Live vs. Static Comments: Empirical Analysis of Their Differential Effects on User Evaluation of Online Videos
Abstract
:1. Introduction
2. Theoretical Development
2.1. Live Comments and Static Comments
2.2. Dual System Theory
2.3. Effect of Live Comments on User Evaluation of Online Videos
2.4. Effect of Static Comments on User Evaluation of Online Videos
2.5. Moderating Effect of Video Type
2.6. Moderating Effect of Health Threats
3. Data and Method
3.1. Data Collection
3.2. Variable Definition
4. Empirical Results
4.1. Study 1: Effect of Live Comments and Static Comments on Coin-Rewarding Behavior
4.2. Study 2: Moderating Effect of Video Type
4.3. Study 3: Moderating Effect of Health Threats
4.4. Robustness Check
5. Discussion
5.1. Research Results
5.2. Theoretical Contribution
5.3. Managerial Implications
6. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | ln Coini |
---|---|
Main Effect | |
ln Negative_Livei | −0.053 (0.106) |
ln Negative_Statici | 0.681 *** (0.120) |
ln Positive_Livei | 0.406 ** (0.148) |
ln Positive_Statici | 0.981 *** (0.165) |
Pandemici | 0.199 * (0.077) |
Informationali | −0.480 *** (0.086) |
Interaction Term | |
Pandemici × ln Negative_Livei | −0.160 (0.212) |
Pandemici × ln Negative_Statici | −0.072 (0.236) |
Pandemici × ln Positive_Livei | 0.637 ** (0.241) |
Pandemici × ln Positive_Statici | 0.571 (0.332) |
Pandemici × Informationali | −0.011 (0.170) |
Informationali × ln Negative_Livei | 0.049 (0.213) |
Informationali × ln Negative_Statici | 0.551 * (0.235) |
Informationali × ln Positive_Livei | 0.288 (0.308) |
Informationali × ln Positive_Statici | −0.209 (0.337) |
Control Variable | |
Followeri | 8.85 × 10−8 * (3.40 × 10−8) |
Video_Lengthi | −0.0001 ** (0.00003) |
Video_Viewi | 3.21 × 10−7 *** (7.90 × 10−8) |
Video_Likei | 0.00002 ** (7.15 × 10−6) |
Video_Sharei | −5.53 × 10−6 (4.31 × 10−6) |
Uploader_Codei | Control |
Model Evaluation | |
R2 | 0.750 |
Observation | 667 |
Variable | ln Coini | ||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
Main Effect | |||
ln Negative_Livei | −0.010 (0.070) | 0.110 (0.071) | −0.089 (0.087) |
ln Negative_Statici | 0.765 *** (0.096) | 0.817 *** (0.092) | 0.554 *** (0.113) |
ln Positive_Livei | 0.190 * (0.093) | 0.160 (0.087) | 0.296 * (0.148) |
ln Positive_Statici | 0.576 ** (0.174) | 0.607 *** (0.145) | 0.792 *** (0.191) |
Pandemici | 0.142 * (0.071) | 0.124 (0.067) | 0.128 (0.069) |
Informationali | −0.383 *** (0.076) | −0.377 *** (0.076) | −0.412 *** (0.076) |
Interaction Term | |||
Pandemici × ln Negative_Livei | −0.215 (0.158) | ||
Pandemici × ln Negative_Statici | −0.072 (0.176) | ||
Pandemici × ln Positive_Livei | 0.735 *** (0.196) | ||
Pandemici × ln Positive_Statici | 0.768 * (0.315) | ||
Informationali × ln Negative_Livei | 0.054 (0.190) | ||
Informationali × ln Negative_Statici | 0.632 ** (0.214) | ||
Informationali × ln Positive_Livei | 0.064 (0.332) | ||
Informationali × ln Positive_Statici | −0.532 (0.410) | ||
Control Variable | |||
Followeri | 9.44 × 10−8 *** (2.62 × 10−8) | 7.54 × 10−8 ** (2.50 × 10−8) | 8.50 × 10−8 ** (2.54 × 10−8) |
Video_Lengthi | -0.00008 (0.00004) | −0.00008 * (0.00003) | −0.00008 * (0.00004) |
Video_Viewi | 1.39 × 10−7 * (5.98 × 10−8) | 2.09 × 10−7 ** (6.05 × 10−8) | 1.52 × 10−7 ** (5.67 × 10−8) |
Video_Likei | 0.00004 *** (5.55 × 10−6) | 0.00004 *** (5.45 × 10−6) | 0.00004 *** (5.61 × 10−6) |
Video_Sharei | −0.00001 * (4.78 × 10−6) | −0.00001 ** (4.05 × 10−6) | −0.00001 * (5.00 × 10−6) |
Uploader_Codei | Control | Control | Control |
Model Evaluation | |||
R2 | 0.071 | 0.072 | 0.072 |
Observation | 667 | 667 | 667 |
References
- Djamasbi, S.; Hall-Phillips, A.; Liu, Z.Z.; Li, W.T.; Bian, J. Social Viewing, Bullet Screen, & User Experience: A First Look. In Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 648–657. [Google Scholar]
- Global, T. Bilibili’s Bullet Screen Comments Have Surpassed the 20 Billion Mark. Available online: https://www.163.com/dy/article/J4VNHVNT0511DP7O.html (accessed on 15 November 2024).
