Unlock Happy Interactions: Voice Assistants Enable Autonomy and Timeliness
Abstract
:1. Introduction
2. Literature Review
2.1. Interactive Features of Voice Assistants
2.2. Dual-Path Effect of Voice Assistants
2.3. Interactive Voice Assistants as Enablers of Happiness
3. Conceptual Model
3.1. Technology Affordance Theory
3.2. Responsiveness
3.3. Ubiquitous Connectivity
3.4. Personalization
3.5. Autonomy
3.6. Timeliness
3.7. Perceived Risk of Personal Privacy
4. Research Method
4.1. Data Collection
4.2. Measurement
4.3. Data Analysis
5. Results
5.1. Measurement Model Evaluation
5.2. Structural Equation Model Analysis
6. Discussion and Conclusions
6.1. Discussion and Conclusion of the Results
6.2. Theoretical Implications
6.3. Practical Implications
6.4. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Scale Items
References
- Alalwan, A.A.; Algharabat, R.S.; Baabdullah, A.M.; Rana, N.P.; Qasem, Z.; Dwivedi, Y.K. Examining the Impact of Mobile Interactivity on Customer Engagement in the Context of Mobile Shopping. J. Enterp. Inf. Manag. 2020, 33, 627–653. [Google Scholar] [CrossRef]
- The Smart Audio Report. 2022. Available online: https://www.nationalpublicmedia.com/uploads/2022/06/The-Smart-Audio-Report-Spring-2022.pdf (accessed on 21 March 2024).
- Ramadan, Z.B. “Alexafying” Shoppers: The Examination of Amazon’s Captive Relationship Strategy. J. Retail. Consum. Serv. 2021, 62, 102610. [Google Scholar] [CrossRef]
- Lee, K.Y.; Sheehan, L.; Lee, K.; Chang, Y. The Continuation and Recommendation Intention of Artificial Intelligence-Based Voice Assistant Systems (AIVAS): The Influence of Personal Traits. Internet Res. 2021, 31, 1899–1939. [Google Scholar] [CrossRef]
- Ling, E.C.; Tussyadiah, I.; Tuomi, A.; Stienmetz, J.; Ioannou, A. Factors Influencing Users’ Adoption and Use of Conversational Agents: A Systematic Review. Psychol. Mark. 2021, 38, 1031–1051. [Google Scholar] [CrossRef]
- Dhiman, N.; Kumar, A. What We Know and Don’t Know About Consumer Happiness: Three-Decade Review, Synthesis, and Research Propositions. J. Interact. Mark. 2023, 58, 115–135. [Google Scholar] [CrossRef]
- Huang, M.-H.; Rust, R.T. Engaged to a Robot? The Role of AI in Service. J. Serv. Res. 2021, 24, 30–41. [Google Scholar] [CrossRef]
- Henkens, B.; Verleye, K.; Larivière, B. The Smarter, the Better?! Customer Well-Being, Engagement, and Perceptions in Smart Service Systems. Int. J. Res. Mark. 2021, 38, 425–447. [Google Scholar] [CrossRef]
- Pai, C.-K.; Liu, Y.; Kang, S.; Dai, A. The Role of Perceived Smart Tourism Technology Experience for Tourist Satisfaction, Happiness and Revisit Intention. Sustainability 2020, 12, 6592. [Google Scholar] [CrossRef]
- Niedermeier, A.; Albrecht, L.; Jahn, B. “Happy Together”: Effects of Brand Community Engagement on Customer Happiness. J. Relatsh. Mark. 2019, 18, 54–76. [Google Scholar] [CrossRef]
- Lee, T. The Impact of Perceptions of Interactivity on Customer Trust and Transaction Intentions in Mobile Commerce. J. Electron. Commer. Res. 2005, 6, 16. [Google Scholar]
- Baabdullah, A.M.; Alalwan, A.A.; Algharabat, R.S.; Metri, B.; Rana, N.P. Virtual Agents and Flow Experience: An Empirical Examination of AI-Powered Chatbots. Technol. Forecast. Soc. Chang. 2022, 181, 121772. [Google Scholar] [CrossRef]
- Aw, E.C.-X.; Tan, G.W.-H.; Cham, T.-H.; Raman, R.; Ooi, K.-B. Alexa, What’s on My Shopping List? Transforming Customer Experience with Digital Voice Assistants. Technol. Forecast. Soc. Chang. 2022, 180, 121711. [Google Scholar] [CrossRef]
