L.; Hossin, M.A.; Wen, C.; Xia, G. Market competition as a moderator of the effect of social signals on viewership in video-sharing platforms. Inf. Process. Manag. 2023, 60, 103329. [Google Scholar] [CrossRef]
- Wells, J.D.; Valacich, J.S.; Hess, T.J. What signal are you sending? How website quality influences perceptions of product quality and purchase intentions. MIS Q. 2011, 35, 373–396. [Google Scholar] [CrossRef]
- Ajzen, I. Job satisfaction, effort, and performance: A reasoned action perspective. Contemp. Econ. 2011, 5, 32–43. [Google Scholar] [CrossRef]
- Miraz, M.H.; Hasan, M.T.; Rekabder, M.S.; Akhter, R. Trust, transaction transparency, volatility, facilitating condition, performance expectancy towards cryptocurrency adoption through intention to use. J. Manag. Inf. Decis. Sci. 2022, 25, 1–20. [Google Scholar]
- Bertram, I.; Bouwman, R.; Tummers, L. Getting what you expect: How civil servant stereotypes affect citizen satisfaction and perceived performance. Public Adm. 2024, 102, 1468–1491. [Google Scholar] [CrossRef]
- Lee, H.W. Moderators of the motivational effects of performance management: A comprehensive exploration based on expectancy theory. Public Pers. Manag. 2019, 48, 27–55. [Google Scholar] [CrossRef]
- Vroom, V.H. Work and Motivation; Wiley & Sons: New York, NY, USA, 1964. [Google Scholar]
- Yun, S.; Takeuchi, R.; Liu, W. Employee self-enhancement motives and job performance behaviors: Investigating the moderating effects of employee role ambiguity and managerial perceptions of employee commitment. J. Appl. Psychol. 2007, 92, 745. [Google Scholar] [CrossRef]
- Bao, Z.; Han, Z. What drives users’ participation in online social Q&A communities? An empirical study based on social cognitive theory. Aslib J. Inf. Manag. 2019, 71, 637–656. [Google Scholar]
- Bandura, A. Social cognitive theory of self-regulation organizational behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 248–287. [Google Scholar] [CrossRef]
- Ratten, V. Factors influencing consumer purchase intention of cloud computing in the United States and Turkey: The role of performance expectancy, ethical awareness and consumer innovation. EuroMed J. Bus. 2015, 10, 80–97. [Google Scholar] [CrossRef]
- Abdul Murad, S.M.; Sivapathy, A.; Mohd Nor, A.A. The impact of performance expectancy on purchasing travel products via online travel agents websites: Gender as moderator. Voice Acad. VOA 2021, 17, 116–128. [Google Scholar]
- Zhang, M.; Gursoy, D.; Zhu, Z.; Shi, S. Impact of anthropomorphic features of artificially intelligent service robots on consumer acceptance: Moderating role of sense of humor. Int. J. Contemp. Hosp. Manag. 2021, 33, 3883–3905. [Google Scholar] [CrossRef]
- Singh, V.; Sharma, M.P.; Jayapriya, K.; Kumar, B.K.; Chander, M.A.R.N.; Kumar, B.R. Service quality, customer satisfaction and customer loyalty: A comprehensive literature review. J. Surv. Fish. Sci. 2023, 10, 3457–3464. [Google Scholar]
- Tang, W.; Li, G. Enhancing competitiveness in cross-border e-commerce through knowledge-based consumer perception theory: An exploration of translation ability. J. Knowl. Econ. 2024, 15, 14935–14968. [Google Scholar] [CrossRef]
