Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 22, Issue 1 (January 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story Cyclodextrins are able to encapsulate water-soluble phosphanes in their cavity even when these [...] Read more.
View options order results:
result details:
Displaying articles 1-185
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

Open AccessEditorial Special Issue “Recent Synthetic Aspects on the Chemistry of Nitro, Nitroso and Amino Compounds”
Molecules 2017, 22(1), 9; doi:10.3390/molecules22010009
Received: 20 December 2016 / Accepted: 21 December 2016 / Published: 23 December 2016
PDF Full-text (144 KB) | HTML Full-text | XML Full-text
Abstract
Nitrogen-containing molecules are key scaffolds that are widely applied in organic synthesis as precursors of highly functionalized materials, and are also investigated for their biological activities. This Special Issue collects seven innovative contributions which expand our knowledge of the chemistry of nitro compounds,
[...] Read more.
Nitrogen-containing molecules are key scaffolds that are widely applied in organic synthesis as precursors of highly functionalized materials, and are also investigated for their biological activities. This Special Issue collects seven innovative contributions which expand our knowledge of the chemistry of nitro compounds, amines, diazonium salts, and peptides, and that provide a good overview about their main reactivities. Full article
Open AccessEditorial Special Issue “Saffron (Crocus sativus, L.): Omics and Other Techniques in Authenticity, Quality, and Bioactivity Studies”
Molecules 2017, 22(1), 10; doi:10.3390/molecules22010010
Received: 20 December 2016 / Accepted: 21 December 2016 / Published: 23 December 2016
PDF Full-text (152 KB) | HTML Full-text | XML Full-text
Open AccessEditorial Glycosaminoglycans and Their Mimetics
Molecules 2017, 22(1), 20; doi:10.3390/molecules22010020
Received: 21 December 2016 / Revised: 22 December 2016 / Accepted: 22 December 2016 / Published: 25 December 2016
PDF Full-text (139 KB) | HTML Full-text | XML Full-text
Open AccessEditorial Special Issue “Potential Neuromodulatory Profile of Phytocompounds in Brain Disorders”
Molecules 2017, 22(1), 40; doi:10.3390/molecules22010040
Received: 23 December 2016 / Revised: 23 December 2016 / Accepted: 24 December 2016 / Published: 28 December 2016
PDF Full-text (154 KB) | HTML Full-text | XML Full-text
Open AccessEditorial Special Issue: New Approaches to Counteract Drug Resistance in Cancer
Molecules 2017, 22(1), 6; doi:10.3390/molecules22010006
Received: 20 December 2016 / Revised: 21 December 2016 / Accepted: 21 December 2016 / Published: 23 December 2016
PDF Full-text (152 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue New Approaches to Counteract Drug Resistance in Cancer)
Open AccessEditorial Acknowledgement to Reviewers of Molecules in 2016
Molecules 2017, 22(1), 113; doi:10.3390/molecules22010113
Received: 11 January 2017 / Revised: 11 January 2017 / Accepted: 11 January 2017 / Published: 11 January 2017
PDF Full-text (786 KB) | HTML Full-text | XML Full-text
Open AccessEditorial Natural Products and Inflammation
Molecules 2017, 22(1), 120; doi:10.3390/molecules22010120
Received: 9 January 2017 / Revised: 10 January 2017 / Accepted: 10 January 2017 / Published: 12 January 2017
PDF Full-text (147 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Natural Products and Inflammation)
Open AccessEditorial New Frontiers on the Metabolism, Bioavailability and Health Effects of Phenolic Compounds
Molecules 2017, 22(1), 151; doi:10.3390/molecules22010151
Received: 11 January 2017 / Revised: 13 January 2017 / Accepted: 13 January 2017 / Published: 17 January 2017
PDF Full-text (152 KB) | HTML Full-text | XML Full-text

Research

Jump to: Editorial, Review, Other

Open AccessArticle Solvation Dynamics of CO2(g) by Monoethanolamine at the Gas–Liquid Interface: A Molecular Mechanics Approach
Molecules 2017, 22(1), 8; doi:10.3390/molecules22010008
Received: 26 October 2016 / Revised: 14 December 2016 / Accepted: 19 December 2016 / Published: 23 December 2016
PDF Full-text (3535 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A classical force field approach was used to characterize the solvation dynamics of high-density CO2(g) by monoethanolamine (MEA) at the air–liquid interface. Intra- and intermolecular CO2 and MEA potentials were parameterized according to the energetics calculated at the MP2 and
[...] Read more.
A classical force field approach was used to characterize the solvation dynamics of high-density CO2(g) by monoethanolamine (MEA) at the air–liquid interface. Intra- and intermolecular CO2 and MEA potentials were parameterized according to the energetics calculated at the MP2 and BLYP-D2 levels of theory. The thermodynamic properties of CO2 and MEA, such as heat capacity and melting point, were consistently predicted using this classical potential. An approximate interfacial simulation for CO2(g)/MEA(l) was performed to monitor the depletion of the CO2(g) phase, which was influenced by amino and hydroxyl groups of MEA. There are more intramolecular hydrogen bond interactions notably identified in the interfacial simulation than the case of bulk MEA(l) simulation. The hydroxyl group of MEA was found to more actively approach CO2 and overpower the amino group to interact with CO2 at the air–liquid interface. With artificially reducing the dipole moment of the hydroxyl group, CO2–amino group interaction was enhanced and suppressed CO2(g) depletion. The hydroxyl group of MEA was concluded to play dual but contradictory roles for CO2 capture. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding 2017)
Figures

Open AccessArticle Antioxidant Activities and Chemical Constituents of Flavonoids from the Flower of Paeonia ostii
Molecules 2017, 22(1), 5; doi:10.3390/molecules22010005
Received: 10 September 2016 / Revised: 14 December 2016 / Accepted: 16 December 2016 / Published: 23 December 2016
Cited by 1 | PDF Full-text (1084 KB) | HTML Full-text | XML Full-text
Abstract
Paeonia ostii is a traditional medicinal plant popularly used in China. This study intended to evaluate the antioxidant properties and the chemical components of the flavonoid-rich extracts from the flowers of P. ostii. The results showed that the flavonoid-rich extracts from the
[...] Read more.
Paeonia ostii is a traditional medicinal plant popularly used in China. This study intended to evaluate the antioxidant properties and the chemical components of the flavonoid-rich extracts from the flowers of P. ostii. The results showed that the flavonoid-rich extracts from the flowers of P. ostii had strong scavenging capacities on 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), hydroxyls, superoxide anions, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals in a dose-dependent manner. Five flavonoids, dihydrokaempferol (1), apigenin-7-O-β-d-glucoside (2), apigenin-7-O-β-d-neohesperidoside (3), kaempferol-7-O-β-d-glucopyranoside (4), and kaempferol-3-O-β-d-glucopyranosyl-7-O-β-d-glucopyranoside (5), were isolated from the flavonoid-rich extracts of the flowers of P. ostii. High-performance liquid chromatography (HPLC) analysis revealed that compounds 3 and 4 were abundant in the P. ostii flower and in flavonoid-rich extracts. The main components of the flower of P. ostii are flavonoids. The high antioxidant activity of the flavonoid-rich extracts may be attributed to the high content of flavonoids. The five isolated flavonoids were the primary antioxidant ingredients, and may play important roles in the strong antioxidant activities of this flower. Based on the obtained results, the flower of P. ostii could be a potential source of natural antioxidants in food and pharmaceutical applications. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Figures

Open AccessArticle Synthesis, Biological Evaluation, and Docking Studies of a Novel Sulfonamido-Based Gallate as Pro-Chondrogenic Agent for the Treatment of Cartilage
Molecules 2017, 22(1), 3; doi:10.3390/molecules22010003
Received: 9 October 2016 / Revised: 28 November 2016 / Accepted: 13 December 2016 / Published: 23 December 2016
PDF Full-text (13546 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Gallic acid (GA) and its derivatives are anti-inflammatory agents and are reported to have potent effects on Osteoarthritis (OA) treatment. Nonetheless, it is generally accepted that the therapeutic effect and biocompatibility of GA is much weaker than its esters due to the high
[...] Read more.
Gallic acid (GA) and its derivatives are anti-inflammatory agents and are reported to have potent effects on Osteoarthritis (OA) treatment. Nonetheless, it is generally accepted that the therapeutic effect and biocompatibility of GA is much weaker than its esters due to the high hydrophilicity. The therapeutic effect of GA on OA could be improved if certain structural modifications were made to increase its hydrophobicity. In this study, a novel sulfonamido-based gallate was synthesized by bonding sulfonamide with GA, and its biological evaluations on OA were investigated. Results show that 5-[4-(Pyrimidin-2-ylsulfamoylphenyl)]-carbamoyl-benzene-1,2,3-triyl triacetate (HAMDC) was able to reverse the effects induced by Interleukin-1 (IL-1) stimulation, and it also had a great effect on chondro-protection via promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as well as enhancing synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Furthermore, a docking study showed that HAMDC fits into the core of the active site of a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), which provides an explanation for its activity and selectivity. Full article
(This article belongs to the Special Issue Sulfonamides)
Figures