- Hoy, M.B. Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants. Med. Ref. Serv. Q. 2018, 37, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Pitardi, V.; Marriott, H.R. Alexa, She’s Not Human But… Unveiling the Drivers of Consumers’ Trust in Voice-based Artificial Intelligence. Psychol. Mark. 2021, 38, 626–642. [Google Scholar] [CrossRef]
- Lee, S.; Oh, J.; Moon, W.-K. Adopting Voice Assistants in Online Shopping: Examining the Role of Social Presence, Performance Risk, and Machine Heuristic. Int. J. Hum.–Comput. Interact. 2022, 39, 2978–2992. [Google Scholar] [CrossRef]
- Klaus, P.; Zaichkowsky, J. AI Voice Bots: A Services Marketing Research Agenda. J. Serv. Mark. 2020, 34, 389–398. [Google Scholar] [CrossRef]
- Choi, T.R. “OK, Google, Why Do I Use You?” Motivations, Post-Consumption Evaluations, and Perceptions of Voice AI Assistants. Telemat. Inform. 2021, 62, 101628. [Google Scholar] [CrossRef]
- Malodia, S.; Islam, N.; Kaur, P.; Dhir, A. Why Do People Use Artificial Intelligence (AI)-Enabled Voice Assistants? IEEE Trans. Eng. Manag. 2021, 71, 491–505. [Google Scholar] [CrossRef]
- Rhee, C.E.; Choi, J. Effects of Personalization and Social Role in Voice Shopping: An Experimental Study on Product Recommendation by a Conversational Voice Agent. Comput. Hum. Behav. 2020, 109, 106359. [Google Scholar] [CrossRef]
- de Bellis, E.; Venkataramani Johar, G. Autonomous Shopping Systems: Identifying and Overcoming Barriers to Consumer Adoption. J. Retail. 2020, 96, 74–87. [Google Scholar] [CrossRef]
- König, P.D.; Wurster, S.; Siewert, M.B. Consumers Are Willing to Pay a Price for Explainable, but Not for Green AI. Evidence from a Choice-Based Conjoint Analysis. Big Data Soc. 2022, 9, 20539517211069632. [Google Scholar] [CrossRef]
- Zhang, J.; Curley, S.P. Exploring Explanation Effects on Consumers’ Trust in Online Recommender Agents. Int. J. Hum.–Comput. Interact. 2018, 34, 421–432. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K.; Barhorst, J. Alexa, Do Voice Assistants Influence Consumer Brand Engagement?–Examining the Role of AI Powered Voice Assistants in Influencing Consumer Brand Engagement. J. Bus. Res. 2021, 124, 312–328. [Google Scholar] [CrossRef]
- Schweitzer, F.; Van den Hende, E.A. To Be or Not to Be in Thrall to the March of Smart Products. Psychol. Mark. 2016, 33, 830–842. [Google Scholar] [CrossRef] [PubMed]
- Um, T.; Kim, T.; Chung, N. How Does an Intelligence Chatbot Affect Customers Compared with Self-Service Technology for Sustainable Services? Sustainability 2020, 12, 5119. [Google Scholar] [CrossRef]
- Jiang, Z.; Chan, J.; Tan, B.; Chua, W.S. Effects of Interactivity on Website Involvement and Purchase Intention. J. Assoc. Inf. Syst. 2010, 11, 34–59. [Google Scholar] [CrossRef]
- Wu, G. The Mediating Role of Perceived Interactivity in the Effect of Actual Interactivity on Attitude Toward the Website. J. Interact. Advert. 2005, 5, 29–39. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, Y. Enhancing Perceived Interactivity through Network Externalities: An Empirical Study on Micro-Blogging Service Satisfaction and Continuance Intention. Decis. Support Syst. 2012, 53, 825–834. [Google Scholar] [CrossRef]
- Liu, Y. Developing a Scale to Measure the Interactivity of Websites. J. Advert. Res. 2003, 43, 207–216. [Google Scholar] [CrossRef]
- Ogara, S.O.; Koh, C. Investigating Design Issues in Mobile Computer-Mediated Communication Technologies. J. Comput. Inf. Syst. 2014, 54, 87–98. [Google Scholar] [CrossRef]
- Zhou, F.; Mou, J.; Kim, J. Toward a Meaningful Experience: An Explanation of the Drivers of the Continued Usage of Gamified Mobile App Services. Online Inf. Rev. 2021, 46, 285–303. [Google Scholar] [CrossRef]