- Peng, Y.; Li, J. The effect of customer education on service innovation satisfaction: The mediating role of customer participation. J. Hosp. Tour. Manag. 2021, 47, 326–334. [Google Scholar] [CrossRef]
- Wantara, P.; Irawati, S.A. Relationship and impact of service quality, destination image, on customer satisfaction and revisit intention to Syariah Destination in Madura, Indonesia. Eur. J. Bus. Manag. Res. 2021, 6, 209–215. [Google Scholar] [CrossRef]
- Majeed, M.; Asare, C.; Fatawu, A.; Abubakari, A. An analysis of the effects of customer satisfaction and engagement on social media on repurchase intention in the hospitality industry. Cogent Bus. Manag. 2022, 9, 2028331. [Google Scholar] [CrossRef]
- Rana, S.; Bag, S.; Ghosal, I.; Prasad, B. How do influencers moderate purchase motives? An application of S-O-R model to assess the effects of reviewers’ rating on online purchase. J. Promot. Manag. 2023, 29, 1168–1197. [Google Scholar] [CrossRef]
- Yang, H.; Luo, Y.; Qiu, Y.; Zou, J.; Masukujjaman, M.; Ibrahim, A.M. Modeling the enablers of consumers’ E-shopping behavior: A multi-analytic approach. Sustainability 2023, 15, 6564. [Google Scholar] [CrossRef]
- Laksono, L.A.P.B.; Darma, G.S. Intention to sell on e-marketplace: Performance expectancy, effort expectancy, social influence, facilitating conditions, price value. Quant. Econ. Manag. Stud. 2024, 5, 61–81. [Google Scholar] [CrossRef]
- Chen, P.C. How do physical and social servicescapes shape the effects of positive affective displays on customer purchase outcomes? J. Serv. Mark. 2024, 38, 601–618. [Google Scholar] [CrossRef]
- Verma, P.; Pant, M.K. The effect of price verification, product display, assortment satisfaction upon overall satisfaction, online repatronage intention, and customer loyalty. J. Food Prod. Mark. 2021, 27, 291–318. [Google Scholar] [CrossRef]
- Wang, B.; Xie, F.; Kandampully, J.; Wang, J. Increase hedonic products purchase intention through livestreaming: The mediating effects of mental imagery quality and customer trust. J. Retail. Consum. Serv. 2022, 69, 103109. [Google Scholar] [CrossRef]
- Franke, N.; Keinz, P.; Steger, C.J. Testing the value of customization: When do customers really prefer products tailored to their preferences? J. Mark. 2009, 73, 103–121. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, H. Research on consumers’ purchase intention of cultural and creative products—Metaphor design based on traditional cultural symbols. PLoS ONE 2024, 19, e0301678. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, S.; Zhou, W.; Yu, S.; Lin, X. A study on the impact of linguistic persuasive styles on the sales volume of live streaming products in social e-commerce environment. Mathematics 2021, 9, 1576. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Tian, X. The dual-process model of product information and habit in influencing consumers’ purchase intention: The role of live streaming features. Electron. Commer. Res. Appl. 2022, 53, 101150. [Google Scholar] [CrossRef]
- Chen, N.; Yang, Y. The role of influencers in live streaming e-commerce: Influencer trust, attachment, and consumer purchase intention. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1601–1618. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S. Investigating impulse purchases in live streaming e-commerce: A perspective of match-ups. Technol. Forecast. Soc. Change 2024, 205, 123513. [Google Scholar] [CrossRef]
