Mechanism Linking AR-Based Presentation Mode and Consumers’ Responses: A Moderated Serial Mediation Model
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses
2.1. S-O-R Model
2.2. The Mediating Effect of Immersion and Enjoyment
2.3. The Mediating Effect of Perceived Product Risk
2.4. The Moderating Effect of Technophilia
3. Methodology
3.1. Design and Procedure
3.2. Measurement Development
3.3. Data Analysis
3.4. Common Method Bias
4. Results
4.1. Measurement Model Assessment
4.2. Structural Model Assessment: Testing for Moderated Mediating Effects
5. Discussion and Implications
5.1. Discussion
5.2. Theoretical Implications
5.3. Managerial Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, J.R.; Dant, R.P. The Theoretical domains of retailing research: A retrospective. J. Retail. 2009, 85, 113–128. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Yeh, C.-H.; Wang, Y.-M.; Tseng, T.H.; Lin, H.-H.; Lin, S.; Xie, M.-Q. Investigating online consumers’ responses to product presentation modes. Internet Res. 2019, 29, 1233–1255. [Google Scholar] [CrossRef]
- Li, M.; Tan, C.-H.; Teo, H.-H.; Wei, K.-K. Effects of product learning aids on the breadth and depth of recall. Decis. Support Syst. 2012, 53, 793–801. [Google Scholar] [CrossRef]
- Tseng, F.-C.; Cheng, T.; Li, K.; Teng, C.-I.; Cheng, E. How does media richness contribute to customer loyalty to mobile instant messaging? Internet Res. 2017, 27, 520–537. [Google Scholar] [CrossRef]
- Naegelein, P.; Spann, M.; Molitor, D. The value of product presentation technologies on mobile vs. non-mobile devices: A randomized field experiment. Decis. Support Syst. 2019, 121, 109–120. [Google Scholar] [CrossRef]
- Kim, M.; Lennon, S. The effects of visual and verbal information on attitudes and purchase intentions in internet shopping. Psychol. Mark. 2008, 25, 146–178. [Google Scholar] [CrossRef]
- Rapp, A.; Baker, T.L.; Bachrach, D.G.; Ogilvie, J.; Beitelspacher, L.S. Perceived customer showrooming behavior and the effect on retail salesperson self-efficacy and performance. J. Retail. 2015, 91, 358–369. [Google Scholar] [CrossRef]
- Heller, J.; Chylinski, M.; de Ruyter, K.; Mahr, D.; Keeling, D.I. Let me imagine that for you: Transforming the retail frontline through augmenting customer mental imagery ability. J. Retail. 2019, 95, 94–114. [Google Scholar] [CrossRef]
- Poushneh, A. Augmented reality in retail: A trade-off between user’s control of access to personal information and augmentation quality. J. Retail. Consum. Serv. 2018, 41, 169–176. [Google Scholar] [CrossRef]
- Jessen, A.; Hilken, T.; Chylinski, M.; Mahr, D.; Heller, J.; Keeling, D.I.; de Ruyter, K. The playground effect: How augmented reality drives creative customer engagement. J. Bus. Res. 2020, 116, 85–98. [Google Scholar] [CrossRef]
- Yim, M.Y.-C.; Chu, S.-C.; Sauer, P.L. Is Augmented reality technology an effective tool for e-commerce? An interactivity and vividness perspective. J. Interact. Mark. 2017, 39, 89–103. [Google Scholar] [CrossRef]
- Mishra, A.; Shukla, A.; Rana, N.P.; Dwivedi, Y.K. From “touch” to a “multisensory” experience: The impact of technology interface and product type on consumer responses. Psychol. Mark. 2021, 38, 385–396. [Google Scholar] [CrossRef]
- Hilken, T.; De Ruyter, K.; Chylinski, M.; Mahr, D.; Keeling, D.I. Augmenting the eye of the beholder: Exploring the strategic potential of augmented reality to enhance online service experiences. J. Acad. Mark. Sci. 2017, 45, 884–905. [Google Scholar] [CrossRef]
