Is Smarter Better? A Moral Judgment Perspective on Consumer Attitudes about Different Types of AI Services
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Artificial Intelligence and AI Services
2.2. Consumers’ Attitudes about Using AI
2.3. Mechanisms of the Effect of Different Types of AI Services on Consumers’ Attitudes
2.3.1. Different Types of AI Services and Consumers’ Attitudes
2.3.2. Identity Threat, Perceived Control, and Consumers’ Attitudes
2.3.3. Service Scenarios, AI Services, and Consumers’ Attitudes
2.4. Effect of Moral Judgment
3. Method
3.1. Study 1
3.1.1. Design and Participants
3.1.2. Task and Procedures
3.1.3. Results and Discussion
- Manipulation test for AI type
- Main effect test
- Discussion
3.2. Study 2
3.2.1. Design and Participants
3.2.2. Task and Procedures
3.2.3. Results and Discussion
- Main effect test
- Mediating effect of identity threat
- Mediating effect of perceived control
- Discussion
3.3. Study 3
3.3.1. Design and Participants
3.3.2. Task and Procedures
3.3.3. Results and Discussion
- Main and mediating effect tests
- Moderating effect of moral judgment
- Structural equation modeling
- Moderating effects of service scenario types
- Discussion
4. General Discussion
4.1. Theoretical Contribution
4.2. Managerial Implications
4.3. Limitations and Directions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, M.; Rust, R.T. Artificial Intelligence in Service. J. Serv. Res. 2018, 21, 155–172. [Google Scholar] [CrossRef]
- Peltier, J.W.; Dahl, A.A.; Schibrowsky, J.A. Artificial Intelligence in Interactive Marketing: Conceptual Framework and Research Agenda. J. Res. Interact. Mark. 2024, 18, 54–90. [Google Scholar] [CrossRef]
- Luo, X.; Qin, M.S.; Fang, Z.; Qu, Z. Artificial Intelligence Coaches for Sales Agents: Caveats and Solutions. J. Mark. 2021, 85, 14–32. [Google Scholar] [CrossRef]
- Uysal, E.; Alavi, S.; Bezencon, V. Trojan horse or useful helper? A relationship perspective on artificial intelligence assistants with humanlike features. J. Acad. Mark. Sci. 2022, 50, 1153–1175. [Google Scholar] [CrossRef]
- Chandra, S.; Shirish, A.; Srivastava, S.C. To Be or Not to Be … Human? Theorizing the Role of Human-Like Competencies in Conversational Artificial Intelligence Agents. J. Manag. Inform. Syst. 2022, 39, 969–1005. [Google Scholar] [CrossRef]
- Chandra, S.; Verma, S. Personalized Recommendation During Customer Shopping Journey. In The Palgrave Handbook of Interactive Marketing; Wang, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 729–752. [Google Scholar]
- Habil, S.; El-Deeb, S.; El-Bassiouny, N. AI-Based Recommendation Systems: The Ultimate Solution for Market Prediction and Targeting. In The Palgrave Handbook of Interactive Marketing; Wang, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 683–704. [Google Scholar]
- Zhao, L.; Wu, W.; Jiang, M. Human Services or Non-Human Services? How Online Retailers Make Service Decisions. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1791–1811. [Google Scholar] [CrossRef]
- Zeng, N.; Jiang, L.; Vignali, G.; Ryding, D. Customer Interactive Experience in Luxury Retailing: The Application of AI-Enabled Chatbots in the Interactive Marketing. In The Palgrave Handbook of Interactive Marketing; Wang, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 785–805. [Google Scholar]
- McCarthy, J. From here to human-level AI. Artif. Intell. 2007, 18, 1174–1182. [Google Scholar] [CrossRef]
- Flowers, J.C. Strong and Weak AI: Deweyan Considerations. In Proceedings of the AAAI Spring Symposium: Towards Conscious AI Systems, Palo Alto, CA, USA, 25–27 March 2019; Volume 2287, p. 7. [Google Scholar]
- Huang, M.H.; Rust, R.T. Engaged to a Robot? The Role of AI in Service. J. Serv. Res. 2021, 24, 30–41. [Google Scholar] [CrossRef]