- Oliver, R.L. Satisfaction: A Behavioral Perspective on the Consumer: A Behavioral Perspective on the Consumer; Routledge: London, UK, 2014. [Google Scholar]
- Liu, Y.; Wan, Y.; Shen, X.; Ye, Z.; Wen, J. Product customer satisfaction measurement based on multiple online consumer review features. Information 2021, 12, 234. [Google Scholar] [CrossRef]
- Antonides, G.; Hovestadt, L. Product attributes, evaluability, and consumer satisfaction. Sustainability 2021, 13, 12393. [Google Scholar] [CrossRef]
- Rijsdijk, S.A.; Hultink, E.J.; Diamantopoulos, A. Product intelligence: Its conceptualization, measurement and impact on consumer satisfaction. J. Acad. Mark. Sci. 2007, 35, 340–356. [Google Scholar] [CrossRef]
- Liu, M.; Jia, W.; Yan, W.; He, J. Factors influencing consumers’ repurchase behavior on fresh food e-commerce platforms: An empirical study. Adv. Eng. Inform. 2023, 56, 101936. [Google Scholar] [CrossRef]
- Li, J.; Gui, X.; Kou, Y.; Li, Y. Live streaming as co-performance: Dynamics between center and periphery in theatrical engagement. Proc. ACM Hum.-Comput. Interact. 2019, 3, 1–22. [Google Scholar] [CrossRef]
- Qin, F.; Le, W.; Zhang, M.; Deng, Y. How perceived attributes of livestreaming commerce influence customer engagement: A social support perspective. J. Serv. Theory Pract. 2023, 33, 1–22. [Google Scholar] [CrossRef]
- Yüksel, A.; Yüksel, F. Consumer satisfaction theories: A critical review. Tour. Satisf. Complain. Behav. Meas. Manag. Issues Tour. Hosp. Ind. 2008, 22, 65–88. [Google Scholar]
- Alblooshi, S.; Abdul Hamid, N.A.B. The effect of performance expectancy on actual use of e-learning throughout the mediation role of behaviour intention. J. E-Learn. High. Educ. 2022, 2022, 628490. [Google Scholar] [CrossRef]
- Alnoor, A.; Al-Abrrow, H.; Al Halbusi, H.; Khaw, K.W.; Chew, X.; Al-Maatoq, M.; Alharbi, R.K. Uncovering the antecedents of trust in social commerce: An application of the non-linear artificial neural network approach. Compet. Rev. Int. Bus. J. 2022, 32, 492–523. [Google Scholar] [CrossRef]
- Mushtaq, A. Sustaining Digital Payment Adoption: The Role of Performance Expectancy in Shaping Continuance Intentions for Mobile Wallets. Pollster J. Acad. Res. 2024, 11, 11–17. [Google Scholar]
- Sharma, S.; Islam, N.; Singh, G.; Dhir, A. Why do retail customers adopt artificial intelligence (AI) based autonomous decision-making systems? IEEE Trans. Eng. Manag. 2022, 71, 1846–1861. [Google Scholar] [CrossRef]
- Hult, G.T.M.; Sharma, P.N.; Morgeson, F.V., III; Zhang, Y. Antecedents and consequences of customer satisfaction: Do they differ across online and offline purchases? J. Retail. 2019, 95, 10–23. [Google Scholar] [CrossRef]
- Yuliantie, E. The effect of performance expectancy on behavioral intention: The mediating role of satisfaction. J. Manag. Bus. Insight 2024, 2, 80–89. [Google Scholar] [CrossRef]
- Olaleye, S.A.; Ukpabi, D.; Andreini, D.; Salo, J. The mediation effects of gratification, performance expectancy and trust on retailing mobile apps continuous use. Int. J. Mob. Commun. 2024, 23, 148–174. [Google Scholar] [CrossRef]