- Pantano, E.; Rese, A.; Baier, D. Enhancing the online decision-making process by using augmented reality: A two country comparison of youth markets. J. Retail. Consum. Serv. 2017, 38, 81–95. [Google Scholar] [CrossRef]
- Beck, M.; Crié, D. I virtually try it…I want it! Virtual fitting room: A tool to increase on-line and off-line exploratory behavior, patronage and purchase intentions. J. Retail. Consum. Serv. 2018, 40, 279–286. [Google Scholar] [CrossRef]
- Yim, M.Y.-C.; Park, S.-Y. ‘‘I am not satisfied with my body, so I like augmented reality (AR)’’. Consumer responses to AR-based product presentations. J. Bus. Res. 2019, 100, 581–589. [Google Scholar] [CrossRef]
- Kowalczuk, P.; Siepmann, C.; Adler, J. Cognitive, affective, and behavioral consumer responses to augmented reality in e-commerce: A comparative study. J. Bus. Res. 2021, 124, 357–373. [Google Scholar] [CrossRef]
- Smink, A.R.; Frowijn, S.; van Reijmersdal, E.A.; van Noort, G.; Neijens, P.C. Try online before you buy: How does shopping with augmented reality affect brand responses and personal data disclosure. Electron. Commer. Res. Appl. 2019, 35, 100854. [Google Scholar] [CrossRef]
- Bonnin, G. The roles of perceived risk, attractiveness of the online store and familiarity with AR in the influence of AR on patronage intention. J. Retail. Consum. Serv. 2020, 52, 101938. [Google Scholar] [CrossRef]
- Choi, U.; Choi, B. The effect of augmented reality on consumer learning for search and experience products in mobile commerce. Cyberpsychology Behav. Soc. Netw. 2020, 23, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Javornik, A. ‘It’s an illusion, but it looks real!’ Consumer affective, cognitive and behavioural responses to augmented reality applications. J. Mark. Manag. 2016, 32, 987–1011. [Google Scholar] [CrossRef]
- Baytar, F.; Chung, T.; Shin, E. Evaluating garments in augmented reality when shopping online. J. Fash. Mark. Manag. Int. J. 2020, 24, 667–683. [Google Scholar] [CrossRef]
- Park, M.; Yoo, J. Effects of perceived interactivity of augmented reality on consumer responses: A mental imagery perspective. J. Retail. Consum. Serv. 2020, 52, 101912. [Google Scholar] [CrossRef]
- Smink, A.R.; van Reijmersdal, E.A.; van Noort, G.; Neijens, P.C. Shopping in augmented reality: The effects of spatial presence, personalization and intrusiveness on app and brand responses. J. Bus. Res. 2020, 118, 474–485. [Google Scholar] [CrossRef]
- Goebert, C.; Greenhalgh, G.P. A new reality: Fan perceptions of augmented reality readiness in sport marketing. Comput. Hum. Behav. 2020, 106, 106231. [Google Scholar] [CrossRef]
- Watson, A.; Alexander, B.; Salavati, L. The impact of experiential augmented reality applications on fashion purchase intention. Int. J. Retail. Distrib. Manag. 2020, 48, 433–451. [Google Scholar] [CrossRef]
- Martínez-Córcoles, M.; Teichmann, M.; Murdvee, M. Assessing technophobia and technophilia: Development and validation of a questionnaire. Technol. Soc. 2017, 51, 183–188. [Google Scholar] [CrossRef]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology. An Approach to Environmental Psychology; The MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Kim, M. Digital product presentation, information processing, need for cognition and behavioral intent in digital commerce. J. Retail. Consum. Serv. 2019, 50, 362–370. [Google Scholar] [CrossRef]