- Lopez, A.; Garza, R. Consumer bias against evaluations received by artificial intelligence: The mediation effect of lack of transparency anxiety. J. Res. Interact. Mark. 2023, 17, 831–847. [Google Scholar] [CrossRef]
- Chiara, L.; Andrea, B.; Morewedge, C.K. Resistance to medical artificial intelligence is an attribute in a compensatory decision process: Response to Pezzo and Beckstead. Judgm. Decis. Mak. 2020, 15, 446–448. [Google Scholar]
- Longoni, C.; Bonezzi, A.; Morewedge, C.K. Resistance to medical artificial intelligence. J. Consum. Res. 2019, 46, 629–650. [Google Scholar] [CrossRef]
- Leung, E.; Paolacci, G.; Puntoni, S. Man Versus Machine: Resisting Automation in Identity-Based Consumer Behavior. J. Mark. Res. 2018, 55, 818–831. [Google Scholar] [CrossRef]
- He, A.Z.; Zhang, Y. AI-powered touch points in the customer journey: A systematic literature review and research agenda. J. Res. Interact. Mark. 2023, 17, 620–639. [Google Scholar] [CrossRef]
- Huh, J.; Kim, H.Y.; Lee, G. “Oh, happy day!” Examining the role of AI-powered voice assistants as a positive technology in the formation of brand loyalty. J. Res. Interact. Mark. 2023, 17, 794–812. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Lee, C.T. Hey Alexa: Examining the effect of perceived socialness in usage intentions of AI assistant-enabled smart speaker. J. Res. Interact. Mark. 2021, 15, 267–294. [Google Scholar] [CrossRef]
- Andreassen, T.W.; Rutger, D.O.; Line, L.O. Customer Inconvenience and Price Compensation: A Multiperiod Approach to Labor-Automation Trade-Offs in Services. J. Serv. Res. 2018, 21, 173–183. [Google Scholar] [CrossRef]
- Lucia-Palacios, L.; Pérez-López, R. How can autonomy improve consumer experience when interacting with smart products? J. Res. Interact. Mark. 2023, 17, 19–37. [Google Scholar] [CrossRef]
- Xiao, L.; Kumar, V. Robotics for Customer Service: A Useful Complement or an Ultimate Substitute? J. Serv. Res. 2019, 24, 9–29. [Google Scholar] [CrossRef]
- Brinson, N.H.; Britt, B.C. Reactance and turbulence: Examining the cognitive and affective antecedents of ad blocking. J. Res. Interact. Mark. 2021, 15, 549–570. [Google Scholar] [CrossRef]
- Wang, C.L. New frontiers and future directions in interactive marketing: Inaugural Editorial. J. Res. Interact. Mark. 2021, 15, 1–9. [Google Scholar] [CrossRef]
- Gao, L.; Li, G.; Tsai, F.; Gao, C.; Zhu, M.; Qu, X. The impact of artificial intelligence stimuli on customer engagement and value co-creation: The moderating role of customer ability readiness. J. Res. Interact. Mark. 2023, 17, 317–333. [Google Scholar] [CrossRef]
- Schepers, J.; Belanche, D.; Casaló, L.V.; Flavián, C. How Smart Should a Service Robot Be? J. Serv. Res. 2022, 25, 565–582. [Google Scholar] [CrossRef]
- Kunz, W.; Wirtz, J. Corporate Digital Responsibility (CDR) in the Age of AI–Implications for Interactive Marketing. J. Res. Interact. Mark. 2024, 18, 31–37. [Google Scholar] [CrossRef]
- Hu, X.; Wise, K. How playable ads influence consumer attitude: Exploring the mediation effects of perceived control and freedom threat. J. Res. Interact. Mark. 2021, 15, 295–315. [Google Scholar] [CrossRef]
- Adjei, M.T.; Zhang, N.; Bagherzadeh, R.; Farhang, M.; Bhattarai, A. Enhancing consumer online reviews: The role of moral identity. J. Res. Interact. Mark. 2023, 17, 110–125. [Google Scholar] [CrossRef]
- Trippi, R.R.; Turban, E. Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real-World Performance. McGraw-Hill Inc.: New York, NY, USA, 1993. [Google Scholar]
- Fethi, M.D.; Pasiouras, F. Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey. Eur. J. Oper. Res. 2010, 204, 189–198. [Google Scholar] [CrossRef]