- Chen, Y.; Gao, Q.; Rau, P.L.P. Watching a Movie Alone Yet Together: Understanding Reasons for Watching Danmaku Videos. Int. J. Hum.-Comput. Interact. 2017, 33, 731–743. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, W.B.; Chen, Y.X. Frontiers: In-Consumption Social Listening with Moment-to-Moment Unstructured Data: The Case of Movie Appreciation and Live Comments. Mark. Sci. 2020, 39, 285–295. [Google Scholar] [CrossRef]
- Tzeng, S.Y.; He, L.S.; Huang, K.J. Danmaku’s effects on viewing experience and destination food image in food-themed documentaries. J. Hosp. Tour. Manag. 2023, 55, 29–39. [Google Scholar] [CrossRef]
- Bigné, E.; Ruiz-Mafé, C.; Badenes-Rocha, A. The influence of negative emotions on brand trust and intention to share cause-related posts: A neuroscientific study. J. Bus. Res. 2023, 157, 113628. [Google Scholar] [CrossRef]
- Wang, Y.; Majeed, A. How do users’ feedback influence creators’ contributions: An empirical study of an online music community. Behav. Inf. Technol. 2023, 42, 1357–1373. [Google Scholar] [CrossRef]
- Dessart, L.; Pitardi, V. How stories generate consumer engagement: An exploratory study. J. Bus. Res. 2019, 104, 183–195. [Google Scholar] [CrossRef]
- Reinikainen, H.; Munnukka, J.; Maity, D.; Luoma-aho, V. ‘You really are a great big sister’—Parasocial relationships, credibility, and the moderating role of audience comments in influencer marketing. J. Mark. Manag. 2020, 36, 279–298. [Google Scholar] [CrossRef]
- Wu, Z.; Ito, E. Correlation Analysis between User’s Emotional Comments and Popularity Measures. In Proceedings of the 2014 IIAI 3rd International Conference on Advanced Applied Informatics, Kitakyushu, Japan, 31 August–4 September 2014; pp. 280–283. [Google Scholar] [CrossRef]
- Shang, S.; Wu, J.; Qu, H.; Zeng, Q. Danmaku in the serious live streaming context: The mediating roles of self-determination and cognitive load. Inf. Technol. Manag. 2025. [Google Scholar] [CrossRef]
- Fang, X.; Chiu, T.K.F. Using Self-Determination Theory to Explain How Mind Mapping and Real-time Commenting Enhance Student Engagement and Learning Outcomes in Video Creation. Comput. Educ. Open 2025, 8, 100254. [Google Scholar] [CrossRef]
- Peng, G.; Wang, X.; Li, J.; Wu, J. Is it beneficial for consumers to ask more questions in Danmaku? The inverted U-shaped effect of information-seeking Danmaku density on e-commerce livestream sales. Electron. Commer. Res. 2025. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, K.; Wu, H.; Xu, T.; Chen, E.H.; Lv, G.Y.; He, M. Video emotion analysis enhanced by recognizing emotion in video comments. Int. J. Data Sci. Anal. 2022, 14, 175–189. [Google Scholar] [CrossRef]
- Pettibone, J.C. Testing the effect of time pressure on asymmetric dominance and compromise decoys in choice. Judgm. Decis. Mak. 2012, 7, 513–521. [Google Scholar] [CrossRef]
- Epstein, S. Integration of the cognitive and the psychodynamic unconscious. Am. Psychol. 1994, 49, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D.; Frederick, S. Representativeness Revisited: Attribute Substitution in Intuitive Judgment. In Heuristics and Biases: The Psychology of Intuitive Judgment; Gilovich, T., Griffin, D., Kahneman, D., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 49–81. [Google Scholar]