- Wang, W.T.; Chang, W.H. A study of virtual product consumption from the expectancy disconfirmation and symbolic consumption perspectives. Inf. Syst. Front. 2014, 16, 887–908. [Google Scholar] [CrossRef]
- Sun, Y.; Li, T.; Wang, S. I buy green products for my benefits or yours: Understanding consumers’ intention to purchase green products. Asia Pac. J. Mark. Logist. 2022, 3, 1721–1739. [Google Scholar] [CrossRef]
- Feng, S.; Wang, L.; Qi, Y. Online shopping and consumption rate: Does online buying of electronic products boost consumer purchase intention and sales performance of the electronic products. Int. J. Appl. Syst. Stud. 2025, 12, 23–36. [Google Scholar] [CrossRef]
- Choi, D.; Chung, C.Y.; Young, J. Sustainable online shopping logistics for customer satisfaction and repeat purchasing behavior: Evidence from China. Sustainability 2019, 11, 5626. [Google Scholar] [CrossRef]
- Kuo, Y.F.; Hu, T.L.; Yang, S.C. Effects of inertia and satisfaction in female online shoppers on repeat-purchase intention: The moderating roles of word-of-mouth and alternative attraction. Manag. Serv. Qual. Int. J. 2013, 23, 168–187. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Wang, F.K.; He, W.; Tian, Z. How online reviews affect purchase intention: A new model based on the stimulus-organism-response (S-O-R) framework. Aslib J. Inf. Manag. 2020, 72, 463–488. [Google Scholar] [CrossRef]
- Park, H.J.; Lin, L.M. The effects of match-ups on the consumer attitudes toward internet celebrities and their live streaming contents in the context of product endorsement. J. Retail. Consum. Serv. 2020, 52, 101934. [Google Scholar] [CrossRef]
- Yang, T.; Yang, F.; Men, J. The impact of Danmu technological features on consumer loyalty intention toward recommendation vlogs: A perspective from social presence and immersion. Inf. Technol. People. 2022, 35, 1193–1218. [Google Scholar] [CrossRef]
- Loureiro, S.M.; Cavallero, L.; Miranda, F.J. Fashion brands on retail websites: Customer performance expectancy and e-word-of-mouth. J. Retail. Consum. Serv. 2018, 41, 131–141. [Google Scholar] [CrossRef]
- Lee, V.; Park, S.; Lee, D. The effect of e-commerce service quality factors on customer satisfaction, purchase intention, and actual purchase in Uzbekistan. Glob. Bus. Finance Rev. GBFR 2022, 27, 56–74. [Google Scholar] [CrossRef]
- Lee, V.; Park, S.; Lee, D. Tosun. The match-up hypothesis revisited: A social psychological perspective. Int. J. Commun. 2017, 11, 23. [Google Scholar]
- Lu, B.; Chen, Z. Live streaming commerce and consumers’ purchase intention: An uncertainty reduction perspective. Inf. Manag. 2021, 58, 103509. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. SEM: An introduction. Multivar. Data Anal. Glob. Perspect. 2010, 5, 629–686. [Google Scholar]
- James, T.L.; Lowry, P.B.; Wallace, L.; Warkentin, M. The effect of belongingness on obsessive-compulsive disorder in the use of online social networks. J. Manag. Inf. Syst. 2017, 34, 560–596. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Introduction to Statistical Mediation Analysis; Mackinnon, D.P., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 998–1000. [Google Scholar]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
Demographics | Categories | Number | Percentage |