Open AccessArticle Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells
Molecules 2017, 22(1), 90; doi:10.3390/molecules22010090
Received: 31 October 2016 / Revised: 19 December 2016 / Accepted: 29 December 2016 / Published: 6 January 2017
Cited by 2 | PDF Full-text (3643 KB) | HTML Full-text | XML Full-text
Abstract
Type 2 diabetes (T2D) is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts,
[...] Read more.
Type 2 diabetes (T2D) is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes. Full article
(This article belongs to the Special Issue Effects of Natural Products in the Context of Cardiometabolic Disease)
Figures

Figure 1

Open AccessArticle Antibacterial Activity of Neat Chitosan Powder and Flakes
Molecules 2017, 22(1), 100; doi:10.3390/molecules22010100
Received: 9 November 2016 / Revised: 21 December 2016 / Accepted: 3 January 2017 / Published: 6 January 2017
Cited by 1 | PDF Full-text (4989 KB) | HTML Full-text | XML Full-text
Abstract
This study investigates the antibacterial activity of neat chitosan powder and flakes against three different bacterial species, Escherichia coli, Listeria innocua and Staphylococcus aureus, which are frequent causes of food spoilage. The effect of chitosan concentration and purity, as well as
[...] Read more.
This study investigates the antibacterial activity of neat chitosan powder and flakes against three different bacterial species, Escherichia coli, Listeria innocua and Staphylococcus aureus, which are frequent causes of food spoilage. The effect of chitosan concentration and purity, as well as the influence of temperature, ionic strength (salt) and impact of a solid physical support in the medium are examined. Results show that the antibacterial activity of neat chitosan: (i) requires partial solubilisation; (ii) can be promoted by environmental factors such as adequate temperature range, ionic strength and the presence of a solid physical support that may facilitate the attachment of bacteria; (iii) depends on bacterial species, with a sensitivity order of E. coli > L. innocua > S. aureus; and (iv) increases with chitosan concentration, up to a critical point above which this effect decreases. The latter may be due to remaining proteins in chitosan acting as nutrients for bacteria therefore limiting its antibacterial activity. These results on the direct use of chitosan powder and flakes as potential antimicrobial agents for food protection at pH values lower than the chitosan pKa (6.2–6.7) are promising. Full article
(This article belongs to the Special Issue Antibacterial Materials and Coatings)
Figures

Open AccessArticle How Does Thymine DNA Survive Ultrafast Dimerization Damage?
Molecules 2017, 22(1), 60; doi:10.3390/molecules22010060
Received: 15 October 2016 / Revised: 13 December 2016 / Accepted: 24 December 2016 / Published: 31 December 2016
PDF Full-text (1645 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The photodimerization reaction between the two adjacent thymine bases within a single strand has been the subject of numerous studies due to its potential to induce DNA mutagenesis and possible tumorigenesis in human skin cells. It is well established that the cycloaddition photoreaction
[...] Read more.
The photodimerization reaction between the two adjacent thymine bases within a single strand has been the subject of numerous studies due to its potential to induce DNA mutagenesis and possible tumorigenesis in human skin cells. It is well established that the cycloaddition photoreaction takes place on a picosecond time scale along barrierless or low barrier singlet/triplet pathways. However, the observed dimerization quantum yield in different thymine multimer is considerable lower than might be expected. A reasonable explanation is required to understand why thymine in DNA is able to survive ultrafast dimerization damage. In this work, accurate quantum calculations based on the combined CASPT2//CASSCF/AMBER method were conducted to map the excited state relaxation pathways of the thymine monomer in aqueous solution and of the thymine oligomer in DNA. A monomer-like decay pathway, induced by the twisting of the methyl group, is found to provide a bypass channel to ensure the photostability of thymine in single-stranded oligomers. This fast relaxation path is regulated by the conical intersection between the bright SCT(1ππ*) state with the intra-base charge transfer character and the ground state to remove the excess excitation energy, thereby achieving the ground-state recovery with high efficiency. Full article
(This article belongs to the Special Issue Experimental and Computational Photochemistry of Bioorganic Molecules)
Figures

Figure 1

Open AccessArticle Green Sonoextraction of Protein from Oleaginous Press Rapeseed Cake
Molecules 2017, 22(1), 80; doi:10.3390/molecules22010080
Received: 30 October 2016 / Revised: 20 December 2016 / Accepted: 26 December 2016 / Published: 4 January 2017
PDF Full-text (4501 KB) | HTML Full-text | XML Full-text
Abstract
In this study, extraction of soluble proteins from rapeseed cake using different conventional and innovative extraction processes in order to maximize the extraction yield has been investigated. Firstly, various extraction techniques including ultrasound, microwave, and percolation were tested to increase the protein recovery
[...] Read more.
In this study, extraction of soluble proteins from rapeseed cake using different conventional and innovative extraction processes in order to maximize the extraction yield has been investigated. Firstly, various extraction techniques including ultrasound, microwave, and percolation were tested to increase the protein recovery efficiency. Secondly, response surface methodology (RSM) using a central composite design (CCD) approach was applied to investigate the influence of process variables on ultrasound-assisted extraction (UAE). Statistical analysis revealed that the optimized conditions providing a protein yield of 4.24 g/100 g DM were an ultrasound power of 5.6 W·cm−2 and temperature of 45 °C. Quantitatively UAE followed by two stages of conventional extraction gave the best total protein yield of 9.81 g/100 g DM. Qualitatively, the protein efficiency ratio (PER) used as measure of the nutritive value (12S/2S ratio) which indicates protein quality in terms of S-containing essential amino acids, was similar to that of the conventional extraction method. Small amounts of protein aggregate were observed in the HPLC profile of the extract. Full article
(This article belongs to the Special Issue Sonochemistry and Green Chemistry Applications)
Figures

Figure 1

Open AccessArticle New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-yl)benzene Amines and N,N-Bis(pyridine-4-yl)benzene Amines
Molecules 2017, 22(1), 2; doi:10.3390/molecules22010002
Received: 19 October 2016 / Revised: 30 November 2016 / Accepted: 5 December 2016 / Published: 22 December 2016
PDF Full-text (8639 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions
[...] Read more.
A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated. Full article
(This article belongs to the Special Issue ECSOC-19)
Figures

Open AccessArticle Development of a UPLC-TQ/MS Approach for the Determination of Eleven Bioactive Components in Haizao Yuhu Decoction Plus-Minus Haizao and Gancao Drug Combination after Oral Administration in a Rat Model of Hypothyroidism
Molecules 2017, 22(1), 7; doi:10.3390/molecules22010007
Received: 29 August 2016 / Revised: 19 December 2016 / Accepted: 19 December 2016 / Published: 22 December 2016
PDF Full-text (2042 KB) | HTML Full-text | XML Full-text
Abstract
Haizao Yuhu Decoction (HYD) has been used for approximately 500 years and is well-known in Traditional Chinese Medicine for its efficacy in the treatment of thyroid-related diseases. In this study, a rapid liquid chromatography-tandem mass spectrometry method was developed for the determination of
[...] Read more.
Haizao Yuhu Decoction (HYD) has been used for approximately 500 years and is well-known in Traditional Chinese Medicine for its efficacy in the treatment of thyroid-related diseases. In this study, a rapid liquid chromatography-tandem mass spectrometry method was developed for the determination of liquiritin, naringin, hesperidin, peimine, liquiritigenin, glycyrrhizic acid, bergapten, nobiletin, osthole, and glycyrrhetinic acid in rat plasma to investigate the pharmacokinetic profile of different HYD prescriptions in a rat model of hypothyroidism. The differences in pharmacokinetic parameters among the groups were compared by Student’s t-test. The pharmacokinetic profile of liquiritin, naringin, hesperidin, peimine, liquiritigenin, glycyrrhizic acid, bergapten, nobiletin, osthole, and glycyrrhetinic acid showed significant differences between Haizao and Gancao anti-drug combination and other herbs in HYD. These results may contribute to the rational clinical use of HYD and reveal the compatibility profile of the Haizao and Gancao anti-drug combination. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Formation and Physiochemical Properties of Silver Nanoparticles with Various Exopolysaccharides of a Medicinal Fungus in Aqueous Solution
Molecules 2017, 22(1), 50; doi:10.3390/molecules22010050
Received: 25 October 2016 / Revised: 17 December 2016 / Accepted: 19 December 2016 / Published: 29 December 2016
PDF Full-text (4596 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Natural polysaccharides are the most widely used biopolymers for green synthesis of eco-friendly silver nanoparticles (AgNPs). In a previous study, a high molecular weight (MW) fraction of exopolysaccharides (EPS) produced by a medicinal fungus Cs-HK1 has been shown useful for green and facile
[...] Read more.
Natural polysaccharides are the most widely used biopolymers for green synthesis of eco-friendly silver nanoparticles (AgNPs). In a previous study, a high molecular weight (MW) fraction of exopolysaccharides (EPS) produced by a medicinal fungus Cs-HK1 has been shown useful for green and facile synthesis of AgNPs in water. This study was to further evaluate the effects of molecular properties of EPS on the formation, stability and properties of AgNPs with different EPS fractions at various pH conditions. Three EPS fractions (P0.5, P2.0 and P5.0: MW high to low and protein content low to high) were reacted with silver nitrate at various pH 3.0–8.0 in water. The most favorable pH range was 5.5–8.0 for the formation and stable dispersion of AgNPs. At a given pH, the maximum amount of AgNPs was produced with P5.0, and the minimum with P0.5. The shape, size and physiochemical properties of AgNPs were strongly affected by the molecular characteristics of EPS (MW and conformation). The results may be helpful for understanding the factors and mechanisms for formation of stable AgNPs with natural polysaccharides and the interactions between AgNPs and the polysaccharide hydrocolloids in water. Full article
Figures