- Stanovich, K.E.; West, R.F. Individual differences in reasoning: Implications for the rationality debate? Behav. Brain Sci. 2000, 23, 645–665. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.A.; Ryoo, Y.; Yoon, H.J. Increasing the Efficacy of Emotional Appeal Ads on Online Video-Watching Platforms: The Effects of Goals and Emotional Approach Tendency on Ad-Skipping Behavior. J. Advert. 2024, 53, 1–18. [Google Scholar] [CrossRef]
- DeWall, C.N.; Gilman, R.; Sharif, V.; Carboni, I.; Rice, K.G. Left out, sluggardly, and blue: Low self-control mediates the relationship between ostracism and depression. Personal. Individ. Differ. 2012, 53, 832–837. [Google Scholar] [CrossRef]
- Storbeck, J.; Davidson, N.A.; Dahl, C.F.; Blass, S.; Yung, E. Emotion, working memory task demands and individual differences predict behavior, cognitive effort and negative affect. Cogn. Emot. 2015, 29, 95–117. [Google Scholar] [CrossRef]
- Campbell, M.C.; Inman, J.J.; Kirmani, A.; Price, L.L. In Times of Trouble: A Framework for Understanding Consumers’ Responses to Threats. J. Consum. Res. 2020, 47, 311–326. [Google Scholar] [CrossRef]
- Nabity-Grover, T.; Cheung, C.M.K.; Thatcher, J.B. Inside out and outside in: How the COVID-19 pandemic affects self-disclosure on social media. Int. J. Inf. Manag. 2020, 55, 102188. [Google Scholar] [CrossRef]
- Madden, A.; Ruthven, I.; McMenemy, D. A classification scheme for content analyses of You Tube video comments. J. Doc. 2013, 69, 693–714. [Google Scholar] [CrossRef]
- Zhang, Z. Danmu as Parasocial Audience Engagement: A Textual Analysis Based on Television Interviews with Women Athletes. Commun. Sport 2024. [Google Scholar] [CrossRef]
- Shi, M.; Chen, S.; Wang, K. Healthy or skinny? The negotiation between fear appeal and danmu in anorexia awareness videos. J. Eat. Disord. 2025, 13, 16. [Google Scholar] [CrossRef]
- Cao, S.X.; Guo, D.L.; Cao, L.N.; Li, S.; Nie, J.L.; Singh, A.K.; Lv, H.B. VisDmk: Visual analysis of massive emotional danmaku in online videos. Vis. Comput. 2023, 39, 6553–6570. [Google Scholar] [CrossRef]
- Wan, A.N.; Moscowitz, L.; Wu, L.W. Online social viewing: Cross-cultural adoption and uses of bullet-screen videos. J. Int. Intercult. Commun. 2020, 13, 197–215. [Google Scholar] [CrossRef]
- He, M.; Ge, Y.; Chen, E.H.; Liu, Q.; Wang, X.S. Exploring the Emerging Type of Comment for Online Videos: DanMu. Acm Trans. Web 2018, 12, 1–33. [Google Scholar] [CrossRef]
- Evans, J.S.T.; Stanovich, K.E. Dual-Process Theories of Higher Cognition: Advancing the Debate. Perspect. Psychol. Sci. 2013, 8, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Sloman, S.A. The empirical case for two systems of reasoning. Psychol. Bull. 1996, 119, 3–22. [Google Scholar] [CrossRef]
- Choudhry, N.K. Systematic Review: The Relationship between Clinical Experience and Quality of Health Care. Ann. Intern. Med. 2005, 142, 224–225. [Google Scholar] [CrossRef]
- Ericsson, K.A. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad. Med. 2004, 79, S70–S81. [Google Scholar] [CrossRef]
- Stanovich, K.E. Who Is Rational? Studies of Individual Differences in Reasoning; Lawrence Erlbaum: Mahwah, NJ, USA, 1999. [Google Scholar]
- Stanovich, K.E. The Robot’s Rebellion: Finding Meaning in the Age of Darwin; The University of Chicago Press: Chicago, IL, USA, 2004. [Google Scholar]
- Evans, J.S.T. In two minds: Dual-process accounts of reasoning. Trends Cogn. Sci. 2003, 7, 454–459. [Google Scholar] [CrossRef]
- Evans, J.S.T. Thinking Twice: Two Minds in One Brain; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Evans, J.S.T. Hypothetical Thinking: Dual Processes in Reasoning and Judgment; Psychology Press: Hove, UK, 2007. [Google Scholar]