---|---|---|---|
Gender | Male | 208 | 46.95% |
Female | 235 | 53.05% | |
Age | Less than 20 | 71 | 16.03% |
21–30 | 248 | 55.98% | |
31–40 | 89 | 20.09% | |
41–50 | 25 | 5.64% | |
More than 50 | 10 | 2.56% | |
Education background | Secondary school or below | 13 | 2.93% |
Junior college | 48 | 10.84% | |
Bachelor | 310 | 69.98% | |
Master’s | 53 | 11.96% | |
PhD | 19 | 4.29% | |
Income (CNY/month) | Less than 1500 | 49 | 11.06% |
1500–2999 | 125 | 28.22% | |
3000–4999 | 70 | 15.8% | |
5000–6999 | 95 | 21.44% | |
7000–8999 | 83 | 18.74% | |
Above 9000 | 21 | 4.74% | |
Frequently used live streaming commerce platform (choose two platforms) | TikTok | 279 | 62.98% |
Kwai | 105 | 23.7% | |
Taobao | 302 | 68.17% | |
Red Book | 120 | 27.09% | |
WeChat Channels | 80 | 18.06% | |
Frequency of shopping through live streaming commerce (times per month) | 1–3 | 90 | 20.32% |
4–6 | 175 | 39.5% | |
7–9 | 55 | 12.42% | |
More than 9 | 123 | 27.77% |
Construct | Measurement Items | Reference |
---|---|---|
Live streamer-product Fit (LPF) | 1. The product’s image matches well with the image of the live streamer. 2. The pairing of the live streamer with the product is natural. 3. The product is highly appropriate for the live streamer. | [99] |
Live Content-product Fit (LCF) | 1. The product image matches well with the live content. 2. The product adds rich context to the live content. 3. The product is highly appropriate for the live content. | [99] |
Danmaku Content-product Fit (DCPF) | 1. The danmaku content and the product are compatible. 2. The danmaku content and the product have a good fit. 3. The danmaku content and the product are relevant. 4. The danmaku content and the product have a good match. | [100] |
Self-live streamer Fit (SLF) | 1. The image of the live streamer matches well with the image of myself. 2. The image of the live streamer is highly consistent with how I see myself. 3. The live streamer is highly appropriate for me. | [13] |
Self-product Fit (SPF) | 1. The image of the product matches well with the image of myself. 2. The image of the product is highly consistent with how I see myself. 3. The product is highly appropriate for me. | [13] |
Perceived Performance Expectancy (PPE) | 1. I easily find products on the live streaming e-commerce platform that are very useful. 2. Using live streaming e-commerce allows me to get useful information faster. 3. Using live streaming e-commerce increases my effectiveness in finding information when buying products. | [101] |
Perceived Satisfaction (PS) | 1. I feel happy to be able to buy products through live streaming e-commerce. 2. I feel comfortable with the features available when using live streaming e-commerce. 3. I am satisfied with the experience of buying products via live streaming e-commerce. | [102] |
Purchase Intention (PI) | 1. I am very likely to buy the products from e-commerce live streaming. 2. I would consider buying products from e-commerce live streaming in the future. 3. I intend to buy products from e-commerce live streaming. 4. I will recommend this product to my family and friends. | [103,104] |
Construct | Items | Mean | Factor Loading | CR | AVE | Cronbach’s Alpha |
---|---|---|---|---|---|---|
LPT | LPT1 | 3.9 | 0.777 | 0.818 | 0.6 | 0.818 |