- Wang, C.L. New Frontiers and Future Directions in Interactive Marketing: Inaugural Editorial. J. Res. Interact. Mark. 2021, 15, 1–9. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Lee, C.T. Hey Alexa: Examining the Effect of Perceived Socialness in Usage Intentions of AI Assistant-Enabled Smart Speaker. J. Res. Interact. Mark. 2021, 15, 267–294. [Google Scholar] [CrossRef]
- Huh, J.; Kim, H.-Y.; Lee, G. “Oh, Happy Day!” Examining the Role of AI-Powered Voice Assistants as a Positive Technology in the Formation of Brand Loyalty. J. Res. Interact. Mark. 2023, 17, 794–812. [Google Scholar] [CrossRef]
- Chen, Y.H.; Keng, C.-J.; Chen, Y.-L. How Interaction Experience Enhances Customer Engagement in Smart Speaker Devices? The Moderation of Gendered Voice and Product Smartness. J. Res. Interact. Mark. 2021, 16, 403–419. [Google Scholar] [CrossRef]
- Hayes, J.L.; Brinson, N.H.; Bott, G.J.; Moeller, C.M. The Influence of Consumer–Brand Relationship on the Personalized Advertising Privacy Calculus in Social Media. J. Interact. Mark. 2021, 55, 16–30. [Google Scholar] [CrossRef]
- Rafieian, O.; Yoganarasimhan, H. Targeting and Privacy in Mobile Advertising. Mark. Sci. 2020, 40, 193–218. [Google Scholar] [CrossRef]
- Edu, J.S.; Such, J.M.; Suarez-Tangil, G. Smart Home Personal Assistants: A Security and Privacy Review. ACM Comput. Surv. 2020, 53, 1–36. [Google Scholar] [CrossRef]
- Jain, S.; Basu, S.; Dwivedi, Y.K.; Kaur, S. Interactive Voice Assistants–Does Brand Credibility Assuage Privacy Risks? J. Bus. Res. 2022, 139, 701–717. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. Enhancing User Experience with Conversational Agent for Movie Recommendation: Effects of Self-Disclosure and Reciprocity. Int. J. Hum. Comput. Stud. 2017, 103, 95–105. [Google Scholar] [CrossRef]
- Awad, N.F.; Krishnan, M.S. The Personalization Privacy Paradox: An Empirical Evaluation of Information Transparency and the Willingness to Be Profiled Online for Personalization. MIS Q. 2006, 30, 13. [Google Scholar] [CrossRef]
- Cloarec, J. The Personalization–Privacy Paradox in the Attention Economy. Technol. Forecast. Soc. Chang. 2020, 161, 120299. [Google Scholar] [CrossRef]
- Cloarec, J.; Meyer-Waarden, L.; Munzel, A. The Personalization–Privacy Paradox at the Nexus of Social Exchange and Construal Level Theories. Psychol. Mark. 2022, 39, 647–661. [Google Scholar] [CrossRef]
- Anderson, L.; Ostrom, A.L.; Corus, C.; Fisk, R.P.; Gallan, A.S.; Giraldo, M.; Mende, M.; Mulder, M.; Rayburn, S.W.; Rosenbaum, M.S.; et al. Transformative Service Research: An Agenda for the Future. J. Bus. Res. 2013, 66, 1203–1210. [Google Scholar] [CrossRef]
- Ostrom, A.L.; Parasuraman, A.; Bowen, D.E.; Patrício, L.; Voss, C.A. Service Research Priorities in a Rapidly Changing Context. J. Serv. Res. 2015, 18, 127–159. [Google Scholar] [CrossRef]
- Volkmer, S.A.; Lermer, E. Unhappy and Addicted to Your Phone?–Higher Mobile Phone Use Is Associated with Lower Well-Being. Comput. Hum. Behav. 2019, 93, 210–218. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction With Life Scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Myers, D.G.; Diener, E. Who Is Happy? Psychol. Sci. 1995, 6, 10–19. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. On Happiness and Human Potentials: A Review of Research on Hedonic and Eudaimonic Well-Being. Annu. Rev. Psychol. 2001, 52, 141–166. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Li, M.; Huang, J.; Wang, X. A Review of Smart Design Based on Interactive Experience in Building Systems. Sustainability 2020, 12, 6760. [Google Scholar] [CrossRef]