- Thompson, V.A. Why It Matters: The Implications of Autonomous Processes for Dual Process Theories-Commentary on Evans & Stanovich (2013). Perspect. Psychol. Sci. 2013, 8, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Estes, Z.; Gibbert, M.; Guest, D.; Mazursky, D. A dual-process model of brand extension: Taxonomic feature-based and thematic relation-based similarity independently drive brand extension evaluation. J. Consum. Psychol. 2012, 22, 86–101. [Google Scholar] [CrossRef]
- Tay, S.W.; Ryan, P.; Ryan, C.A. Systems 1 and 2 thinking processes and cognitive reflection testing in medical students. Can. Med. Educ. J. 2016, 7, e97–e103. [Google Scholar] [CrossRef] [PubMed]
- Alter, A.L.; Oppenheimer, D.M.; Epley, N.; Eyre, R.N. Overcoming intuition: Metacognitive difficulty activates analytic reasoning. J. Exp. Psychol.-Gen. 2007, 136, 569–576. [Google Scholar] [CrossRef]
- Daft, R.L.; Lengel, R.H.; Trevino, L.K. Message Equivocality, Media Selection, and Manager Performance: Implications for Information Systems. MIS Q. 1987, 11, 355–366. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Zhu, P. How do e-commerce anchors’ characteristics influence consumers’ impulse buying? An emotional contagion perspective. J. Retail. Consum. Serv. 2024, 76, 103587. [Google Scholar] [CrossRef]
- Hancock, J.T.; Gee, K.; Ciaccio, K.; Lin, J.M.H. I’m Sad You’re Sad: Emotional Contagion in CMC. In Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work, San Diego, CA, USA, 8–12 November 2008; pp. 295–298. [Google Scholar]
- Kahneman, D. A perspective on judgment and choice—Mapping bounded rationality. Am. Psychol. 2003, 58, 697–720. [Google Scholar] [CrossRef]
- Evans, J. Dual-processing accounts of reasoning, judgment, and social cognition. Annu. Rev. Psychol. 2008, 59, 255–278. [Google Scholar] [CrossRef]
- McConnell, M.M.; Eva, K.W. The Role of Emotion in the Learning and Transfer of Clinical Skills and Knowledge. Acad. Med. 2012, 87, 1316–1322. [Google Scholar] [CrossRef]
- Kohout, S.; Kruikemeier, S.; Bakker, B.N. May I have your Attention, please? An eye tracking study on emotional social media comments. Comput. Hum. Behav. 2023, 139, 107495. [Google Scholar] [CrossRef]
- Möller, A.M.; Vermeer, S.A.M.; Baumgartner, S.E. Cutting Through the Comment Chaos: A Supervised Machine Learning Approach to Identifying Relevant YouTube Comments. Soc. Sci. Comput. Rev. 2024, 42, 162–185. [Google Scholar] [CrossRef]
- Guan, T.R.; Yin, Y.; Yang, Y.L. Two-Sided Narration and In-Group Narrator: Examining the Effects of Different Strategies of Mediated Public Diplomacy. Int. J. Commun. 2024, 18, 48–69. [Google Scholar]
- Balakrishnan, V.; Shamim, A. Malaysian Facebookers: Motives and addictive behaviours unraveled. Comput. Hum. Behav. 2013, 29, 1342–1349. [Google Scholar] [CrossRef]
- Zhang, C.B.; Li, Y.N.; Wu, B.; Li, D.J. How WeChat can retain users: Roles of network externalities, social interaction ties, and perceived values in building continuance intention. Comput. Hum. Behav. 2017, 69, 284–293. [Google Scholar] [CrossRef]
- Khan, M.L. Social media engagement: What motivates user participation and consumption on YouTube? Comput. Hum. Behav. 2017, 66, 236–247. [Google Scholar] [CrossRef]
- Ham, C.D.; Yoon, G.; Nelson, M.R. The interplay of persuasion inference and flow experience in an entertaining food advergame. J. Consum. Behav. 2016, 15, 239–250. [Google Scholar] [CrossRef]