LPT2 | 3.88 | 0.81 | ||||
LPT3 | 4.2 | 0.734 | ||||
LCPT | LCPT1 | 4.65 | 0.769 | 0.822 | 0.606 | 0.82 |
LCPT2 | 4.51 | 0.785 | ||||
LCPT3 | 4.23 | 0.781 | ||||
DCPT | DCPT1 | 3.73 | 0.798 | 0.886 | 0.661 | 0.886 |
DCPT2 | 3.62 | 0.795 | ||||
DCPT3 | 3.6 | 0.851 | ||||
DCPT4 | 3.81 | 0.807 | ||||
SLF | SLF1 | 4.43 | 0.726 | 0.793 | 0.561 | 0.792 |
SLF2 | 4.58 | 0.765 | ||||
SLF3 | 4.52 | 0.756 | ||||
SPF | SPF1 | 5.08 | 0.723 | 0.795 | 0.565 | 0.793 |
SPF2 | 4.63 | 0.727 | ||||
SPF3 | 4.91 | 0.801 | ||||
PPE | PPE1 | 5.08 | 0.726 | 0.844 | 0.645 | 0.842 |
PPE2 | 3.89 | 0.831 | ||||
PPE3 | 3.87 | 0.847 | ||||
PS | PS1 | 3.85 | 0.828 | 0.833 | 0.625 | 0.832 |
PS2 | 3.77 | 0.814 | ||||
PS3 | 4.01 | 0.726 | ||||
PI | PI1 | 3.92 | 0.836 | 0.872 | 0.63 | 0.87 |
PI2 | 4.08 | 0.723 | ||||
PI3 | 4.17 | 0.767 | ||||
PI4 | 4.09 | 0.843 |
LPT | LCPT | DCPT | SLF | SPF | PPE | PS | PI | |
---|---|---|---|---|---|---|---|---|
LPT | 0.775 | |||||||
LCPT | 0.245 ** | 0.778 | ||||||
DCPT | 0.372 ** | 0.285 ** | 0.813 | |||||
SLF | 0.319 ** | 0.275 ** | 0.317 ** | 0.749 | ||||
SPF | 0.212 ** | 0.286 ** | 0.278 ** | 0.257 ** | 0.752 | |||
PPE | 0.345 ** | 0.333 ** | 0.352 ** | 0.275 ** | 0.378 ** | 0.803 | ||
PS | 0.398 ** | 0.388 ** | 0.407 ** | 0.390 ** | 0.429 ** | 0.505 ** | 0.791 | |
PI | 0.420 ** | 0.265 ** | 0.379 ** | 0.376 ** | 0.269 ** | 0.454 ** | 0.444 ** | 0.794 |
Construct | LPT | LCPT | DCPT | SLF | SPF | PPE | PS | PI |
---|---|---|---|---|---|---|---|---|
LPT1 | 0.82 | 0.087 | 0.134 | 0.111 | 0.006 | 0.095 | 0.122 | 0.139 |
LPT2 | 0.743 | 0.113 | 0.285 | 0.117 | 0.081 | 0.072 | 0.166 | 0.17 |
LPT3 | 0.836 | 0.024 | 0.034 | 0.084 | 0.076 | 0.129 | 0.06 | 0.178 |
LCPT1 | 0.07 | 0.834 | 0.046 | 0.069 | 0.065 | 0.11 | 0.123 | 0.08 |
LCPT2 | 0.017 | 0.84 | 0.121 | 0.086 | 0.113 | 0.103 | 0.051 | 0.09 |
LCPT3 | 0.115 | 0.788 | 0.139 | 0.112 | 0.099 | 0.071 | 0.178 | 0.072 |
DCPT1 | 0.164 | 0.098 | 0.812 | 0.073 | 0.069 | 0.124 | 0.076 | 0.086 |
DCPT2 | 0.102 | 0.074 | 0.812 | 0.103 | 0.074 | 0.097 | 0.105 | 0.119 |
DCPT3 | 0.153 | 0.129 | 0.809 | 0.135 | 0.099 | 0.113 | 0.09 | 0.171 |
DCPT4 | 0.016 | 0.054 | 0.84 | 0.074 | 0.086 | 0.052 | 0.161 | 0.145 |
SLF1 | 0.101 | 0.096 | 0.165 | 0.783 | 0.055 | 0.055 | 0.07 | 0.058 |
SLF2 | 0.104 | 0.098 | 0.046 | 0.81 | 0.145 | 0.145 | 0.113 | 0.102 |
SLF3 | 0.085 | 0.073 | 0.126 | 0.796 | 0.222 | 0.222 | 0.024 | 0.076 |
SPF1 | 0.043 | 0.022 | 0.047 | 0.068 | 0.821 | 0.13 | 0.129 | 0.056 |
SPF2 | 0.047 | 0.176 | 0.152 | 0.039 | 0.78 | 0.062 | 0.109 | 0.137 |
SPF3 | 0.057 | 0.089 | 0.087 | 0.125 | 0.805 | 0.151 | 0.157 | 0.049 |
PPE1 | 0.137 | 0.039 | 0.094 | 0.01 | 0.075 | 0.826 | 0.117 | 0.185 |
PPE2 | 0.069 | 0.134 | 0.136 | 0.118 | 0.162 | 0.795 | 0.178 | 0.189 |
PPE3 | 0.114 | 0.184 | 0.159 | 0.095 | 0.185 | 0.762 | 0.204 | 0.176 |
PS1 | 0.152 | 0.163 | 0.18 | 0.142 | 0.181 | 0.178 | 0.743 | 0.196 |
PS2 | 0.143 | 0.094 | 0.158 | 0.14 | 0.156 | 0.192 | 0.78 | 0.158 |
PS3 | 0.092 | 0.172 | 0.13 | 0.126 | 0.16 | 0.151 | 0.76 | 0.13 |
PI1 | 0.165 | 0.113 | 0.123 | 0.091 | 0.114 | 0.106 | 0.116 | 0.818 |
PI2 | 0.082 | 0.081 | 0.146 | 0.156 | 0.015 | 0.2 | 0.108 | 0.741 |
PI3 | 0.186 | 0.023 | 0.109 | 0.111 | 0.042 | 0.13 | 0.126 | 0.783 |