- Jeste, D.V.; Graham, S.A.; Nguyen, T.T.; Depp, C.A.; Lee, E.E.; Kim, H.-C. Beyond Artificial Intelligence: Exploring Artificial Wisdom. Int. Psychogeriatr. 2020, 32, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Bae, J.; Choi, J.; Kim, H. LUX: Smart Mirror with Sentiment Analysis for Mental Comfort. Sensors 2021, 21, 3092. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, R.F.; Vohs, K.D.; Aaker, J.L.; Garbinsky, E.N. Some Key Differences between a Happy Life and a Meaningful Life. J. Posit. Psychol. 2013, 8, 505–516. [Google Scholar] [CrossRef]
- Carter, T.J.; Gilovich, T. I Am What I Do, Not What I Have: The Differential Centrality of Experiential and Material Purchases to the Self. J. Pers. Soc. Psychol. 2012, 102, 1304–1317. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Lee, Y. The Effect of Online Customization on Consumers’ Happiness and Purchase Intention and the Mediating Roles of Autonomy, Competence, and Pride of Authorship. Int. J. Hum. Comput. Interact. 2020, 36, 403–413. [Google Scholar] [CrossRef]
- Van Boven, L.; Gilovich, T. To Do or to Have? That Is the Question. J. Pers. Soc. Psychol. 2003, 85, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.C.; Nobel, P.S. The Cactus Primer; Harvard University Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Treem, J.W.; Leonardi, P.M. Social Media Use in Organizations: Exploring the Affordances of Visibility, Editability, Persistence, and Association. Ann. Int. Commun. Assoc. 2013, 36, 143–189. [Google Scholar] [CrossRef]
- Leonardi, P.M.; Vaast, E. Social Media and Their Affordances for Organizing: A Review and Agenda for Research. Acad. Manag. Ann. 2017, 11, 150–188. [Google Scholar] [CrossRef]
- Majchrzak, A.; Markus, M.L. Technology Affordances and Constraints in Management Information Systems (MIS). 2012. Available online: https://papers.ssrn.com/abstract=2192196 (accessed on 22 September 2022).
- Gibson, E.J. Where Is the Information for Affordances? Ecol. Psychol. 2000, 12, 53–56. [Google Scholar] [CrossRef]
- Leonardi, P.M.; Nardi, B.A.; Kallinikos, J. Materiality and Organizing: Social Interaction in a Technological World; OUP: Oxford, UK, 2012. [Google Scholar]
- Majchrzak, A.; Faraj, S.; Kane, G.C.; Azad, B. The Contradictory Influence of Social Media Affordances on Online Communal Knowledge Sharing. J. Comput. Mediat. Commun. 2013, 19, 38–55. [Google Scholar] [CrossRef]
- Hennebert, M.-A.; Pasquier, V.; Lévesque, C. What Do Unions Do… with Digital Technologies? An Affordance Approach. New Technol. Work Employ. 2021, 36, 177–200. [Google Scholar] [CrossRef]
- Johnson, G.J.; Bruner II, G.C.; Kumar, A. Interactivity and Its Facets Revisited: Theory and Empirical Test. J. Advert. 2006, 35, 35–52. [Google Scholar] [CrossRef]
- Prentice, C.; Weaven, S.; Wong, I.A. Linking AI Quality Performance and Customer Engagement: The Moderating Effect of AI Preference. Int. J. Hosp. Manag. 2020, 90, 102629. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H. Understanding User Behavior of Virtual Personal Assistant Devices. Inf. Syst. E-Bus. Manag. 2019, 17, 65–87. [Google Scholar] [CrossRef]
- Chellappa, R.K.; Sin, R.G. Personalization versus Privacy: An Empirical Examination of the Online Consumer’s Dilemma. Inf. Technol. Manag. 2005, 6, 181–202. [Google Scholar] [CrossRef]
- Aksoy, L.; Bloom, P.N.; Lurie, N.H.; Cooil, B. Should Recommendation Agents Think Like People? J. Serv. Res. 2006, 8, 297–315. [Google Scholar] [CrossRef]
- Hanus, M.D.; Fox, J. Persuasive Avatars: The Effects of Customizing a Virtual Salesperson׳s Appearance on Brand Liking and Purchase Intentions. Int. J. Hum. Comput. Stud. 2015, 84, 33–40. [Google Scholar] [CrossRef]
- Payne, E.H.M.; Dahl, A.J.; Peltier, J. Digital Servitization Value Co-Creation Framework for AI Services: A Research Agenda for Digital Transformation in Financial Service Ecosystems. J. Res. Interact. Mark. 2021, 15, 200–222. [Google Scholar] [CrossRef]