Figure 1

Open AccessArticle Microbial Glycosylation of Daidzein, Genistein and Biochanin A: Two New Glucosides of Biochanin A
Molecules 2017, 22(1), 81; doi:10.3390/molecules22010081
Received: 27 November 2016 / Revised: 20 December 2016 / Accepted: 30 December 2016 / Published: 3 January 2017
PDF Full-text (432 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Biotransformation of daidzein, genistein and biochanin A by three selected filamentous fungi was investigated. As a result of biotransformations, six glycosylation products were obtained. Fungus Beauveria bassiana converted all tested isoflavones to 4″-O-methyl-7-O-glucosyl derivatives, whereas Absidia coerulea and Absidia
[...] Read more.
Biotransformation of daidzein, genistein and biochanin A by three selected filamentous fungi was investigated. As a result of biotransformations, six glycosylation products were obtained. Fungus Beauveria bassiana converted all tested isoflavones to 4″-O-methyl-7-O-glucosyl derivatives, whereas Absidia coerulea and Absidia glauca were able to transform genistein and biochanin A to genistin and sissotrin, respectively. In the culture of Absidia coerulea, in addition to the sissotrin, the product of glucosylation at position 5 was formed. Two of the obtained compounds have not been published so far: 4″-O-methyl-7-O-glucosyl biochanin A and 5-O-glucosyl biochanin A (isosissotrin). Biotransformation products were obtained with 22%–40% isolated yield. Full article
(This article belongs to the Special Issue Green Production of Bioactive Natural Products)
Figures

Open AccessArticle Targeted Metabolomic Analysis of Polyphenols with Antioxidant Activity in Sour Guava (Psidium friedrichsthalianum Nied.) Fruit
Molecules 2017, 22(1), 11; doi:10.3390/molecules22010011
Received: 25 October 2016 / Revised: 13 December 2016 / Accepted: 16 December 2016 / Published: 23 December 2016
Cited by 1 | PDF Full-text (571 KB) | HTML Full-text | XML Full-text
Abstract
Psidium is a genus of tropical bushes belonging to the Myrtaceae family distributed in Central and South America. The polar extract of Psidium friedrichsthalianum Nied. was partitioned with ethyl ether, ethyl acetate, and n-butanol, and the total phenolic content and antioxidant activity
[...] Read more.
Psidium is a genus of tropical bushes belonging to the Myrtaceae family distributed in Central and South America. The polar extract of Psidium friedrichsthalianum Nied. was partitioned with ethyl ether, ethyl acetate, and n-butanol, and the total phenolic content and antioxidant activity were measured by Folin-Ciocalteu and ABTS assays, respectively. The ethyl acetate fraction exhibited both the highest phenolic content and antioxidant activity. Due to the complexity of this fraction, an analytical method for the comprehensive profiling of phenolic compounds was done by UPLC-ESI/QqQ in MRM (multiple reaction monitoring) mode. In this targeted analysis, 22 phenolic compounds were identified, among which several hydroxybenzoic, phenylacetic, and hydroxycinnamic acid derivatives were found. This is the first time that (+)-catechin, procyanidin B1, procyanidin B2, and (−)-epicatechin have been reported as constituents of sour guava. A fractionation by exclusion size, C18-column chromatography, and preparative RRLC (rapid resolution liquid chromatography) allowed us to confirm the presence of ellagic acid and isomeric procyanidins B, well-known bioactive compounds. The content of phenolic compounds in this fruit shows its potential for the development of functional foods. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Figures

Open AccessArticle Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II
Molecules 2017, 22(1), 31; doi:10.3390/molecules22010031
Received: 24 October 2016 / Revised: 4 December 2016 / Accepted: 20 December 2016 / Published: 28 December 2016
PDF Full-text (5084 KB) | HTML Full-text | XML Full-text
Abstract
Renin-angiotensin system (RAS) activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS) and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic
[...] Read more.
Renin-angiotensin system (RAS) activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS) and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic signaling pathway of Angiotensin II (Ang II)/Angiotensin II type 1 receptor (AT1) and its relationship with oxidative stress and myocardial insulin resistance in MetS rats under heart ischemia. Control and MetS rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); and (c) fenofibrate-treated myocardial infarction (MI-F). Treatment with fenofibrate significantly reduced triglycerides, non-high density lipoprotein cholesterol (non-HDL-C), insulin levels and insulin resistance index (HOMA-IR) in MetS animals. MetS and MI increased Ang II concentration and AT1 expression, favored myocardial oxidative stress (high levels of malondialdehyde, overexpression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), decreased total antioxidant capacity and diminished expression of superoxide dismutase (SOD)1, SOD2 and catalase) and inhibited expression of the insulin signaling cascade: phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PkB, also known as Akt)/Glut-4/endothelial nitric oxide synthase (eNOS). In conclusion, fenofibrate treatment favors an antioxidant environment as a consequence of a reduction of the Ang II/AT1/NOX4 signaling pathway, reestablishing the cardiac insulin signaling pathway. This might optimize cardiac metabolism and improve the vasodilator function during myocardial ischemia. Full article
(This article belongs to the Special Issue Chemistry and Pharmacology of Modulators of Oxidative Stress)
Figures

Figure 1

Open AccessArticle Comparison of Hydrogels Based on Commercial Chitosan and Beetosan® Containing Nanosilver
Molecules 2017, 22(1), 61; doi:10.3390/molecules22010061
Received: 19 September 2016 / Revised: 4 December 2016 / Accepted: 25 December 2016 / Published: 31 December 2016
PDF Full-text (3651 KB) | HTML Full-text | XML Full-text
Abstract
Two series of hydrogels on the basis of commercial chitosan and chitosan derived from naturally expired honeybees are presented in this article. Sorption capacity and behavior of both kind of materials in simulated body fluids such as Ringer’s liquid or artificial saliva have
[...] Read more.
Two series of hydrogels on the basis of commercial chitosan and chitosan derived from naturally expired honeybees are presented in this article. Sorption capacity and behavior of both kind of materials in simulated body fluids such as Ringer’s liquid or artificial saliva have been determined and compared. Presence of functional groups in synthesized materials have been determined by means of FT-IR spectroscopy. Structure and homogeneity of their surface have been defined using Scanning Electron Microscopy. Based on the conducted research, it can be stated that both chitosan and Beetosan® hydrogels have very similar characteristics. It is worth noting that synthesis of such materials is environmentally friendly and leads to obtaining polymers that can be used for biomedical applications. Tested materials are characterized by low sorption capacity and do not have a negative impact on simulated body fluids. Moreover, based on the cell lines studies, it can be stated that Beetosan® hydrogels have a negative influence on cells of cancerous origin and, what is important, significantly less adverse effects on fibroblasts. Full article
Figures