- Payne, E.M.; Peltier, J.; Barger, V.A. Enhancing the value co-creation process: Artificial intelligence and mobile banking service platforms. J. Res. Interact. Mark. 2021, 15, 68–85. [Google Scholar]
- Swan, E.L.; Peltier, J.W.; Dahl, A.J. Artificial Intelligence in Healthcare: The Value Co-Creation Process and Influence of Other Digital Health Transformations. J. Res. Interact. Mark. 2024, 18, 109–126. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, Y.; Gupta, S.; Wang, J.; Hu, P. Promoting smart wearable devices in the health-AI market: The role of health consciousness and privacy protection. J. Res. Interact. Mark. 2023, 17, 257–272. [Google Scholar] [CrossRef]
- Vibert, J.; Dupin, N. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 19, 407–408. [Google Scholar]
- Leachman, S.A.; Merlino, G. The final frontier in cancer diagnosis. Nature 2017, 542, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.L.; Shortliffe, E.H.; Stefanelli, M.; Szolovits, P.; Berthold, M.R.; Bellazzi, R.; Abu-Hanna, A. The coming of age of artificial intelligence in medicine. Artif. Intell. Med. 2009, 46, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.C.; Hauser, K. Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach. Artif. Intell. Med. 2013, 57, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Neuhofer, B.; Magnus, B.; Celuch, K. The impact of artificial intelligence on event experiences: A scenario technique approach. Electron. Mark. 2020, 31, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, A.L.; Fotheringham, D.; Bitner, M.J. Customer Acceptance of AI in Service Encounters: Understanding Antecedents and Consequences. In Handbook of Service Science, Volume II. Service Science: Research and Innovations in the Service Economy; Maglio, P.P., Kieliszewski, C.A., Spohrer, J.C., Lyons, K., Patrício, L., Sawatani, Y., Eds.; Springer: Cham, Switzerland, 2019; pp. 77–103. [Google Scholar]
- Miville, N.D. Factors Influencing the Diffusion of Innovation and Managerial Adoption of New Technology. Ph.D. Thesis, Nova Southeastern University, Fort Lauderdale, FL, USA, 2005. [Google Scholar]
- Al-Rahmi, W.M.; Yahaya, N.; Alamri, M.M.; Alyoussef, I.Y.; Al-Rahmi, A.M.; Kamin, Y.B. Integrating innovation diffusion theory with technology acceptance model: Supporting students’ attitude towards using a massive open online courses (MOOCs) systems. Interact. Learn. Environ. 2021, 29, 1380–1392. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. J. Manag. Inf. Syst. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Hoi, V.N. Understanding higher education learners’ acceptance and use of mobile devices for language learning: A Rasch-based path modeling approach. Comput. Educ. 2020, 146, 103761. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S. Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Comput. Hum. Behav. 2016, 63, 777–786. [Google Scholar] [CrossRef]
- Bagozzi, R.P. The Construct Validity of The Affective, Behavioral, And Cognitive Components of Attitude by Analysis of Covariance Structures. Multivar. Behav. Res. 1978, 13, 9–31. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Thomas, P.N. Consumer and Object Experience in the Internet of Things: An Assemblage Theory Approach. J. Consum. Res. 2018, 44, 1178–1204. [Google Scholar] [CrossRef]
- Price, L.L.; Arnould, E.J.; Deibler, S.L. Consumers’ emotional responses to service encounters: The influence of the service provider. Int. J. Serv. Ind. Manag. 1995, 6, 34–63. [Google Scholar] [CrossRef]
- Delcourt, C.; Gremler, D.D.; De Zanet, F.; van Riel, A.C.R. An Analysis of the Interaction Effect Between Employee Technical and Emotional Competencies in Emotionally Charged Service Encounters. J. Serv. Manag. 2017, 28, 85–106. [Google Scholar] [CrossRef]