- Chang, H.-J.; Eckman, M.; Yan, R.-N. Application of the stimulus-organism-response model to the retail environment: The role of hedonic motivation in impulse buying behavior. Int. Rev. Retail. Distrib. Consum. Res. 2011, 21, 233–249. [Google Scholar] [CrossRef]
- Bitner, M.J. Servicescapes: The impact of physical surroundings on customers and employees. J. Mark. 1992, 56, 57. [Google Scholar] [CrossRef]
- Kim, J.; Lennon, S.J. Effects of reputation and website quality on online consumers’ emotion, perceived risk and purchase intention. J. Res. Interact. Mark. 2013, 7, 33–56. [Google Scholar] [CrossRef]
- Nelson, C.R. Policy robustness: Specification and simulation of a monthly money market model: Comment. J. Money Credit Bank. 1982, 14, 877. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Lennon, S.J. Effects of web site atmospherics on consumer responses: Music and product presentation. Direct Mark. Int. J. 2009, 3, 4–19. [Google Scholar] [CrossRef]
- Richard, M.-O.; Chebat, J.-C. Modeling online consumer behavior: Preeminence of emotions and moderating influences of need for cognition and optimal stimulation level. J. Bus. Res. 2016, 69, 541–553. [Google Scholar] [CrossRef]
- Zhou, F.; Duh, H.B.-L.; Billinghurst, M. Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. In Proceedings of the 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, Cambridge, UK, 15–18 September 2008; pp. 193–202. [Google Scholar]
- Schuemie, M.J.; Van Der Straaten, P.; Krijn, M.; Van Der Mast, C.A. Research on presence in virtual reality: A survey. CyberPsychol. Behav. 2001, 4, 183–201. [Google Scholar] [CrossRef]
- Rese, A.; Schreiber, S.; Baier, D. Technology acceptance modeling of augmented reality at the point of sale: Can surveys be replaced by an analysis of online reviews? J. Retail. Consum. Serv. 2014, 21, 869–876. [Google Scholar] [CrossRef]
- Beuckels, E.; Hudders, L. An experimental study to investigate the impact of image interactivity on the perception of luxury in an online shopping context. J. Retail. Consum. Serv. 2016, 33, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Gil-Saura, I.; Molina, M.E.R.; Berenguer-Contri, G. Store equity and behavioral intentions: The moderating role of the retailer’s technology. J. Prod. Brand Manag. 2016, 25, 642–650. [Google Scholar] [CrossRef]
- Bansal, H.S.; Taylor, S.F.; James, Y.S. ‘‘Migrating’’ to new service providers: Toward a unifying framework of consumers’ switching behaviors. J. Acad. Mark. Sci. 2005, 33, 96–115. [Google Scholar] [CrossRef]
- Goedertier, F.; Dawar, N.; Geuens, M.; Weijters, B. Brand typicality and distant novel extension acceptance: How risk-reduction counters low category fit. J. Bus. Res. 2015, 68, 157–165. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Kim, Y.-K.; Fairhurst, A. Shopping value in online auctions: Their antecedents and outcomes. J. Retail. Consum. Serv. 2009, 16, 75–82. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Dowling, G.R.; Staelin, R. A model of perceived risk and intended risk-handling activity. J. Consum. Res. 1994, 21, 119–134. [Google Scholar] [CrossRef]
- Glover, S.; Benbasat, I. A comprehensive model of perceived risk of E-commerce transactions. Int. J. Electron. Commer. 2010, 15, 47–78. [Google Scholar] [CrossRef]