- Marathe, S.; Sundar, S.S. What Drives Customization? Control or Identity? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; CHI ’11; Association for Computing Machinery: New York, NY, USA, 2011; pp. 781–790. [Google Scholar] [CrossRef]
- Feng, X.; Fu, S.; Qin, J. Determinants of Consumers’ Attitudes toward Mobile Advertising: The Mediating Roles of Intrinsic and Extrinsic Motivations. Comput. Hum. Behav. 2016, 63, 334–341. [Google Scholar] [CrossRef]
- Ryan, R.M.; Grolnick, W.S. Origins and Pawns in the Classroom: Self-Report and Projective Assessments of Individual Differences in Children’s Perceptions. J. Pers. Soc. Psychol. 1986, 50, 550. [Google Scholar] [CrossRef]
- Levesque, C.; Zuehlke, A.N.; Stanek, L.R.; Ryan, R.M. Autonomy and Competence in German and American University Students: A Comparative Study Based on Self-Determination Theory. J. Educ. Psychol. 2004, 96, 68–84. [Google Scholar] [CrossRef]
- Chirkov, V.; Ryan, R.M.; Kim, Y.; Kaplan, U. Differentiating Autonomy from Individualism and Independence: A Self-Determination Theory Perspective on Internalization of Cultural Orientations and Well-Being. J. Pers. Soc. Psychol. 2003, 84, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, V.I.; Ryan, R.M.; Willness, C. Cultural Context and Psychological Needs in Canada and Brazil: Testing a Self-Determination Approach to the Internalization of Cultural Practices, Identity, and Well-Being. J. Cross-Cult. Psychol. 2005, 36, 423–443. [Google Scholar] [CrossRef]
- Welzel, C.; Inglehart, R. Agency, Values, and Well-Being: A Human Development Model. Soc. Indic. Res. 2010, 97, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Inglehart, R.; Foa, R.; Peterson, C.; Welzel, C. Development, Freedom, and Rising Happiness: A Global Perspective (1981–2007). Perspect. Psychol. Sci. 2008, 3, 264–285. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Wang, N.; Xue, Y.; Ge, S. Unraveling the Alignment Paradox: How Does Business—IT Alignment Shape Organizational Agility? Inf. Syst. Res. 2017, 28, 863–879. [Google Scholar] [CrossRef]
- Yin, P.; Wang, C.; Liang, L. Consumer Information Technology Use in the Post-Pandemic Workplace: A Post-Acceptance Adaptation Perspective. Inf. Technol. People, ahead-of-print. [CrossRef]
- Marsh, E.; Vallejos, E.P.; Spence, A. The Digital Workplace and Its Dark Side: An Integrative Review. Comput. Hum. Behav. 2022, 128, 107118. [Google Scholar] [CrossRef]
- Maroufkhani, P.; Asadi, S.; Ghobakhloo, M.; Jannesari, M.T.; Ismail, W.K.W. How Do Interactive Voice Assistants Build Brands’ Loyalty? Technol. Forecast. Soc. Chang. 2022, 183, 121870. [Google Scholar] [CrossRef]
- Hernández Acosta, L.; Reinhardt, D. A Survey on Privacy Issues and Solutions for Voice-Controlled Digital Assistants. Pervasive Mob. Comput. 2022, 80, 101523. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K. Hey Alexa … Examine the Variables Influencing the Use of Artificial Intelligent In-Home Voice Assistants. Comput. Hum. Behav. 2019, 99, 28–37. [Google Scholar] [CrossRef]
- Seiderer, A.; Ritschel, H.; André, E. Development of a Privacy-By-Design Speech Assistant Providing Nutrient Information for German Seniors. In Proceedings of the 6th EAI International Conference on Smart Objects and Technologies for Social Good; GoodTechs ’20; Association for Computing Machinery: New York, NY, USA, 2020; pp. 114–119. [Google Scholar] [CrossRef]
- Sweeney, M.; Davis, E. Alexa, Are You Listening? Inf. Technol. Libr. 2020, 39. [Google Scholar] [CrossRef]