- Belanche, D.; Casaló, L.V.; Flavián, C.; Schepers, J. Robots or Frontline Employees? Exploring Customers’ Attributions of Responsibility and Stability After Service Failure or Success. J. Serv. Manag. 2020, 31, 267–289. [Google Scholar] [CrossRef]
- Rapp, A.; Boldi, A.; Curti, L.; Perrucci, A.; Simeoni, R. How Do People Ascribe Humanness to Chatbots? An Analysis of Real-World Human-Agent Interactions and a Theoretical Model of Humanness. Int. J. Hum.–Comput. Interact. 2023, 1–24. [Google Scholar] [CrossRef]
- Bickmore, T.W.; Picard, R.W. Establishing and Maintaining Long-Term Human-Computer Relationships. ACM Trans. Comput. Interact. 2005, 12, 293–327. [Google Scholar] [CrossRef]
- Gelbrich, K.; Hagel, J.; Orsingher, C. Emotional Support from a Digital Assistant in Technology-Mediated Services: Effects on Customer Satisfaction and Behavioral Persistence. Int. J. Res. Mark. 2021, 38, 176–193. [Google Scholar] [CrossRef]
- Chen, Y.H.; Keng, C.J.; Chen, Y.L. How interaction experience enhances customer engagement in smart speaker devices? The moderation of gendered voice and product smartness. J. Res. Interact. Mark. 2022, 16, 403–419. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Z.; Li, L.; Li, Y.; Zhu, M.; Jiao, Y. The relationship between AI stimuli and customer stickiness, and the roles of social presence and customer traits. J. Res. Interact. Mark. 2024, 18, 38–53. [Google Scholar] [CrossRef]
- Yim, A.; Cui, A.P.; Walsh, M. The Role of Cuteness on Consumer Attachment to Artificial Intelligence Agents. J. Res. Interact. Mark. 2023, 18, 127–141. [Google Scholar] [CrossRef]
- Quach, S.; Barari, M.; Moudrý, D.V.; Quach, K. Service integration in omnichannel retailing and its impact on customer experience. J. Retail. Consum. Serv. 2022, 65, 102267. [Google Scholar] [CrossRef]
- Yao, Q.; Kuai, L.; Jiang, L. Effects of the anthropomorphic image of intelligent customer service avatars on consumers’ willingness to interact after service failures. J. Res. Interact. Mark. 2023, 17, 734–753. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H. Artificial intelligence-enabled personalization in interactive marketing: A customer journey perspective. J. Res. Interact. Mark. 2023, 17, 663–680. [Google Scholar] [CrossRef]
- Zimmermann, R.; Mora, D.; Cirqueira, D.; Helfert, M.; Bezbradica, M.; Werth, D.; Weitzl, W.J.; Riedl, R.; Auinger, A. Enhancing brick-and-mortar store shopping experience with an augmented reality shopping assistant application using personalized recommendations and explainable artificial intelligence. J. Res. Interact. Mark. 2023, 17, 273–298. [Google Scholar] [CrossRef]
- Troshani, I.; Hill, S.R.; Sherman, C.; Arthur, D. Do we trust in AI? Role of anthropomorphism and intelligence. J. Comput. Inform. Syst. 2021, 61, 481–491. [Google Scholar] [CrossRef]
- Mele, C.; Spena, T.R.; Kaartemo, V.; Marzullo, M.L. Smart nudging: How cognitive technologies enable choice architectures for value co-creation. J. Bus. Res. 2021, 129, 949–960. [Google Scholar] [CrossRef]
- Aslam, W.; Farhat, K. The Role of Artificial Intelligence in Interactive Marketing: Improving Customer-Brand Relationship. In The Palgrave Handbook of Interactive Marketing; Wang, C., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 199–217. [Google Scholar]
- Preece, J. Empathy online. Virtual Real. 1999, 4, 74–84. [Google Scholar] [CrossRef]
- Jo, D.J.; Han, J.K.; Chung, K.; Lee, K. Empathy Between Human and Robot? In Proceedings of the 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Tokyo, Japan, 3–6 March 2013; pp. 151–152. Available online: https://ieeexplore.ieee.org/abstract/document/6483546 (accessed on 22 April 2024).