Open AccessArticle Synthesis of New Nitrofluoroquinolone Derivatives with Novel Anti-Microbial Properties against Metronidazole Resistant H. pylori
Molecules 2017, 22(1), 71; doi:10.3390/molecules22010071
Received: 6 November 2016 / Revised: 19 December 2016 / Accepted: 28 December 2016 / Published: 4 January 2017
Cited by 2 | PDF Full-text (406 KB) | HTML Full-text | XML Full-text
Abstract
One of the major therapeutic approaches to preventing relapse and accelerating the healing of duodenal and gastric ulcers is the eradication of Helicobacter pylori. Due to the emergence of antibiotic resistance among clinical strains of H. pylori, alternative approaches using newly
[...] Read more.
One of the major therapeutic approaches to preventing relapse and accelerating the healing of duodenal and gastric ulcers is the eradication of Helicobacter pylori. Due to the emergence of antibiotic resistance among clinical strains of H. pylori, alternative approaches using newly discovered antimicrobial agents in combination with the standard regimens for the treatment of H. pylori are increasingly needed. The purpose of the present study was to investigate the effect of newly synthesized 8-nitroflouroqunolone derivatives when used either alone or when combined with metronidazole against metronidazole-resistant H. pylori. Based on the standard antimicrobial susceptibility testing methods and checkerboard titration assay, all of the tested compounds showed interesting antimicrobial activity against 12 clinical strains of H. pylori, with the best in vitro effect for compound 3c. In addition, synergistic and additive activities of some of the tested compounds were observed when combined with metronidazole. Furthermore, among the tested nitroflouroquinolone derivatives, compound 3b showed significant urease inhibition activity with IC50 of 62.5 µg/mL. These results suggest that 8-nitroflouroquinolone derivatives may have a useful role in combination with anti-H. pylori drugs in the management of H. pylori-associated diseases. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Scheme 1

Open AccessArticle Dynamic Features of the Highly Excited Vibrational States of the HOCl Non-Integrable System Based on the Dynamic Potential and Lyapunov Exponent Approaches
Molecules 2017, 22(1), 101; doi:10.3390/molecules22010101
Received: 24 November 2016 / Revised: 29 December 2016 / Accepted: 3 January 2017 / Published: 7 January 2017
PDF Full-text (13285 KB) | HTML Full-text | XML Full-text
Abstract
In this article the dynamic features of the highly excited vibrational states of the hypochlorous acid (HOCl) non-integrable system are studied using the dynamic potential and Lyapunov exponent approaches. On the condition that the 3:1 resonance between the H–O stretching and H–O–Cl bending
[...] Read more.
In this article the dynamic features of the highly excited vibrational states of the hypochlorous acid (HOCl) non-integrable system are studied using the dynamic potential and Lyapunov exponent approaches. On the condition that the 3:1 resonance between the H–O stretching and H–O–Cl bending modes accompany the 2:1 Fermi resonance between the O–Cl stretching and H–O–Cl bending modes, it is found that the dynamic potentials of the highly excited vibrational states vary regularly with different Polyad numbers (P numbers). As the P number increases, the dynamic potentials of the H–O stretching mode remain the same, but those of the H–O–Cl bending mode gradually become complex. In order to investigate the chaotic and stable features of the highly excited vibrational states of the HOCl non-integrable system, the Lyapunov exponents of different energy levels lying in the dynamic potentials of the H–O–Cl bending mode (P = 4 and 5) are calculated. It is shown that the Lyapunov exponents of the energy levels staying in the junction of Morse potential and inverse Morse potential are relative large, which indicates the degrees of chaos for these energy levels is relatively high, but the stabilities of the corresponding states are good. These results could be interpreted as the intramolecular vibrational relaxation (IVR) acting strongly via the HOCl bending motion and causing energy transfers among different modes. Based on the previous studies, these conclusions seem to be generally valid to some extent for non-integrable triatomic molecules. Full article
(This article belongs to the Section Theoretical Chemistry)
Figures

Figure 1

Open AccessArticle Desorption of Lipases Immobilized on Octyl-Agarose Beads and Coated with Ionic Polymers after Thermal Inactivation. Stronger Adsorption of Polymers/Unfolded Protein Composites
Molecules 2017, 22(1), 91; doi:10.3390/molecules22010091
Received: 24 November 2016 / Revised: 2 January 2017 / Accepted: 3 January 2017 / Published: 5 January 2017
Cited by 3 | PDF Full-text (1388 KB) | HTML Full-text | XML Full-text
Abstract
Lipases from Candida antarctica (isoform B) and Rhizomucor miehei (CALB and RML) have been immobilized on octyl-agarose (OC) and further coated with polyethylenimine (PEI) and dextran sulfate (DS). The enzymes just immobilized on OC supports could be easily released from the support using
[...] Read more.
Lipases from Candida antarctica (isoform B) and Rhizomucor miehei (CALB and RML) have been immobilized on octyl-agarose (OC) and further coated with polyethylenimine (PEI) and dextran sulfate (DS). The enzymes just immobilized on OC supports could be easily released from the support using 2% SDS at pH 7, both intact or after thermal inactivation (in fact, after inactivation most enzyme molecules were already desorbed). The coating with PEI and DS greatly reduced the enzyme release during thermal inactivation and improved enzyme stability. However, using OC-CALB/RML-PEI-DS, the full release of the immobilized enzyme to reuse the support required more drastic conditions: a pH value of 3, a buffer concentration over 2 M, and temperatures above 45 °C. However, even these conditions were not able to fully release the thermally inactivated enzyme molecules from the support, being necessary to increase the buffer concentration to 4 M sodium phosphate and decrease the pH to 2.5. The formation of unfolded protein/polymers composites seems to be responsible for this strong interaction between the octyl and some anionic groups of OC supports. The support could be reused five cycles using these conditions with similar loading capacity of the support and stability of the immobilized enzyme. Full article
(This article belongs to the Special Issue Enzyme Immobilization 2016)
Figures

Open AccessArticle The Effects of Destruxin A on Relish and Rel Gene Regulation to the Suspected Immune-Related Genes of Silkworm
Molecules 2017, 22(1), 41; doi:10.3390/molecules22010041
Received: 28 August 2016 / Revised: 24 December 2016 / Accepted: 26 December 2016 / Published: 29 December 2016
PDF Full-text (694 KB) | HTML Full-text | XML Full-text
Abstract
Destruxin A (DA), a cyclodepsipeptidic mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has anti-immunity activity against insects, but the mechanism of immune regulation is not clear yet. In our previous experiment, the significant expression changes of Bm_nscaf2838_045, Bm_nscaf2674_066, and Bm_nscaf2767_133 genes
[...] Read more.
Destruxin A (DA), a cyclodepsipeptidic mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has anti-immunity activity against insects, but the mechanism of immune regulation is not clear yet. In our previous experiment, the significant expression changes of Bm_nscaf2838_045, Bm_nscaf2674_066, and Bm_nscaf2767_133 genes in a silkworm’s hemocytes were found, which suggested that these genes might be involved in insect’s innate immunity. In the current experiment, the silkworm cell line Bm12 was used to survey the expression levels of these genes after the cells were treated with DA and the transcription factors BmRel, BmRelish1 and BmRelish2 were silenced by specific siRNA. The results indicated that, after the cells were treated by DA, the gene expression level of BmRelish2 was significantly downregulated, but BmRel and BmRelish1 were not changed. The results also showed that the gene expression levels of Bm_nscaf2838_045 and Bm_nscaf2674_066 had similar phenomena, i.e., downregulation with individual BmRelish1 gene silence or DA treatment, upregulation with combination of BmRelish1 gene silence and DA treatment, upregulation with individual BmRelish2 gene silence, and downregulation with combination of BmRelish2 gene silence plus DA treatment, but no changes in the BmRel gene silence combined with DA treatment. For the Bm_nscaf2767_133 gene, the downregulated expressions were found in individual BmRelish2 gene silence or DA treatment, upregulation in the combination treatment of BmRelish2 gene silence plus DA, and the individual treatment of BmRel or BmRelish1 silence. It is suggested that expressions of the Bm_nscaf2838_045 and Bm_nscaf2674_066 genes are closely related to the Imd signal pathway, but Bm_nscaf2767_133 genes might involve in both Toll and Imd pathways. Furthermore, the BmRelish1 gene acts as an activator and the BmRelish2 gene acts as a repressor for both Bm_nscaf2838_045 and Bm_nscaf2674_066 gene expressions. It also implies that DA may participate in the splicing process of BmRelish where BmRelish2 was promoted. Our research will provide new insights on the understanding of the activity mechanisms of destruxins. Full article
(This article belongs to the Section Bioorganic Chemistry)
Figures