- Hu, J.; Ma, X.; Xu, X.; Liu, Y. Treat for Affection? Customers’ Differentiated Responses to pro-Customer Deviance. Tour. Manag. 2022, 93, 104619. [Google Scholar] [CrossRef]
- Huang, M.; Ju, D.; Yam, K.C.; Liu, S.; Qin, X.; Tian, G. Employee Humor Can Shield Them from Abusive Supervision. J. Bus. Ethics 2022, 186, 407–424. [Google Scholar] [CrossRef]
- Su, L.; Yang, X.; Swanson, S.R. The Impact of Spatial-Temporal Variation on Tourist Destination Resident Quality of Life. Tour. Manag. 2022, 93, 104572. [Google Scholar] [CrossRef]
- Kautish, P.; Purohit, S.; Filieri, R.; Dwivedi, Y.K. Examining the Role of Consumer Motivations to Use Voice Assistants for Fashion Shopping: The Mediating Role of Awe Experience and eWOM. Technol. Forecast. Soc. Chang. 2023, 190, 122407. [Google Scholar] [CrossRef]
- El-Said, O.; Hajri, S.A. Are Customers Happy with Robot Service? Investigating Satisfaction with Robot Service Restaurants during the COVID-19 Pandemic. Heliyon 2022, 8, e08986. [Google Scholar] [CrossRef]
- Kato, T. Brand Loyalty Explained by Concept Recall: Recognizing the Significance of the Brand Concept Compared to Features. J. Mark. Anal. 2021, 9, 185–198. [Google Scholar] [CrossRef]
- Sankaran, S.; Zhang, C.; Aarts, H.; Markopoulos, P. Exploring Peoples’ Perception of Autonomy and Reactance in Everyday AI Interactions. Front. Psychol. 2021, 12, 713074. [Google Scholar] [CrossRef] [PubMed]
- Rauschnabel, P.A. Virtually Enhancing the Real World with Holograms: An Exploration of Expected Gratifications of Using Augmented Reality Smart Glasses. Psychol. Mark. 2018, 35, 557–572. [Google Scholar] [CrossRef]
- Lee, C. Googlish as a Resource for Networked Multilingualism. World Englishes 2020, 39, 79–93. [Google Scholar] [CrossRef]
- Pérez, G.; Hesse, E.; Dottori, M.; Birba, A.; Amoruso, L.; Martorell Caro, M.; Ibáñez, A.; García, A.M. The Bilingual Lexicon, Back and Forth: Electrophysiological Signatures of Translation Asymmetry. Neuroscience 2022, 481, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Acikgoz, F.; Vega, R.P. The Role of Privacy Cynicism in Consumer Habits with Voice Assistants: A Technology Acceptance Model Perspective. Int. J. Hum. Comput. Interact. 2022, 38, 1138–1152. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated Guidelines on Which Method to Use. Int. J. Multivar. Data Anal. 2017, 1, 107. [Google Scholar] [CrossRef]
- Ali, F.; Rasoolimanesh, S.M.; Sarstedt, M.; Ringle, C.M.; Ryu, K. An Assessment of the Use of Partial Least Squares Structural Equation Modeling (PLS-SEM) in Hospitality Research. Int. J. Contemp. Hosp. Manag. 2018, 30, 514–538. [Google Scholar] [CrossRef]
- Wold, H. Soft Modelling: The Basic Design and Some Extensions. Syst. Indirect Obs. Part II 1982, 2, 36–37. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Editorial-Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. 14 March 2013. Available online: https://papers.ssrn.com/abstract=2233795 (accessed on 15 April 2024).
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Kock, N. Common Method Bias in PLS-SEM: A Full Collinearity Assessment Approach. Int. J. e-Collab. IJeC 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Q.; Davison, R.M.; Hua, Z. What Drives Trust Transfer? The Moderating Roles of Seller-Specific and General Institutional Mechanisms. Int. J. Electron. Commer. 2015, 20, 261–289. [Google Scholar] [CrossRef]
- Chen, X.; Wei, S.; Davison, R.M.; Rice, R.E. How Do Enterprise Social Media Affordances Affect Social Network Ties and Job Performance? Inf. Technol. People 2020, 33, 361–388. [Google Scholar] [CrossRef]
- Aiken, L.S.; West, S.G.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; SAGE: Thousand Oaks, CA, USA, 1991. [Google Scholar]