- Candao, G.C.; Herrando, C.; Hoyos; Martín-De, M.J. Affective Interaction with Technology: The Role of Virtual Assistants in Interactive Marketing. In The Palgrave Handbook of Interactive Marketing; Wang, C., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 275–298. [Google Scholar]
- Petriglieri, J.L. Under threat: Responses to and the consequences of threats to individuals’ identities. Acad. Manag. Rev. 2011, 36, 641–662. [Google Scholar]
- Craig, K.; Thatcher, J.B.; Grover, V. The IT Identity Threat: A Conceptual Definition and Operational Measure. J. Manag. Inform. Syst. 2019, 36, 259–288. [Google Scholar] [CrossRef]
- Park, E.; Del Pobil, A.P. Users’ attitudes toward service robots in South Korea. Ind. Robot. 2013, 40, 77–87. [Google Scholar] [CrossRef]
- Sarstedt, M.; Henseler, J.; Ringle, C.M. Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. Adv. Int. Mark. 2011, 22, 195–218. [Google Scholar]
- Puntoni, S.; Reczek, R.W.; Giesler, M.; Botti, S. Consumers and artificial intelligence: An experiential perspective. J. Mark. 2021, 85, 131–151. [Google Scholar] [CrossRef]
- Gerlich, L.; Parsons, B.N.; White, A.S.; Prior, S.; Warner, P. Gesture recognition for control of rehabilitation robots. Cogn. Technol. Work. 2007, 9, 189–207. [Google Scholar] [CrossRef]
- Hogg, M.A.; Abrams, D.; Brewer, M.B. Social identity: The role of self in group processes and intergroup relations. Group. Processes. Interg. 2017, 5, 570–581. [Google Scholar] [CrossRef]
- Yogeeswaran, K.; Złotowski, J.; Livingstone, M.; Bartneck, C.; Sumioka, H.; Ishiguro, H. The interactive effects of robot anthropomorphism and robot ability on perceived threat and support for robotics research. J. Hum.-Robot Interact. 2016, 5, 29–47. [Google Scholar] [CrossRef]
- Logg, J.M.; Minson, J.A.; Moore, D.A. Algorithm appreciation: People prefer algorithmic to human judgment. Organ. Behav. Hum. Decis. Process. 2019, 151, 90–103. [Google Scholar] [CrossRef]
- Faranda, W.T. A scale to measure the cognitive control form of perceived control: Construction and preliminary assessment. Psychol. Mark. 2001, 18, 1259–1281. [Google Scholar] [CrossRef]
- White, R.W. Motivation reconsidered: The concept of competence. Psychol. Rev. 1959, 66, 297–333. [Google Scholar] [CrossRef] [PubMed]
- Jörling, M.; Böhm, R.; Paluch, S. Service robots: Drivers of perceived responsibility for service outcomes. J. Serv. Res. 2019, 22, 404–420. [Google Scholar] [CrossRef]
- Pavlou, P.A. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. Int. J. Electron. Commer. 2003, 7, 101–134. [Google Scholar]
- Schweitzer, F.; Van Den Hende, E.A. To be or not to be in thrall to the march of smart products. Psychol. Mark. 2016, 33, 830–842. [Google Scholar] [CrossRef]
- Wirtz, J.; Patterson, P.G.; Kunz, W.H.; Gruber, T.; Lu, V.N.; Paluch, S.; Martins, A. Brave new world: Service robots in the frontline. J. Serv. Manag. 2018, 29, 907–931. [Google Scholar] [CrossRef]
- Castelo, N.; Bos, M.W.; Lehmann, D.R. Task-Dependent algorithm aversion. J. Mark. Res. 2019, 56, 809–825. [Google Scholar] [CrossRef]