Figure 1

Open AccessArticle Synthesis, Characterization, and Bactericidal Evaluation of Chitosan/Guanidine Functionalized Graphene Oxide Composites
Molecules 2017, 22(1), 12; doi:10.3390/molecules22010012
Received: 21 November 2016 / Revised: 16 December 2016 / Accepted: 21 December 2016 / Published: 23 December 2016
Cited by 2 | PDF Full-text (10544 KB) | HTML Full-text | XML Full-text
Abstract
In response to the wide spread of microbial contamination induced by bacterial pathogens, the development of novel materials with excellent antibacterial activity is of great interest. In this study, novel antibacterial chitosan (CS) and polyhexamethylene guanidine hydrochloride (PHGC) dual-polymer-functionalized graphene oxide (GO) (GO-CS-PHGC)
[...] Read more.
In response to the wide spread of microbial contamination induced by bacterial pathogens, the development of novel materials with excellent antibacterial activity is of great interest. In this study, novel antibacterial chitosan (CS) and polyhexamethylene guanidine hydrochloride (PHGC) dual-polymer-functionalized graphene oxide (GO) (GO-CS-PHGC) composites were designed and easily fabricated. The as-prepared materials were characterized by Fourier transform infrared (FTIR), X-ray photoelectron spectrometer (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. Their antibacterial capability towards bacterial strains was also studied by incubating both Gram-negative bacteria and Gram-positive bacteria in their presence. More significantly, the synergistic antibacterial action of the three components was assayed, and the findings implied that the as-prepared GO-CS-PHGC shows enhanced antibacterial activity when compared to its single components (GO, CS, PHGC or CS-PHGC) and the mixture of individual components. Not only Gram-negative bacteria but also Gram-positive bacteria are greatly inhibited by GO-CS-PHGC composites. The minimum inhibitory concentration (MIC) value of GO-CS-PHGC against E. coli was 32 μg/mL. With the powerful antibacterial activity as well as its low cost and facile preparation, GO-CS-PHGC has potential applications as a novel antibacterial agent in a wide range of biomedical uses. Full article
(This article belongs to the Special Issue Antibacterial Materials and Coatings)
Figures

Figure 1

Open AccessArticle Kaempferol and Chrysin Synergies to Improve Septic Mice Survival
Molecules 2017, 22(1), 92; doi:10.3390/molecules22010092
Received: 16 November 2016 / Revised: 19 December 2016 / Accepted: 30 December 2016 / Published: 6 January 2017
Cited by 1 | PDF Full-text (2391 KB) | HTML Full-text | XML Full-text
Abstract
Previously, we reported the role of synergy between two flavonoids—namely, chrysin and kaempferol—in inhibiting the secretion of a few major proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), and nitric oxide (NO) from lipopolysaccharide (LPS)-induced
[...] Read more.
Previously, we reported the role of synergy between two flavonoids—namely, chrysin and kaempferol—in inhibiting the secretion of a few major proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), and nitric oxide (NO) from lipopolysaccharide (LPS)-induced RAW 264.7 cells. The present study aims to evaluate the effects of this combination on a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Severe sepsis was induced in male ICR mice (n = 7) via the CLP procedure. The effects of chrysin and kaempferol combination treatment on septic mice were investigated using a 7-day survival study. The levels of key proinflammatory mediators and markers—such as aspartate aminotransferase (AST), TNF-α, and NO—in the sera samples of the septic mice were determined via ELISA and fluorescence determination at different time point intervals post-CLP challenge. Liver tissue samples from septic mice were harvested to measure myeloperoxidase (MPO) levels using a spectrophotometer. Moreover, intraperitoneal fluid (IPF) bacterial clearance and total leukocyte count were also assessed to detect any antibacterial effects exerted by chrysin and kaempferol, individually and in combination. Kaempferol treatment improved the survival rate of CLP-challenged mice by up to 16%. During this treatment, kaempferol expressed antibacterial, antiapoptotic and antioxidant activities through the attenuation of bacterial forming units, AST and NO levels, and increased polymorphonuclear leukocyte (PMN) count in the IPF. On the other hand, the chrysin treatment significantly reduced serum TNF-α levels. However, it failed to significantly improve the survival rate of the CLP-challenged mice. Subsequently, the kaempferol/chrysin combination treatment significantly improved the overall 7-day survival rate by 2-fold—up to 29%. Kaempferol and chrysin revealed some synergistic effects by acting individually upon multiple pathophysiological factors involved during sepsis. Although the kaempferol/chrysin combination did not exhibit significant antibacterial effects, it did exhibit anti-inflammatory and antioxidant activities, which translate to significant improvement in the survival rate of septic animals. These findings suggest the potential application of this combination treatment as a beneficial adjuvant supplement strategy in sepsis control. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Figures

Figure 1

Open AccessArticle A Novel Role of Silibinin as a Putative Epigenetic Modulator in Human Prostate Carcinoma
Molecules 2017, 22(1), 62; doi:10.3390/molecules22010062
Received: 30 November 2016 / Accepted: 22 December 2016 / Published: 31 December 2016
PDF Full-text (3763 KB) | HTML Full-text | XML Full-text
Abstract
Silibinin, extracted from milk thistle (Silybum marianum L.), has exhibited considerable preclinical activity against prostate carcinoma. Its antitumor and chemopreventive activities have been associated with diverse effects on cell cycle, apoptosis, and receptor-dependent mitogenic signaling pathways. Here we hypothesized that silibinin’s pleiotropic
[...] Read more.
Silibinin, extracted from milk thistle (Silybum marianum L.), has exhibited considerable preclinical activity against prostate carcinoma. Its antitumor and chemopreventive activities have been associated with diverse effects on cell cycle, apoptosis, and receptor-dependent mitogenic signaling pathways. Here we hypothesized that silibinin’s pleiotropic effects may reflect its interference with epigenetic mechanisms in human prostate cancer cells. More specifically, we have demonstrated that silibinin reduces gene expression levels of the Polycomb Repressive Complex 2 (PRC2) members Enhancer of Zeste Homolog 2 (EZH2), Suppressor of Zeste Homolog 12 (SUZ12), and Embryonic Ectoderm Development (EED) in DU145 and PC3 human prostate cancer cells, as evidenced by Real Time Polymerase Chain Reaction (RT-PCR). Furthermore immunoblot and immunofluorescence analysis revealed that silibinin-mediated reduction of EZH2 levels was accompanied by an increase in trimethylation of histone H3 on lysine (Κ)-27 residue (H3K27me3) levels and that such response was, in part, dependent on decreased expression levels of phosphorylated Akt (ser473) (pAkt) and phosphorylated EZH2 (ser21) (pEZH2). Additionally silibinin exerted other epigenetic effects involving an increase in total DNA methyltransferase (DNMT) activity while it decreased histone deacetylases 1-2 (HDACs1-2) expression levels. We conclude that silibinin induces epigenetic alterations in human prostate cancer cells, suggesting that subsequent disruptions of central processes in chromatin conformation may account for some of its diverse anticancer effects. Full article
(This article belongs to the Special Issue Silymarin)
Figures

Figure 1

Open AccessArticle Antiparasitic Activity of Sulfur- and Fluorine-Containing Bisphosphonates against Trypanosomatids and Apicomplexan Parasites
Molecules 2017, 22(1), 82; doi:10.3390/molecules22010082
Received: 31 October 2016 / Revised: 28 December 2016 / Accepted: 30 December 2016 / Published: 4 January 2017
PDF Full-text (1288 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Based on crystallographic data of the complexes 2-alkyl(amino)ethyl-1,1-bisphosphonates–Trypanosoma cruzi farnesyl diphosphate synthase, some linear 1,1-bisphosphonic acids and other closely related derivatives were designed, synthesized and biologically evaluated against T. cruzi, the responsible agent of Chagas disease and against Toxoplasma gondii,
[...] Read more.
Based on crystallographic data of the complexes 2-alkyl(amino)ethyl-1,1-bisphosphonates–Trypanosoma cruzi farnesyl diphosphate synthase, some linear 1,1-bisphosphonic acids and other closely related derivatives were designed, synthesized and biologically evaluated against T. cruzi, the responsible agent of Chagas disease and against Toxoplasma gondii, the etiologic agent of toxoplasmosis and also towards the target enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T gondii (TgFPPS), respectively. The isoprenoid-containing 1,1-bisphosphonates exhibited modest antiparasitic activity, whereas the linear α-fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates were unexpectedly devoid of antiparasitic activity. In spite of not presenting efficient antiparasitic activity, these data turned out to be very important to establish a structural activity relationship. Full article
Figures

Open AccessArticle Protective Effect of Cactus Cladode Extracts on Peroxisomal Functions in Microglial BV-2 Cells Activated by Different Lipopolysaccharides
Molecules 2017, 22(1), 102; doi:10.3390/molecules22010102
Received: 25 October 2016 / Revised: 28 December 2016 / Accepted: 4 January 2017 / Published: 7 January 2017
Cited by 2 | PDF Full-text (2087 KB) | HTML Full-text | XML Full-text
Abstract
In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized
[...] Read more.
In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized LPS serotypes, we revealed a structure-related differential effect of LPS on fatty acid β-oxidation and antioxidant enzymes in peroxisomes: Escherichia coli-LPS decreased ACOX1 activity while Salmonella minnesota-LPS reduced only catalase activity. Different cactus cladode extracts showed an antioxidant effect through microglial catalase activity activation and an anti-inflammatory effect by reducing nitric oxide (NO) LPS-dependent production. These results suggest that cactus extracts may possess a neuroprotective activity through the induction of peroxisomal antioxidant activity and the inhibition of NO production by activated microglial cells. Full article
(This article belongs to the Special Issue Natural Products and Inflammation)
Figures