- Chen, X.; Wei, S.; Rice, R.E. Integrating the Bright and Dark Sides of Communication Visibility for Knowledge Management and Creativity: The Moderating Role of Regulatory Focus. Comput. Hum. Behav. 2020, 111, 106421. [Google Scholar] [CrossRef]
- Davenport, T.; Guha, A.; Grewal, D.; Bressgott, T. How Artificial Intelligence Will Change the Future of Marketing. J. Acad. Mark. Sci. 2020, 48, 24–42. [Google Scholar] [CrossRef]
- Fernandes, T.; Oliveira, E. Understanding Consumers’ Acceptance of Automated Technologies in Service Encounters: Drivers of Digital Voice Assistants Adoption. J. Bus. Res. 2021, 122, 180–191. [Google Scholar] [CrossRef]
- Liao, Y.; Vitak, J.; Kumar, P.; Zimmer, M.; Kritikos, K. Understanding the Role of Privacy and Trust in Intelligent Personal Assistant Adoption. In Information in Contemporary Society; Taylor, N.G., Christian-Lamb, C., Martin, M.H., Nardi, B., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; pp. 102–113. [Google Scholar] [CrossRef]
- Thomaz, F.; Salge, C.; Karahanna, E.; Hulland, J. Learning from the Dark Web: Leveraging Conversational Agents in the Era of Hyper-Privacy to Enhance Marketing. J. Acad. Mark. Sci. 2020, 48, 43–63. [Google Scholar] [CrossRef]
- Kang, W.; Shao, B. The Impact of Voice Assistants’ Intelligent Attributes on Consumer Well-Being: Findings from PLS-SEM and fsQCA. J. Retail. Consum. Serv. 2023, 70, 103130. [Google Scholar] [CrossRef]
- Dinev, T.; Hart, P. An Extended Privacy Calculus Model for E-Commerce Transactions. Inf. Syst. Res. 2006, 17, 61–80. [Google Scholar] [CrossRef]
- Buchanan, T.; Paine, C.; Joinson, A.N.; Reips, U.-D. Development of Measures of Online Privacy Concern and Protection for Use on the Internet. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 157–165. [Google Scholar] [CrossRef]
- Choi, T.R.; Sung, Y. Instagram versus Snapchat: Self-Expression and Privacy Concern on Social Media. Telemat. Inform. 2018, 35, 2289–2298. [Google Scholar] [CrossRef]
- Wu, K.-W.; Huang, S.Y.; Yen, D.C.; Popova, I. The Effect of Online Privacy Policy on Consumer Privacy Concern and Trust. Comput. Hum. Behav. 2012, 28, 889–897. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; He, J.; Ro, Y.K. Antecedents to the Adoption of Augmented Reality Smart Glasses: A Closer Look at Privacy Risks. J. Bus. Res. 2018, 92, 374–384. [Google Scholar] [CrossRef]
- Lyubomirsky, S.; Lepper, H.S. A Measure of Subjective Happiness: Preliminary Reliability and Construct Validation. Soci. Indic. Res. 1999, 46, 137–155. [Google Scholar] [CrossRef]
Variables | Frequency Counts | Percentage (%) | |
---|---|---|---|
Gender | Male | 125 | 39.557 |
Female | 191 | 60.443 | |
Education | High school and below | 8 | 2.532 |
College degree | 36 | 11.392 | |
Bachelor’s degree | 233 | 73.734 | |
Postgraduate or above | 39 | 12.342 | |
Occupation | Government departments and institutions | 47 | 14.873 |
Staff | 240 | 75.949 | |
Individual Household or Freelancer | 16 | 5.063 | |
Other | 13 | 4.114 | |
Income (RMB) | <3000 | 11 | 3.481 |
3001–6000 | 60 | 18.987 | |
6001–9000 | 95 | 30.063 | |
9001–12,000 | 79 | 25.000 | |
>12,001 | 71 | 22.468 | |
Which VA do you use the most? | Siri | 37 | 11.709 |
DuerOS | 75 | 23.734 | |
Xiaoai | 148 | 46.835 | |
Celia | 8 | 2.532 | |
TmallGenie | 43 | 13.608 | |
Other | 5 | 1.582 |
Constructs | Factor Loadings | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted (AVE) | |
---|---|---|---|---|---|
Responsiveness | 1. RSPV1 | 0.779 | 0.703 | 0.835 | 0.627 |
2. RSPV2 | 0.792 | ||||
3. RSPV3 | 0.805 | ||||
Ubiquitous Connectivity | 1. UBQS1 | 0.761 | 0.729 | 0.831 | 0.552 |
2. UBQS2 | 0.758 | ||||
3. UBQS3 | 0.743 | ||||