- Illia, L.; Colleoni, E.; Zyglidopoulos, S. Ethical implications of text generation in the age of artificial intelligence. Bus. Ethics Environ. Responsib. 2023, 32, 201–210. [Google Scholar] [CrossRef]
- Libai, B.; Bart, Y.; Gensler, S.; Hofacker, C.F.; Kaplan, A.; Kötterheinrich, K.; Kroll, E.B. A brave new world? On AI and the management of customer relationships. J. Interact. Mark. 2020, 51, 44–56. [Google Scholar] [CrossRef]
- Matz, S.C.; Netzer, O. Using big data as a window into consumers’ psychology. Curr. Opin. Behav. Sci. 2017, 18, 7–12. [Google Scholar] [CrossRef]
- Davenport, T.; Guha, A.; Grewal, D.; Bressgott, T. How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 2020, 48, 24–42. [Google Scholar] [CrossRef]
- Aquino, K.; Reed, A. The self- importance of moral identity. J. Pers. Soc. Psychol. 2002, 83, 1423–1440. [Google Scholar] [CrossRef]
- Reed, A.; Aquino, K.; Levy, E. Moral identity and judgments of charitable behaviors. J. Mark. 2007, 71, 178–192. [Google Scholar] [CrossRef]
- Thornton, M.A.; Rupp, D.E. The joint effects of justice climate, group moral identity, and corporate social responsibility on the prosocial and deviant behaviors of groups. J. Bus. Ethics. 2016, 137, 677–697. [Google Scholar] [CrossRef]
- Hermann, E. Leveraging Artificial Intelligence in Marketing for Social Good-An Ethical Perspective. J. Bus. Ethics 2021, 179, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self-efficacy theory in human agency. Am. J. Psychol. 1982, 37, 122–147. [Google Scholar] [CrossRef]
- Fiske, S.T.; Taylor, S.E. Social Cognition, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Yogeeswaran, K.; Dasgupta, N. The Devil is in the Details: Abstract versus Concrete Construals of Multiculturalism Differentially Impact Intergroup Relations. J. Pers. Soc. Psychol. 2014, 106, 772–789. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L. Editorial-The misassumptions about contributions. J. Res. Interact. Mark. 2022, 16, 1–2. [Google Scholar] [CrossRef]
- Yu, B. Deep Learning Applications for Interactive Marketing in the Contemporary Digital Age. In The Palgrave Handbook of Interactive Marketing; Wang, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 705–728. [Google Scholar]
- Moor, J.H. Why we need better ethics for emerging technologies. Ethics Inf. Technol. 2005, 7, 111–119. [Google Scholar] [CrossRef]
- Wright, D.A. framework for the ethical impact assessment of information technology. Ethics Inf. Technol. 2011, 13, 199–226. [Google Scholar] [CrossRef]
- Belk, R. Ethical issues in service robotics and artificial intelligence. Serv. Ind. J. 2021, 41, 860–876. [Google Scholar] [CrossRef]
- De Bruyn, A.; Viswanathan, V.; Beh, Y.S.; Brock, J.K.-U.; Von Wangenheim, F. Artificial intelligence and marketing: Pitfalls and opportunities. J. Interact. Mark. 2020, 51, 91–105. [Google Scholar] [CrossRef]
- Lee, I.; Shin, Y.J. Machine learning for enterprises: Applications, algorithm selection, and challenges. Bus. Horiz. 2020, 63, 157–170. [Google Scholar] [CrossRef]
- Kannan, P.K.; Kulkarni, G. The impact of COVID-19 on customer journeys: Implications for interactive marketing. J. Res. Interact. Mark. 2022, 16, 22–36. [Google Scholar] [CrossRef]