- Featherman, M.S.; Pavlou, P.A. Predicting e-services adoption: A perceived risk facets perspective. Int. J. Hum.-Comput. Stud. 2003, 59, 451–474. [Google Scholar] [CrossRef] [Green Version]
- Suki, N.M. Modeling the determinants of consumers’ attitudes toward online group buying: Do risks and trusts matters? J. Retail. Consum. Serv. 2017, 36, 180–188. [Google Scholar] [CrossRef]
- Aghekyan-Simonian, M.; Forsythe, S.; Kwon, W.S.; Chattaraman, V. The role of product brand image and online store image on perceived risks and online purchase intentions for apparel. J. Retail. Consum. Serv. 2012, 19, 325–331. [Google Scholar] [CrossRef]
- Cheng, J.M.-S.; Wang, E.S.-T.; Lin, J.Y.-C.; Chen, L.S.; Huang, W.H. Do extrinsic cues affect purchase risk at international e-tailers: The mediating effect of perceived e-tailer service quality. J. Retail. Consum. Serv. 2008, 15, 420–428. [Google Scholar] [CrossRef]
- Nepomuceno, M.V.; Laroche, M.; Richard, M.-O. How to reduce perceived risk when buying online: The interactions between intangibility, product knowledge, brand familiarity, privacy and security concerns. J. Retail. Consum. Serv. 2014, 21, 619–629. [Google Scholar] [CrossRef]
- Petersen, J.A.; Kumar, V. Perceived risk, product returns, and optimal resource allocation: Evidence from a field experiment. J. Mark. Res. 2015, 52, 268–285. [Google Scholar] [CrossRef] [Green Version]
- Ariffin, S.K.; Mohan, T.; Goh, Y.-N. Influence of consumers’ perceived risk on consumers’ online purchase intention. J. Res. Interact. Mark. 2018, 12, 309–327. [Google Scholar] [CrossRef]
- Mortimer, G.; Fazal-e-Hasan, S.M.; Grimmer, M.; Grimmer, L. Explaining the impact of consumer religiosity, perceived risk and moral potency on purchase intentions. J. Retail. Consum. Serv. 2020, 55, 102115. [Google Scholar] [CrossRef]
- Marriott, H.R.; Williams, M.D. Exploring consumers perceived risk and trust for mobile shopping: A theoretical framework and empirical study. J. Retail. Consum. Serv. 2018, 42, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Osiceanu, M.-E. Psychological implications of modern technologies: “Technofobia” versus “Technophilia”. Procedia-Soc. Behav. Sci. 2015, 180, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Thrasher, J.F.; Abad-Vivero, E.N.; Barrientos-Gutíerrez, I.; Pérez-Hernández, R.; Reynales-Shigematsu, L.M.; Mejía, R.; Arillo-Santillán, E.; Hernández-Ávila, M.; Sargent, J.D. Prevalence and correlates of e-cigarette perceptions and trial among early adolescents in Mexico. J. Adolesc. Health 2016, 58, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Palm, A. Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics. Renew. Sustain. Energy Rev. 2020, 133, 110142. [Google Scholar] [CrossRef]
- Rodríguez-Bolaños, R.; Arillo-Santillán, E.; Barrientos-Gutiérrez, I.; Zavala-Arciniega, L.; Ntansah, C.A.; Thrasher, J.F. Sex differences in becoming a current electronic cigarette user, current smoker and current dual user of both products: A longitudinal Study among mexican adolescents. Int. J. Environ. Res. Public Health 2019, 17, 196. [Google Scholar] [CrossRef] [Green Version]
- Zavala-Arciniega, L.; Lozano, P.; Kollath-Cattano, C.; Gutierrez-Torres, D.S.; Arillo-Santillán, E.; Barrientos-Gutiérrez, I.; Hardin, J.W.; Thrasher, J.F. E-cigarette use frequency and motivations among current users in middle school. Drug Alcohol Depend. 2019, 204, 107585. [Google Scholar] [CrossRef]