4. UBQS4 | 0.708 | ||||
Personalization | 1. PRS1 | 0.744 | 0.751 | 0.843 | 0.573 |
2. PRS2 | 0.726 | ||||
3. PRS3 | 0.724 | ||||
4. PRS4 | 0.829 | ||||
Autonomy | 1. AUTO1 | 0.756 | 0.727 | 0.830 | 0.550 |
2. AUTO2 | 0.746 | ||||
3. AUTO4 | 0.759 | ||||
4. AUTO5 | 0.706 | ||||
Timeliness | 1. TIME1 | 0.770 | 0.707 | 0.820 | 0.533 |
2. TIME2 | 0.722 | ||||
3. TIME3 | 0.709 | ||||
4. TIME4 | 0.719 | ||||
Perceived Privacy Risk | 1. PRI1 | 0.925 | 0.954 | 0.964 | 0.843 |
2. PRI2 | 0.923 | ||||
3. PRI3 | 0.875 | ||||
4. PRI4 | 0.935 | ||||
5. PRI5 | 0.932 | ||||
Happiness | 1. HPY1 | 0.811 | 0.708 | 0.837 | 0.631 |
2. HPY2 | 0.762 | ||||
3. HPY3 | 0.809 |
PRS | AUTO | PPR | RSPV | HPY | TIME | UBQS | |
---|---|---|---|---|---|---|---|
PRS | 0.757 | ||||||
AUTO | 0.746 | 0.742 | |||||
PPR | −0.247 | −0.299 | 0.918 | ||||
RSPV | 0.703 | 0.690 | −0.335 | 0.792 | |||
HPY | 0.605 | 0.693 | −0.431 | 0.624 | 0.794 | ||
TIME | 0.617 | 0.732 | −0.285 | 0.641 | 0.667 | 0.730 | |
UBQS | 0.624 | 0.689 | −0.186 | 0.552 | 0.528 | 0.627 | 0.743 |
Hypothesis | Original Sample (O) | Sample Mean (M) | Standard Deviation | T Statistics (|O/STDEV|) | p-Values | Results | |
---|---|---|---|---|---|---|---|
H1 | RSPV → AUTO | 0.256 | 0.255 | 0.046 | 5.537 | 0.000 | Supported |
H2 | RSPV → TIME | 0.335 | 0.326 | 0.074 | 4.502 | 0.000 | Supported |
H3 | UBQS → AUTO | 0.318 | 0.320 | 0.046 | 6.866 | 0.000 | Supported |
H4 | UBQS → TIME | 0.333 | 0.339 | 0.070 | 4.734 | 0.000 | Supported |
H5 | PRS → AUTO | 0.367 | 0.365 | 0.050 | 7.359 | 0.000 | Supported |
H6 | PRS → TIME | 0.173 | 0.178 | 0.093 | 1.858 | 0.032 | Supported |
H7 | AUTO → HPY | 0.398 | 0.400 | 0.057 | 6.949 | 0.000 | Supported |
H8 | TIME → HPY | 0.313 | 0.310 | 0.057 | 5.303 | 0.000 | Supported |
H9 | PPR → HPY | −0.223 | −0.224 | 0.044 | 5.032 | 0.000 | Supported |
ABO | PRS → TIME→ HPY | 0.054 | 0.054 | 0.028 | 1.927 | 0.027 | |
RSPV→ AUTO → HPY | 0.102 | 0.102 | 0.024 | 4.264 | 0.000 | ||
UBQS→AUTO → HPY | 0.127 | 0.128 | 0.027 | 4.704 | 0.000 | ||
RSPV → TIME → HPY | 0.105 | 0.102 | 0.033 | 3.178 | 0.001 | ||
UBQS→ TIME → HPY | 0.104 | 0.105 | 0.030 | 3.520 | 0.000 | ||
PRS → AUTO → HPY | 0.146 | 0.146 | 0.029 | 5.005 | 0.000 |
Variable | HPY | Variable | HPY | ||||||
---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | ||||||
AUTO | 0.609 | 0.573 | 13.710 | TIME | 0.591 | 14.316 | 0.571 | 12.964 | |
PPR | −0.244 | −5.935 | −0.241 | −5.968 | PPR | −0.265 | −6.411 | −0.267 | −6.467 |
AUTO × PPR | 0.135 | 3.367 | TIME × PPR | 0.056 | 1.331 | ||||
R2 | 0.522 | 0.538 | R2 | 0.508 | 0.511 | ||||
ΔR2 | 0.522 | 0.017 | ΔR2 | 0.508 | 0.003 | ||||
F | 170.642 | 121.297 | F | 161.646 | 108.620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, L.; Zhang, L.; Sun, X.; Zhou, Z. Unlock Happy Interactions: Voice Assistants Enable Autonomy and Timeliness. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 1013-1033. https://doi.org/10.3390/jtaer19020053
Mo L, Zhang L, Sun X, Zhou Z. Unlock Happy Interactions: Voice Assistants Enable Autonomy and Timeliness. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(2):1013-1033. https://doi.org/10.3390/jtaer19020053
Chicago/Turabian StyleMo, Linlin, Liangbo Zhang, Xiaohui Sun, and Zhimin Zhou. 2024. "Unlock Happy Interactions: Voice Assistants Enable Autonomy and Timeliness" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 2: 1013-1033. https://doi.org/10.3390/jtaer19020053
APA StyleMo, L., Zhang, L., Sun, X., & Zhou, Z. (2024). Unlock Happy Interactions: Voice Assistants Enable Autonomy and Timeliness. Journal of Theoretical and Applied Electronic Commerce Research, 19(2), 1013-1033. https://doi.org/10.3390/jtaer19020053