- Kanai, R.; Verstraten, F.A.J. Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization. Vis. Res. 2005, 45, 3109–3116. [Google Scholar] [CrossRef]
- Pantle, A.J.; Gallogly, D.P.; Piehler, O.C. Direction biasing by brief apparent motion stimuli. Vis. Res. 2000, 40, 1979–1991. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Takeuchi, T. Visual motion priming reveals why motion perception deteriorates during mesopic vision. J. Vis. 2013, 13, 1–21. [Google Scholar] [CrossRef]
- Adem, Ö.; Cvetkovic, V.M.; Baytiyeh, H.; Tedim, F.M.S.; Zecevic, M. Public reactions to the disaster COVID-19: A comparative study in Italy, Lebanon, Portugal, and Serbia. Geomat. Nat. Hazards Risk 2020, 11, 1864–1885. [Google Scholar] [CrossRef]
- Lv, X.; Wang, C. Exposure to Air pollution impairs cognitive function and psychological well-being. Adv. Psychol. Sci. 2017, 25, 111. [Google Scholar] [CrossRef]
- Su, L.; Jiang, Y.W.; Chen, Z.S.; Dewall, C.N. Social Exclusion and Consumer Switching Behavior: A Control Restoration Mechanism. J. Consum. Res. 2017, 44, 99–117. [Google Scholar] [CrossRef]
- Lazarus, R.; Folkman, S. Stress, Appraisal, and Coping; Springer: New York, NY, USA, 1984. [Google Scholar]
- Thayer, R.E.; Newman, J.R.; McClain, T.M. Self-regulation of mood: Strategies for changing a bad mood, raising energy, and reducing tension. J. Personal. Soc. Psychol. 1994, 67, 910–925. [Google Scholar] [CrossRef]
- Chenarides, L.; Richards, T.J.; Rickard, B. COVID-19 impact on fruit and vegetable markets: One year later. Can. J. Agric. Econ. Rev. Can. D Agroecon. 2021, 69, 203–214. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y.C.; Zhang, C. Predicting consumer variety-seeking through weather data analytics. Electron. Commer. Res. Appl. 2018, 28, 194–207. [Google Scholar] [CrossRef]
- Tian, H.; Gao, C.; Xiao, X.Y.; Liu, H.; He, B.L.; Wu, H.; Wang, H.F.; Wu, F. SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020), Online, 5–10 July 2020; pp. 4067–4076. [Google Scholar]
- Che, S.P.; Kim, J.H. Sentiment Impact of Public Health Agency communication Strategies on TikTok under COVID-19 Normalization: Deep Learning Exploration. J. Public Health 2024, 32, 1559–1570. [Google Scholar] [CrossRef]
- Che, S.P.; Zhou, Y.H.; Zhang, S.; Nan, D.Y.; Kim, J.H. Impact of ByteDance crisis communication strategies on different social media users. Humanit. Soc. Sci. Commun. 2023, 10, 729. [Google Scholar] [CrossRef]
- Kollia, B.; Basch, C.H.; Park, E.; Yousaf, H. Social Media Depictions of the Impact of Noise Pollution on Communication and Mental and Physical Health. J. Community Health 2025. [Google Scholar] [CrossRef]
- Kara, A.; Reno, L.S.E.; Pavlovskaia, Z.G.; Grunwald, G. Product promotion messages shared by small businesses on YouTube: Exploring virality principles in promotional content. J. Mark. Commun. 2025. [Google Scholar] [CrossRef]
- Chaiken, S. Heuristic versus systematic information processing and the use of source versus message cues in persuasion. J. Personal. Soc. Psychol. 1980, 39, 752–766. [Google Scholar] [CrossRef]
- Kao, D.T. Message sidedness in advertising: The moderating roles of need for cognition and time pressure in persuasion. Scand. J. Psychol. 2011, 52, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Guo, P.H.; Yin, H.W. Consistent comments and vivid comments in hotels? online information adoption: Which matters more? Int. J. Hosp. Manag. 2022, 107, 103329. [Google Scholar] [CrossRef]