- McDonald, M. Viewpoint-a big opportunity for interactive marketing post-COVID-19. J. Res. Interact. Mark. 2022, 16, 15–21. [Google Scholar] [CrossRef]
- Cho, Y.N.; Kim, H.E.; Youn, N. Together or alone on the prosocial path amidst the COVID-19 pandemic: The partitioning effect in experiential consumption. J. Res. Interact. Mark. 2022, 16, 64–81. [Google Scholar] [CrossRef]
- Sheth, J.N. Post-pandemic marketing: When the peripheral becomes the core. J. Res. Interact. Mark. 2022, 16, 37–44. [Google Scholar] [CrossRef]
Model Path | Restaurant Scenario | Hotel Scenario | |||
---|---|---|---|---|---|
Standardized Coefficient | T-Value | Standardized Coefficient | T-Value | Δx2 | |
Identity threat → consumers’ affective attitudes | 0.890 *** | 3.604 | −0.058 | −0.368 | 5.0361 * |
Hypothesis (Effect) | Relationship | Study 1 | Study 2 | Study 3 |
---|---|---|---|---|
H1a | Mechanical AI → cognitive attitudes | - | + 1 | + 3 |
H1b | Mechanical AI → affective attitudes | - | - | + 4 |
H2a | Thinking AI → cognitive attitudes | + | - | - |
H2b | Thinking AI → affective attitudes | + | - | - |
H3a | Affective AI → cognitive attitudes | + | + | + 5 |
H3b | Affective AI → affective attitudes | + | + | + 6 |
H4a (mediating effect) | AI level → identity threat → cognitive attitudes | —— | P 2 | P 7 |
H4b (mediating effect) | AI level → identity threat → affective attitudes | —— | - | P 8 |
H5a (mediating effect) | AI level → perceived control → cognitive attitudes | —— | - | - |
H5b (mediating effect) | AI level → perceived control → affective attitudes | —— | - | - |
H6a (moderating effect) | AI level × type of service scenarios → cognitive attitudes | —— | —— | P 11 |
H6b (moderating effect) | AI level × type of service scenarios → affective attitudes | —— | —— | - |
H7a (moderating effect) | AI level × type of moral judgments → cognitive attitudes | —— | —— | P 9 |
H7b (moderating effect) | AI level × type of moral judgments → affective attitudes | —— | —— | P 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Q.; Dai, Y.; Wen, X. Is Smarter Better? A Moral Judgment Perspective on Consumer Attitudes about Different Types of AI Services. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 1637-1659. https://doi.org/10.3390/jtaer19030080
Fan Q, Dai Y, Wen X. Is Smarter Better? A Moral Judgment Perspective on Consumer Attitudes about Different Types of AI Services. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(3):1637-1659. https://doi.org/10.3390/jtaer19030080
Chicago/Turabian StyleFan, Qingji, Yan Dai, and Xue Wen. 2024. "Is Smarter Better? A Moral Judgment Perspective on Consumer Attitudes about Different Types of AI Services" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 3: 1637-1659. https://doi.org/10.3390/jtaer19030080
APA StyleFan, Q., Dai, Y., & Wen, X. (2024). Is Smarter Better? A Moral Judgment Perspective on Consumer Attitudes about Different Types of AI Services. Journal of Theoretical and Applied Electronic Commerce Research, 19(3), 1637-1659. https://doi.org/10.3390/jtaer19030080