- Schlüter, J.; Weyer, J. Car sharing as a means to raise acceptance of electric vehicles: An empirical study on regime change in automobility. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 185–201. [Google Scholar] [CrossRef]
- Velazquez, G.; Kaplan, S.; Monzon, A. Ex-ante and ex-post evaluation of a new transit information app: Modeling use intentions and actual use. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 56–65. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.Y.C.; Cao, L.; Wang, Y. The role of virtual try-on technology in online purchase decision from consumers’ aspect. Internet Res. 2019, 29, 529–551. [Google Scholar] [CrossRef]
- Poushneh, A.; Vasquez-Parraga, A.Z. Discernible impact of augmented reality on retail customer’s experience, satisfaction and willingness to buy. J. Retail. Consum. Serv. 2017, 34, 229–234. [Google Scholar] [CrossRef]
- Jennett, C.; Cox, A.; Cairns, P.A.; Dhoparee, S.; Epps, A.; Tijs, T.; Walton, A. Measuring and defining the experience of immersion in games. Int. J. Hum.-Comput. Stud. 2008, 66, 641–661. [Google Scholar] [CrossRef]
- Peukert, C.; Pfeiffer, J.; Meißner, M.; Pfeiffer, T.; Weinhardt, C. Shopping in virtual reality stores: The influence of immersion on system adoption. J. Manag. Inf. Syst. 2019, 36, 755–788. [Google Scholar] [CrossRef]
- Yi, M.Y.; Hwang, Y. Predicting the use of web-based information systems: Self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. Int. J. Hum.-Comput. Stud. 2003, 59, 431–449. [Google Scholar] [CrossRef]
- Venkatesh, V.; Bala, H. Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Darke, P.R.; Brady, M.K.; Benedicktus, R.L.; Wilson, A. Feeling close from afar: The role of psychological distance in offsetting distrust in unfamiliar online retailers. J. Retail. 2016, 92, 287–299. [Google Scholar] [CrossRef]
- Sultan, F.; Urban, G.L.; Shankar, V.; Bart, I.Y. Determinants and Role of Trust in E-Business: A Large Scale Empirical Study; MIT Sloan School of Management Working Paper No. 4282-02; MIT Sloan: Cambridge, MA, USA, 2002. [Google Scholar]
- Bart, Y.; Shankar, V.; Sultan, F.; Urban, G.L. Are the drivers and role of online trust the same for all web sites and consumers? A large-scale exploratory empirical study. J. Mark. 2005, 69, 133–152. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Rasoolimanesh, S.M.; Ringle, C.M.; Jaafar, M.; Ramayah, T. Urban vs. rural destinations: Residents’ perceptions, community participation and support for tourism development. Tour. Manag. 2017, 60, 147–158. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control it. Annu. Rev. Psychol. 2012, 63, 539–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kock, N.; Lynn, G. Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J. Assoc. Inf. Syst. 2012, 13, 546–580. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. Primer on Partial Least Squares Structural Equation Modeling, 2nd ed.; SAGE: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Nel, J.; Boshoff, C. Online customers’ habit-inertia nexus as a conditional effect of mobile-service experience: A moderated-mediation and moderated serial-mediation investigation of mobile-service use resistance. J. Retail. Consum. Serv. 2019, 47, 282–292. [Google Scholar] [CrossRef]
- Leal-Rodríguez, A.L.; Eldridge, S.; Roldán, J.L.; Leal-Millán, A.G.; Ortega-Gutiérrez, J. Organizational unlearning, innovation outcomes, and performance: The moderating effect of firm size. J. Bus. Res. 2015, 68, 803–809. [Google Scholar] [CrossRef]