- Rozin, P.; Royzman, E.B. Negativity bias, negativity dominance, and contagion. Personal. Soc. Psychol. Rev. 2001, 5, 296–320. [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
Coini | Number of coins for the i-th video |
Positive_Livei | Proportion of positive live comments out of all comments with positive emotional polarity of the i-th video |
Negative_Livei | Proportion of negative live comments out of all comments with negative emotional polarity of the i-th video |
Positive_Statici | Proportion of positive static comments out of all comments with positive emotional polarity of the i-th video |
Negative_Statici | Proportion of negative static comments out of all comments with negative emotional polarity of the i-th video |
Pandemici | Dummy variable indicating whether the focal video was released during the pandemic |
Informationali | Dummy variable indicating whether the focal video was emotional |
Followeri | Number of followers for the i-th vlogger |
Video_Lengthi | Length of the i-th video |
Video_Viewi | Number of views for the i-th video |
Video_Likei | Number of likes for the i-th video |
Video_Sharei | Number of shares for the i-th video |
Uploader_Codei | The i-th vlogger’s personal code |
Variables | ln Coini |
---|---|
Main Effects | |
ln Negative_Livei | −0.076 (0.089) |
ln Negative_Statici | 0.801 *** (0.113) |
ln Positive_Livei | 0.300 ** (0.110) |
ln Positive_Statici | 0.825 *** (0.158) |
Control Variables | |
Informationali | −0.415 *** (0.084) |
Followeri | 1.23 × 10−7 *** (3.25 × 10−8) |
Video_Lengthi | −0.0001 ** (0.00003) |
Video_viewi | 2.48 × 10−7 ** (7.39 × 10−8) |
Video_Likei | 0.00002 ** (7.27 × 10−6) |
Video_Sharei | −5.67 × 10−6 (4.10 × 10−6) |
Pandemici | Control |
Uploader_Codei | Control |
Model Evaluation | |
R2 | 0.742 |
Observations | 667 |
Variable | ln Coini | |
---|---|---|
Model 1 | Model 2 | |
Main Effect | ||
ln Negative_Livei | −0.076 (0.089) | −0.150 (0.102) |
ln Negative_Statici | 0.801 *** (0.113) | 0.632 *** (0.121) |
ln Positive_Livei | 0.300 ** (0.110) | 0.459 ** (0.153) |
ln Positive_Statici | 0.825 *** (0.158) | 1.023 *** (0.173) |
Informationali | −0.415 *** (0.084) | −0.487 *** (0.088) |
Interaction Term | ||
Informationali × ln Negative_Livei | 0.089 (0.219) | |
Informationali × ln Negative_Statici | 0.604 * (0.237) | |
Informationali × ln Positive_Livei | 0.284 (0.325) | |
Informationali × ln Positive_Statici | −0.240 (0.351) | |
Control Variable | ||
Followeri | 1.23 × 10−7 *** (3.25 × 10−8) | 1.07 × 10−7 ** (3.34 × 10−8) |
Video_Lengthi | −0.0001 ** (0.00003) | -0.0001 *** (0.00003) |
Video_Viewi | 2.48 × 10−7 ** (7.39 × 10−8) | 2.62 × 10−7 *** (7.48 × 10−8) |
Video_Likei | 0.00002 ** (7.27 × 10−6) | 0.00002 ** (7.13 × 10−6) |
Video_Sharei | −5.67 × 10−6 (4.10 × 10−6) | −5.22 × 10−6 (4.31 × 10−6) |
Uploader_Codei | Control | Control |
Pandemici | Control | Control |
Model Evaluation | ||
R2 | 0.742 | 0.746 |
Observation | 667 | 667 |
Variable | ln Coini | |
---|---|---|
Model 1 | Model 2 | |
Main Effect | ||
ln Negative_Livei | −0.076 (0.089) | 0.035 (0.095) |
ln Negative_Statici | 0.801 *** (0.113) | 0.849 *** (0.111) |
ln Positive_Livei | 0.300 ** (0.110) | 0.245 * (0.106) |
ln Positive_Statici | 0.825 *** (0.158) | 0.790 *** (0.152) |
Pandemici | 0.235 ** (0.079) | 0.208 ** (0.076) |
Interaction Term | ||