Figure 1

Open AccessArticle Rate of Homologous Desensitization and Internalization of the GLP-1 Receptor
Molecules 2017, 22(1), 22; doi:10.3390/molecules22010022
Received: 23 November 2016 / Revised: 13 December 2016 / Accepted: 22 December 2016 / Published: 26 December 2016
PDF Full-text (1079 KB) | HTML Full-text | XML Full-text
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was
[...] Read more.
The glucagon-like peptide-1 receptor (GLP-1R) is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was stably expressed in HEK-293 cells. Homologous desensitization was assessed by measuring the cAMP response to agonist stimulation following pre-incubation with agonist for up to 120 min. Receptor internalization was monitored using an indirect ELISA-based method and confocal microscopy. Pre-incubation with GLP-1 resulted in a time-dependent loss of response to a second stimulation. Washing cells following pre-incubation failed to bring cAMP levels back to basal. Taking this into account, two desensitization rates were calculated: “apparent” (t1/2 = 19.27 min) and “net” (t1/2 = 2.99 min). Incubation of cells with GLP-1 also resulted in a time-dependent loss of receptor cell surface expression (t1/2 = 2.05 min). Rapid agonist-stimulated internalization of GLP-1R was confirmed using confocal microscopy. Stimulation of GLP-1R with GLP-1 results in rapid desensitization and internalization of the receptor. Interestingly, the rate of “net” desensitization closely matches the rate of internalization. Our results suggest that agonist-bound GLP-1R continues to generate cAMP after it has been internalized. Full article
(This article belongs to the Special Issue G-protein Coupled Receptor Structure and Function)
Figures

Figure 1

Open AccessArticle Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model
Molecules 2017, 22(1), 42; doi:10.3390/molecules22010042
Received: 24 November 2016 / Revised: 21 December 2016 / Accepted: 26 December 2016 / Published: 29 December 2016
PDF Full-text (2987 KB) | HTML Full-text | XML Full-text
Abstract
Bone homeostasis is tightly regulated to balance bone formation and bone resorption. Many anabolic drugs are used as bone-targeted therapeutic agents for the promotion of osteoblast-mediated bone formation or inhibition of osteoclast-mediated bone resorption. Previous studies showed that ginsenoside Re has the effect
[...] Read more.
Bone homeostasis is tightly regulated to balance bone formation and bone resorption. Many anabolic drugs are used as bone-targeted therapeutic agents for the promotion of osteoblast-mediated bone formation or inhibition of osteoclast-mediated bone resorption. Previous studies showed that ginsenoside Re has the effect of the suppression of osteoclast differentiation in mouse bone-marrow derived macrophages and zebrafish. Herein, we investigated whether ginsenoside Re affects osteoblast differentiation and mineralization in in vitro and in vivo models. Mouse osteoblast precursor MC3T3-E1 cells were used to investigate cell viability, alkaline phosphatase (ALP) activity, and mineralization. In addition, we examined osteoblastic signaling pathways. Ginsenoside Re affected ALP activity without cytotoxicity, and we also observed the stimulation of osteoblast differentiation through the activation of osteoblast markers including runt-related transcription factor 2, type 1 collagen, ALP, and osteocalcin in MC3T3-E1 cells. Moreover, Alizarin red S staining indicated that ginsenoside Re increased osteoblast mineralization in MC3T3-E1 cells and zebrafish scales compared to controls. These results suggest that ginsenoside Re promotes osteoblast differentiation as well as inhibits osteoclast differentiation, and it could be a potential therapeutic agent for bone diseases. Full article
(This article belongs to the Special Issue Current Trends in Ginseng Research)
Figures

Figure 1

Open AccessArticle Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria
Molecules 2017, 22(1), 72; doi:10.3390/molecules22010072
Received: 6 November 2016 / Revised: 16 December 2016 / Accepted: 28 December 2016 / Published: 2 January 2017
PDF Full-text (2916 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
It is widely believed that lipases in ionic liquids (ILs) possess higher enzyme activity, stability and selectivity; however, reaction equilibrium is always limited by product inhibition, and the product is difficult to separate from non-volatile ILs using distillation. To solve this problem, using
[...] Read more.
It is widely believed that lipases in ionic liquids (ILs) possess higher enzyme activity, stability and selectivity; however, reaction equilibrium is always limited by product inhibition, and the product is difficult to separate from non-volatile ILs using distillation. To solve this problem, using trialkylphosphine oxide (TOPO) as a complexing agent, a novel biphase of reactive solvent and IL was firstly reported for caffeic acid phenethyl ester (CAPE) production from methyl caffeate (MC) and 2-phenylethanol (PE) catalyzed by lipase via transesterification. The effects of the reaction parameters and their action mechanism were investigated, and the inhibition of CAPE against bacterial wilt pathogen Ralstonia solanacearum was firstly measured. The MC conversion of 98.83% ± 0.76% and CAPE yield of 96.29% ± 0.07% were obtained by response surface methodology in the 25 g/L TOPO-cyclohexane/[Bmim][Tf2N] (1:1, v/v); the complex stoichiometry calculation and FTIR spectrum confirmed that the reversible hydrogen-bond complexation between TOPO and caffeates significantly enhances the cooperative effect of two phases on the lipase-catalyzed reaction. The temperature was reduced by 14 °C; the MC concentration increased by 3.33-fold; the ratio of catalyst to donor decreased by 4.5-fold; and Km decreased 1.08-fold. The EC50 of CAPE against R. solanacearum was 0.17–0.75 mg/mL, suggesting that CAPE is a potential in vitro inhibitor of plant pathogenic bacteria. Full article
Figures

Figure 1

Open AccessArticle Dibasic Ammonium Phosphate Application Enhances Aromatic Compound Concentration in Bog Bilberry Syrup Wine
Molecules 2017, 22(1), 52; doi:10.3390/molecules22010052
Received: 20 November 2016 / Revised: 16 December 2016 / Accepted: 25 December 2016 / Published: 29 December 2016
PDF Full-text (908 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150
[...] Read more.
A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo-2,3-butanediol, 2-phenylethanol, meso-2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine. Full article
(This article belongs to the collection Wine Chemistry)
Figures

Figure 1

Open AccessArticle Design, Synthesis and Evaluation of Indene Derivatives as Retinoic Acid Receptor α Agonists
Molecules 2017, 22(1), 32; doi:10.3390/molecules22010032
Received: 4 November 2016 / Revised: 22 December 2016 / Accepted: 24 December 2016 / Published: 27 December 2016
PDF Full-text (1288 KB) | HTML Full-text | XML Full-text
Abstract
A series of novel indene-derived retinoic acid receptor α (RARα) agonists have been designed and synthesized. The use of receptor binding, cell proliferation and cell differentiation assays demonstrated that most of these compounds exhibited moderate RARα binding activity and potent antiproliferative activity. In
[...] Read more.
A series of novel indene-derived retinoic acid receptor α (RARα) agonists have been designed and synthesized. The use of receptor binding, cell proliferation and cell differentiation assays demonstrated that most of these compounds exhibited moderate RARα binding activity and potent antiproliferative activity. In particular, 4-((3-isopropoxy-2,3-dihydro-1H-inden-5-yl)-carbamoyl)benzoic acid (36d), which showed a moderate binding affinity, exhibited a great potential to induce the differentiation of NB4 cells (68.88% at 5 μM). Importantly, our work established indene as a promising skeleton for the development of novel RARα agonists. Full article
(This article belongs to the Special Issue Cancer Chemoprevention)
Figures

Open AccessArticle Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films
Molecules 2017, 22(1), 43; doi:10.3390/molecules22010043
Received: 1 December 2016 / Revised: 21 December 2016 / Accepted: 27 December 2016 / Published: 30 December 2016
PDF Full-text (6750 KB) | HTML Full-text | XML Full-text
Abstract
Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While
[...] Read more.
Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers. Full article
(This article belongs to the Special Issue Advances in Organic Nanophotonics)
Figures