- Aw, E.C.-X.; Chuah, S.H.-W.; Sabri, M.F.; Basha, N.K. Go loud or go home? How power distance belief influences the effect of brand prominence on luxury goods purchase intention. J. Retail. Consum. Serv. 2020, 58, 102288. [Google Scholar] [CrossRef]
Item | Mean | S.D. | S.E. | Loadings | AVE | CR | |
---|---|---|---|---|---|---|---|
Immersion (IMM) | IMM1 | 4.228 | 1.060 | 0.882 | 0.730 | 0.890 | |
IMM2 | 0.052 | 0.913 | |||||
IMM3 | 0.760 | ||||||
Enjoyment (ENJ) | ENJ 1 | 5.000 | 1.101 | 0.902 | 0.788 | 0.918 | |
ENJ 2 | 0.054 | 0.880 | |||||
ENJ 3 | 0.881 | ||||||
Perceived Product risk (PPR) | PPR1 | 3.759 | 0.817 | 0.714 | 0.667 | 0.857 | |
PPR2 | 0.040 | 0.848 | |||||
PPR3 | 0.880 | ||||||
Attractiveness (ATT) | ATT1 | 4.561 | 1.031 | 0.868 | 0.729 | 0.889 | |
ATT2 | 0.050 | 0.814 | |||||
ATT3 | 0.878 | ||||||
Purchase Intention (PI) | PI1 | 4.460 | 1.099 | 0.856 | 0.763 | 0.906 | |
PI2 | 0.054 | 0.880 | |||||
PI3 | 0.884 | ||||||
Technophilia (TEC) | TEC1 | 4.644 | 1.100 | 0.837 | 0.642 | 0.842 | |
TEC2 | 0.054 | 0.796 | |||||
TEC3 | 0.867 |
IMM | ENJ | PPR | ATT | |
---|---|---|---|---|
ENJ | 0.71 | |||
PPR | 0.691 | 0.615 | ||
ATT | 0.663 | 0.644 | 0.694 | |
PI | 0.676 | 0.644 | 0.657 | 0.689 |
TEC | 0.733 | 0.718 | 0.469 | 0.456 |
Hypotheses | Parameters | Effect | 95% CI | p |
---|---|---|---|---|
H1a | PPM → IM → PI | 0.060 | [0.030, 0.095] | 0.000 |
H1b | PPM → IM → ATT → PI | 0.014 | [0.004, 0.026] | 0.015 |
H2a | PPM → ENJ → PI | 0.033 | [0.012, 0.061] | 0.010 |
H2b | PPM → ENJ → ATT → PI | 0.011 | [0.004, 0.021] | 0.011 |
H3a | PPM → PPR → PI | 0.037 | [0.011, 0.066] | 0.009 |
H3b | PPM → PPR → ATT → PI | 0.015 | [0.005, 0.030] | 0.024 |
Hypotheses | Parameters | Effect | 95% CI | p |
---|---|---|---|---|
H4a | TEC* → (PPM → IM → PI) | 0.025 | [0.008, 0.051] | 0.024 |
H4b | TEC* → (PPM → IM → ATT → PI) | 0.006 | [0.001, 0.013] | 0.048 |
H5a | TEC* → (PPM → ENJ → PI) | 0.032 | [0.010, 0.064] | 0.019 |
H5b | TEC* → (PPM → ENJ → ATT → PI) | 0.011 | [0.004, 0.021] | 0.012 |
H6a | TEC* → (PPM → PPR → PI) | 0.036 | [0.010, 0.075] | 0.032 |
H6b | TEC* → (PPM → PPR → ATT → PI) | 0.014 | [0.005, 0.029] | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Wang, F.; Lv, S.; Han, W. Mechanism Linking AR-Based Presentation Mode and Consumers’ Responses: A Moderated Serial Mediation Model. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2694-2707. https://doi.org/10.3390/jtaer16070148
Han X, Wang F, Lv S, Han W. Mechanism Linking AR-Based Presentation Mode and Consumers’ Responses: A Moderated Serial Mediation Model. Journal of Theoretical and Applied Electronic Commerce Research. 2021; 16(7):2694-2707. https://doi.org/10.3390/jtaer16070148
Chicago/Turabian StyleHan, Xi, Feng Wang, Shengxiang Lv, and Wenting Han. 2021. "Mechanism Linking AR-Based Presentation Mode and Consumers’ Responses: A Moderated Serial Mediation Model" Journal of Theoretical and Applied Electronic Commerce Research 16, no. 7: 2694-2707. https://doi.org/10.3390/jtaer16070148
APA StyleHan, X., Wang, F., Lv, S., & Han, W. (2021). Mechanism Linking AR-Based Presentation Mode and Consumers’ Responses: A Moderated Serial Mediation Model. Journal of Theoretical and Applied Electronic Commerce Research, 16(7), 2694-2707. https://doi.org/10.3390/jtaer16070148