Pandemici × ln Negative_Livei | −0.210 (0.205) | |
Pandemici × ln Negative_Statici | −0.058 (0.222) | |
Pandemici × ln Positive_Livei | 0.713 ** (0.237) | |
Pandemici × ln Positive_Statici | 0.584 (0.330) | |
Control Variable | ||
Followeri | 1.23 × 10−7 *** (3.25 × 10−8) | 1.02 × 10−7 ** (3.23 × 10−8) |
Video_Lengthi | −0.0001 ** (0.00003) | −0.0001 ** (0.00003) |
Video_Viewi | 2.48 × 10−7 ** (7.39 × 10−8) | 3.12 × 10−7 *** (7.70 × 10−8) |
Video_Likei | 0.00002 ** (7.27 × 10−6) | 0.00002 ** (7.27 × 10−6) |
Video_Sharei | −5.67 × 10−6 (4.10 × 10−6) | −5.91 × 10−6 (4.08 × 10−6) |
Uploader_Codei | Control | Control |
Informationali | Control | Control |
Model Evaluation | ||
R2 | 0.742 | 0.747 |
Observation | 667 | 667 |
Variable | ln Likei | ||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
Main Effect | |||
ln Negative_Livei | 0.033 (0.083) | 0.101 (0.090) | −0.009 (0.097) |
ln Negative_Statici | 0.720 *** (0.092) | 0.767 *** (0.093) | 0.627 *** (0.096) |
ln Positive_Livei | 0.210 * (0.096) | 0.185 (0.099) | 0.335 ** (0.127) |
ln Positive_Statici | 0.744 *** (0.121) | 0.728 *** (0.116) | 0.882 *** (0.133) |
Pandemici | 0.260 *** (0.065) | 0.255 *** (0.064) | 0.252 *** (0.065) |
Informationali | 0.116 (0.073) | 0.115 (0.072) | 0.057 (0.078) |
Interaction Term | |||
Pandemici × ln Negative_Livei | −0.013 (0.204) | ||
Pandemici × ln Negative_Statici | 0.240 (0.188) | ||
Pandemici × ln Positive_Livei | 0.504 * (0.228) | ||
Pandemici × ln Positive_Statici | 0.531 * (0.257) | ||
Informationali × ln Negative_Livei | 0.097 (0.205) | ||
Informationali × ln Negative_Statici | 0.375 * (0.186) | ||
Informationali × ln Positive_Livei | 0.242 (0.272) | ||
Informationali × ln Positive_Statici | −0.068 (0.277) | ||
Control Variable | |||
Followeri | 4.06 × 10−8 (2.77 × 10−8) | 2.63 × 10−8 (2.59 × 10−8) | 2.71 × 10−8 (2.62 × 10−8) |
Video_Lengthi | −0.00005 * (0.00002) | −0.00004 * (0.00002) | −0.00004 ** (0.00002) |
Video_Viewi | 3.37 × 10−7 *** (4.89 × 10−8) | 3.72 × 10−7 *** (4.51 × 10−8) | 3.52 × 10−7 *** (4.52 × 10−8) |
Video_Coini | 6.08 × 10−6 *** (7.27 × 10−7) | 5.97 × 10−6 *** (7.23 × 10−7) | 6.11 × 10−6 *** (7.37 × 10−7) |
Video_Sharei | −3.09 × 10−6 (2.19 × 10−6) | −3.18 × 10−6 (2.07 × 10−6) | −2.50 × 10−6 (2.37 × 10−6) |
Uploader_Codei | Control | Control | Control |
Model Evaluation | |||
R2 | 0.736 | 0.742 | 0.739 |
Observation | 667 | 667 | 667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, D.; Zou, P.; Lu, Y. Live vs. Static Comments: Empirical Analysis of Their Differential Effects on User Evaluation of Online Videos. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 102. https://doi.org/10.3390/jtaer20020102
Huo D, Zou P, Lu Y. Live vs. Static Comments: Empirical Analysis of Their Differential Effects on User Evaluation of Online Videos. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(2):102. https://doi.org/10.3390/jtaer20020102
Chicago/Turabian StyleHuo, Di, Peng Zou, and Yingchao Lu. 2025. "Live vs. Static Comments: Empirical Analysis of Their Differential Effects on User Evaluation of Online Videos" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 2: 102. https://doi.org/10.3390/jtaer20020102
APA StyleHuo, D., Zou, P., & Lu, Y. (2025). Live vs. Static Comments: Empirical Analysis of Their Differential Effects on User Evaluation of Online Videos. Journal of Theoretical and Applied Electronic Commerce Research, 20(2), 102. https://doi.org/10.3390/jtaer20020102