PI4 | 0.1 | 0.082 | 0.157 | 0.126 | 0.123 | 0.128 | 0.13 | 0.814 |
Hypothesis | Path | Coefficients | t-Value | p | Supported |
---|---|---|---|---|---|
H1a | LPF→PPE | 0.161 | 3.333 | *** | Yes |
H1b | LCFP→PPE | 0.124 | 3.073 | 0.002 | Yes |
H1c | DCPF→ PPE | 0.122 | 2.625 | 0.009 | Yes |
H1d | SLF→PPE | 0.059 | 1.069 | 0.285 | No |
H1e | SPF→PPE | 0.284 | 4.746 | *** | Yes |
H2a | LPF→PS | 0.187 | 3.253 | 0.001 | Yes |
H2b | LCPF→PS | 0.12 | 2.182 | 0.029 | Yes |
H2c | DCPF→PS | 0.121 | 2.529 | 0.011 | Yes |
H2d | SLF→PS | 0.203 | 3.116 | 0.002 | Yes |
H2e | SPFF→PS | 0.283 | 3.896 | *** | Yes |
H3 | PPE→PS | 0.346 | 4.509 | *** | Yes |
H4 | LPF→PI | 0.416 | 4.678 | *** | Yes |
H5 | PS→PI | 0.378 | 5.551 | *** | Yes |
Path | Estimate | se | Bias-Corrected | Percentile | Hypotheses | ||||
---|---|---|---|---|---|---|---|---|---|
95%CI | 95%CI | ||||||||
Lower | Upper | p | Lower | Upper | p | ||||
LPF-PPE-PI | 0.062 | 0.029 | 0.016 | 0.133 | 0.007 | 0.012 | 0.125 | 0.014 | Yes |
LCPF-PPE-PI | 0.054 | 0.026 | 0.012 | 0.113 | 0.01 | 0.01 | 0.11 | 0.013 | Yes |
DCPF-PPE-PI | 0.047 | 0.028 | 0.007 | 0.117 | 0.016 | 0.004 | 0.111 | 0.025 | Yes |
SLF-PPE-PI | 0.02 | 0.028 | −0.025 | 0.091 | 0.351 | −0.029 | 0.084 | 0.443 | No |
SPF-PPE-PI | 0.086 | 0.034 | 0.028 | 0.165 | 0.006 | 0.021 | 0.155 | 0.012 | Yes |
LPF-PS-PI | 0.066 | 0.03 | 0.021 | 0.14 | 0.001 | 0.019 | 0.134 | 0.002 | Yes |
LCPF-PS-PI | 0.048 | 0.022 | 0.014 | 0.1 | 0.004 | 0.012 | 0.098 | 0.006 | Yes |
DCPF-PS-PI | 0.042 | 0.024 | 0.005 | 0.1 | 0.024 | 0.003 | 0.096 | 0.033 | Yes |
SLF-PS-PI | 0.062 | 0.03 | 0.016 | 0.137 | 0.003 | 0.014 | 0.132 | 0.005 | Yes |
SPF-PS-PI | 0.078 | 0.031 | 0.028 | 0.152 | 0.001 | 0.026 | 0.147 | 0.001 | Yes |
LPF-PPE-PS-PI | 0.019 | 0.012 | 0.006 | 0.057 | 0.001 | 0.004 | 0.049 | 0.005 | Yes |
LCPF-PPE-PS-PI | 0.017 | 0.01 | 0.005 | 0.047 | 0.001 | 0.004 | 0.042 | 0.004 | Yes |
DCPF-PPE-PS-PI | 0.015 | 0.008 | 0.004 | 0.041 | 0.005 | 0.002 | 0.034 | 0.016 | Yes |
SLF-PPE-PS-PI | 0.006 | 0.009 | −0.008 | 0.031 | 0.27 | −0.012 | 0.024 | 0.442 | No |
SPF-PPE-PS-PI | 0.027 | 0.015 | 0.01 | 0.079 | 0.001 | 0.007 | 0.066 | 0.003 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-M.; Zhu, Y.-P.; Lee, K.-T. What Signals Are You Sending? How Signal Consistency Influences Consumer Purchase Behavior in Live Streaming Commerce. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 109. https://doi.org/10.3390/jtaer20020109
Wang H-M, Zhu Y-P, Lee K-T. What Signals Are You Sending? How Signal Consistency Influences Consumer Purchase Behavior in Live Streaming Commerce. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(2):109. https://doi.org/10.3390/jtaer20020109
Chicago/Turabian StyleWang, Hui-Min, Yu-Peng Zhu, and Kyung-Tag Lee. 2025. "What Signals Are You Sending? How Signal Consistency Influences Consumer Purchase Behavior in Live Streaming Commerce" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 2: 109. https://doi.org/10.3390/jtaer20020109
APA StyleWang, H.-M., Zhu, Y.-P., & Lee, K.-T. (2025). What Signals Are You Sending? How Signal Consistency Influences Consumer Purchase Behavior in Live Streaming Commerce. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 109. https://doi.org/10.3390/jtaer20020109