Figure 1

Open AccessArticle Facile Synthesis for Benzo-1,4-Oxazepine Derivatives by Tandem Transformation of C-N Coupling/C-H Carbonylation
Molecules 2017, 22(1), 53; doi:10.3390/molecules22010053
Received: 21 November 2016 / Revised: 22 December 2016 / Accepted: 28 December 2016 / Published: 30 December 2016
PDF Full-text (6085 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A tandem transformation of C-N coupling/C-H carbonylation has been developed for the synthesis of benzo-1,4-oxazepine pharmaceutically derivatives. Notably, this reaction was accomplished by various phenylamine with ally halides under carbon dioxide atmosphere employing 2-(2-dimethylamino-vinyl)-1H-inden-1-olcatalyzed. Furthermore, under the optimized conditions, various benzo-1,4-oxazepine
[...] Read more.
A tandem transformation of C-N coupling/C-H carbonylation has been developed for the synthesis of benzo-1,4-oxazepine pharmaceutically derivatives. Notably, this reaction was accomplished by various phenylamine with ally halides under carbon dioxide atmosphere employing 2-(2-dimethylamino-vinyl)-1H-inden-1-olcatalyzed. Furthermore, under the optimized conditions, various benzo-1,4-oxazepine derivatives were obtained in good yields. Finally, a plausible CuI/CuIII mechanism of C-N coupling/C-H carbonylation transformation was proposed. Full article
(This article belongs to the collection Heterocyclic Compounds)
Figures

Scheme 1

Open AccessArticle Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides
Molecules 2017, 22(1), 83; doi:10.3390/molecules22010083
Received: 18 November 2016 / Revised: 24 December 2016 / Accepted: 27 December 2016 / Published: 4 January 2017
PDF Full-text (2627 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The structures of the mono- and the dihalogenated N-unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (1H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)–NH
[...] Read more.
The structures of the mono- and the dihalogenated N-unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (1H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)–NH2 single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the 1H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide (ABB) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar–NH2 single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer (A) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding 2017)
Figures

Figure 1

Open AccessArticle The Influence of Anionic Initiator on the Selected Properties of Poly-N-Isopropyl Acrylamide Evaluated for Controlled Drug Delivery
Molecules 2017, 22(1), 23; doi:10.3390/molecules22010023
Received: 30 September 2016 / Revised: 9 December 2016 / Accepted: 13 December 2016 / Published: 26 December 2016
PDF Full-text (3311 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the study was to monitor the influence of increasing initiator concentrations on the properties of poly-N-isopropylacrylamide (polyNIPA) nanoparticles obtained via surfactant free precipitation polymerization (SFPP). In all studied systems P-001 to P-1, the same amount of monomer was
[...] Read more.
The aim of the study was to monitor the influence of increasing initiator concentrations on the properties of poly-N-isopropylacrylamide (polyNIPA) nanoparticles obtained via surfactant free precipitation polymerization (SFPP). In all studied systems P-001 to P-1, the same amount of monomer was used, and increasing amounts of potassium persulphate (KPS). The course of each reaction was monitored by measuring the conductivity of the whole system. The resulting composition of products was confirmed by attenuated total reflectance within Fourier transformed infrared spectroscopy (ATR-FTIR) measurements. The hydrodynamic diameters with polydispersity index (PDI) and zeta potential (ZP) were measured in aqueous dispersions of the synthesized polymers in dynamic light scattering (DLS) device (λ = 678 nm), and were found to be for P-1: 20.33 nm (PDI = 0.49) and −7 mV, for P-05: 22.24 nm (PDI = 0.39) and −5 mV, for P-01: 50.14 nm (PDI = 0.49) and −3 mV, for P-005: 62.75 nm (PDI = 0.54) and −3 mV and for P-001: 509.4 nm (PDI = 0.61) and −12 mV at 18 °C, respectively. Initiator concentration affects the size and ZP of particles. The hydrodynamic diameter decreases with initiator concentration increase, whereas the time of the reaction decreases when the initiator concentration increases. This fact is reflected in the observed values of conductivity in the course of the performed reaction. Evaluated volume phase transition temperature in the range of 32 °C enables further research of the nanoparticles as thermosensitive drug carriers. Full article
Figures

Figure 1

Open AccessArticle Quality Evaluation of Pseudostellariae Radix Based on Simultaneous Determination of Multiple Bioactive Components Combined with Grey Relational Analysis
Molecules 2017, 22(1), 13; doi:10.3390/molecules22010013
Received: 1 December 2016 / Revised: 20 December 2016 / Accepted: 21 December 2016 / Published: 26 December 2016
PDF Full-text (1346 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Pseudostellariae Radix (PR) is an important traditional Chinese herbal medicine (TCM) with vast clinical consumption because of its positive effects. However, little attention has been devoted to simultaneous analysis of its bioactive components for quality control of PR based on its different harvesting
[...] Read more.
Pseudostellariae Radix (PR) is an important traditional Chinese herbal medicine (TCM) with vast clinical consumption because of its positive effects. However, little attention has been devoted to simultaneous analysis of its bioactive components for quality control of PR based on its different harvesting times, different growing habitats, and different processing methods. In this research, the quality of PR was evaluated based on simultaneous determination of multiple bioactive components combined with grey relational analysis (GRA). A reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was established to simultaneously determine the contents of 30 components in PR, including two cyclopeptides, 12 nucleosides, and 16 amino acids. Furthermore, grey relational analysis was performed to evaluate the quality of PR samples according to the contents of these 30 components. The results showed that the quality of PR harvested in 6 August 2013, cultivated in Jurong, Jiangsu, and treated by oven drying 60 °C was better than that of other PR samples. The proposed method is useful for the overall assessment on the quality of PR, and this study provides valuable information for revealing the dynamic change laws of metabolite accumulation in PR and choosing the most suitable harvesting time and reasonable processing method of PR to obtain the best quality. Full article
Figures

Figure 1

Open AccessArticle Agrimoniin, an Active Ellagitannin from Comarum palustre Herb with Anti-α-Glucosidase and Antidiabetic Potential in Streptozotocin-Induced Diabetic Rats
Molecules 2017, 22(1), 73; doi:10.3390/molecules22010073
Received: 15 November 2016 / Revised: 21 December 2016 / Accepted: 28 December 2016 / Published: 2 January 2017
PDF Full-text (981 KB) | HTML Full-text | XML Full-text
Abstract
Naturally existing α-glucosidase inhibitors from traditional herbal medicines have attracted considerable interest to treat type 2 diabetes mellitus (DM). The present study aimed to evaluate the anti-α-glucosidase activity of extracts from marsh cinquefoil (Comarum palustre L.), their hypoglycaemic action and detection of the
[...] Read more.
Naturally existing α-glucosidase inhibitors from traditional herbal medicines have attracted considerable interest to treat type 2 diabetes mellitus (DM). The present study aimed to evaluate the anti-α-glucosidase activity of extracts from marsh cinquefoil (Comarum palustre L.), their hypoglycaemic action and detection of the responsible compounds. A 60% ethanol extract from C. palustre herb revealed the highest inhibitory activity against α-glucosidase (IC50 52.0 μg/mL). The HPLC analysis of the major compounds resulted in detection of 15 compounds, including ellagitannins, flavonoids, catechin and other compounds. Using HPLC activity-based profiling a good inhibitory activity of agrimoniin-containing eluates against α-glucosidase was demonstrated. The removal of ellagitannins from the C. palustre extract significantly decreased α-glucosidase inhibition (IC50 204.7 μg/mL) due to the high enzyme-inhibiting activity of the dominant agrimoniin (IC50 21.8 μg/mL). The hypoglycaemic effect of C. palustre extracts before and after ellagitannin removal, agrimoniin and insulin was evaluated on streptozotocin-induced experimental model. Diabetic rats treated with agrimoniin and C. palustre extract before ellagitannin removal showed significant increases in the levels of plasma glucose and glycosylated hemoglobin and significant decreases in the levels of plasma insulin and hemoglobin. The data obtained confirm the leading role of agrimoniin in the antidiabetic activity of the herb C. palustre and allows us to suggest the use of this plant as a possible dietary adjunct in the treatment of DM and a source of new oral hypoglycaemic agents. Full article
Figures

Figure 1

Open AccessArticle Retro-Curcuminoids as Mimics of Dehydrozingerone and Curcumin: Synthesis, NMR, X-ray, and Cytotoxic Activity
Molecules 2017, 22(1), 33; doi:10.3390/molecules22010033
Received: 24 November 2016 / Revised: 13 December 2016 / Accepted: 16 December 2016 / Published: 29 December 2016
PDF Full-text (2304 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Curcumin and its derivatives have been extensively studied for their remarkable medicinal properties, and their chemical synthesis has been an important step in the optimization of well-controlled laboratory production. A family of new compounds that mimic the structure of curcumin and curcuminoids, here
[...] Read more.
Curcumin and its derivatives have been extensively studied for their remarkable medicinal properties, and their chemical synthesis has been an important step in the optimization of well-controlled laboratory production. A family of new compounds that mimic the structure of curcumin and curcuminoids, here named retro-curcuminoids (714), was synthesized and characterized using 1D 1H- and 13C-NMR, IR, and mass spectrometry; the X-ray structure of 7, 8, 9, 10, 12, 13, and 14 are reported here for the first time. The main structural feature of these compounds is the reverse linkage of the two aromatic moieties, where the acid chloride moiety is linked to the phenolic group while preserving α, β-unsaturated ketone functionality. The cytotoxic screening of 7, 8, 9, and 10 at 50 and 10 µg/mL was carried out with human cancer cell lines K562, MCF-7, and SKLU-1. Lipid peroxidation on rat brain was also tested for compounds 7 and 10. Compounds 7, 8, and 10 showed relevant cytotoxic activity against these cancer cell lines, and 10 showed a protective effect against lipid peroxidation. The molecular resemblance to curcuminoids and analogs with ortho substituents suggests a potential source of useful bioactive compounds. Full article
Figures

Figure 1a

Open AccessArticle Spectroscopic Studies on the Molecular Ageing of Serum Albumin
Molecules 2017, 22(1), 34; doi:10.3390/molecules22010034
Received: 29 September 2016 / Revised: 21 December 2016 / Accepted: 23 December 2016 / Published: 27 December 2016
PDF Full-text (8104 KB) | HTML Full-text | XML Full-text
Abstract
Pathological states in the organism, e.g., renal or hepatic diseases, cataract, dysfunction of coronary artery, diabetes mellitus, and also intensive workout, induce the structural modification of proteins called molecular ageing or N-A isomerization. The aim of this study was to analyze the structural
[...] Read more.
Pathological states in the organism, e.g., renal or hepatic diseases, cataract, dysfunction of coronary artery, diabetes mellitus, and also intensive workout, induce the structural modification of proteins called molecular ageing or N-A isomerization. The aim of this study was to analyze the structural changes of serum albumin caused by alkaline ageing using absorption, spectrofluorescence, and circular dichroism spectroscopy. The N-A isomerization generates significant changes in bovine (BSA) and human (HSA) serum albumin subdomains—the greatest changes were observed close to the tryptophanyl (Trp) and tyrosyl (Tyr) residue regions while a smaller change was observed in phenyloalanine (Phe) environment. Moreover, the changes in the polarity of the Trp neighborhood as well as the impact of the ageing process on α-helix, β-sheet content, and albumin molecule rotation degree have been analyzed. Based on the spectrofluorescence study, the alterations in metoprolol binding affinity to the specific sites that increase the toxicity of the drug were investigated. Full article
Figures

Figure 1

Open AccessCommunication A New Determination Method of the Solubility Parameter of Polymer Based on AIE
Molecules 2017, 22(1), 54; doi:10.3390/molecules22010054
Received: 29 November 2016 / Revised: 16 December 2016 / Accepted: 21 December 2016 / Published: 30 December 2016
PDF Full-text (2163 KB) | HTML Full-text | XML Full-text
Abstract
An accurate method of the fluorescence probe approach based on an aggregation-induced emission (AIE) molecule (tetraphenylethylene) for measuring the solubility parameter of the polymer is reported. This method is distinctive in that the approach can make the polymer chain conformation in solution be
[...] Read more.
An accurate method of the fluorescence probe approach based on an aggregation-induced emission (AIE) molecule (tetraphenylethylene) for measuring the solubility parameter of the polymer is reported. This method is distinctive in that the approach can make the polymer chain conformation in solution be related to the fluorescence intensity. Since the solubility parameter of the polymer is also closely linked to its chain conformation in solution, the solubility parameter can be determined by the fluorescence intensity. The range of the solubility parameter of polymethyl methacrylate (PMMA) tested by this method was from 9.00 cal1/2cm−3/2 to 10.00 cal1/2cm−3/2. The results are more accurate than those obtained from the traditional turbidimetric titration method, ranging from 8.60 cal1/2cm−3/2 to 12.15 cal1/2cm−3/2. According to the photoluminescence (PL) intensities spectra, the solubility parameters of PMMA and polyvinyl acetate (PVAc) are 9.19 cal1/2cm−3/2 and 9.85 cal1/2cm−3/2, respectively. Full article
Figures

Open AccessArticle Alkaloids and Phenolic Compounds from Sida rhombifolia L. (Malvaceae) and Vasorelaxant Activity of Two Indoquinoline Alkaloids
Molecules 2017, 22(1), 94; doi:10.3390/molecules22010094
Received: 12 November 2016 / Revised: 23 December 2016 / Accepted: 26 December 2016 / Published: 6 January 2017
Cited by 1 | PDF Full-text (1038 KB) | HTML Full-text | XML Full-text
Abstract
The follow-up of phytochemical and pharmacological studies of Sida rhombifolia L. (Malvaceae) aims to strengthen the chemosystematics and pharmacology of Sida genera and support the ethnopharmacological use of this species as hypotensive herb. The present work reports phytoconstituents isolated and identified from aerial
[...] Read more.
The follow-up of phytochemical and pharmacological studies of Sida rhombifolia L. (Malvaceae) aims to strengthen the chemosystematics and pharmacology of Sida genera and support the ethnopharmacological use of this species as hypotensive herb. The present work reports phytoconstituents isolated and identified from aerial parts of S. rhombifolia by using chromatographic and spectroscopic methods. The study led to the isolation of scopoletin (1), scoporone (2), ethoxy-ferulate (3), kaempferol (4), kaempferol-3-O-β-d-glycosyl-6′′-α-d-rhamnose (5), quindolinone (6), 11-methoxy-quindoline (7), quindoline (8), and the cryptolepine salt (9). The alkaloids quindolinone (6) and cryptolepine salt (9) showed vasorelaxant activity in rodent isolated mesenteric arteries. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Synthesis and Antibacterial Evaluation of New Sulfone Derivatives Containing 2-Aroxymethyl-1,3,4-Oxadiazole/Thiadiazole Moiety
Molecules 2017, 22(1), 64; doi:10.3390/molecules22010064
Received: 21 November 2016 / Revised: 22 December 2016 / Accepted: 27 December 2016 / Published: 31 December 2016
PDF Full-text (2820 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Sulfones are one of the most important classes of agricultural fungicides. To discover new lead compounds with high antibacterial activity, a series of new sulfone derivatives were designed and synthesized by introducing the aroxymethyl moiety into the scaffold of 1,3,4-oxadiazole/thiadiazole sulfones. Antibacterial activities
[...] Read more.
Sulfones are one of the most important classes of agricultural fungicides. To discover new lead compounds with high antibacterial activity, a series of new sulfone derivatives were designed and synthesized by introducing the aroxymethyl moiety into the scaffold of 1,3,4-oxadiazole/thiadiazole sulfones. Antibacterial activities against three phytopathogens (Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, Xanthomonas axonopodis pv. citri.) were assayed in vitro. As compared to the control of commercial fungicides and some reported sulfone fungicides, seven compounds 5I-15I-7 exerted remarkably higher activities with EC50 values ranging from 0.45–1.86 μg/mL against X. oryzae and 1.97–20.15 μg/mL against R. solanacearum. Exhilaratingly, 5I-1, 5I-2 and 5I-4 displayed significant in vivo activity against X. oryzae with protective effect of 90.4%, 77.7%, and 81.1% at 200 μg/mL, respectively, much higher than that exhibited by Bismerthiazol (25.6%) and Thiadiazole-copper (32.0%). And the differential phytotoxicity of active derivatives was preliminarily checked. The results demonstrated that derivative of 2-aroxymethyl-1,3,4-oxadiazole/thiadiazole sulfone can serve as potential alternative bactericides for the management of plant bacterial diseases. Full article
(This article belongs to the Special Issue Sulfur-Nitrogen Heteroaromatics)
Figures

Figure 1

Open AccessCommunication Effective Synthesis of Nucleosides Utilizing O-Acetyl-Glycosyl Chlorides as Glycosyl Donors in the Absence of Catalyst: Mechanism Revision and Application to Silyl-Hilbert-Johnson Reaction
Molecules 2017, 22(1), 84; doi:10.3390/molecules22010084
Received: 20 November 2016 / Revised: 10 December 2016 / Accepted: 15 December 2016 / Published: 5 January 2017
PDF Full-text (1157 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
An effective synthesis of nucleosides using glycosyl chlorides as glycosyl donors in the absence of Lewis acid has been developed. Glycosyl chlorides have been shown to be pivotal intermediates in the classical silyl-Hilbert-Johnson reaction. A possible mechanism that differs from the currently accepted
[...] Read more.
An effective synthesis of nucleosides using glycosyl chlorides as glycosyl donors in the absence of Lewis acid has been developed. Glycosyl chlorides have been shown to be pivotal intermediates in the classical silyl-Hilbert-Johnson reaction. A possible mechanism that differs from the currently accepted mechanism advanced by Vorbrueggen has been proposed and verified by experiments. In practice, this catalyst-free method provides easy access to Capecitabine in high yield. Full article
(This article belongs to the Section Bioorganic Chemistry)
Figures

Open AccessArticle NO Exchange for a Water Molecule Favorably Changes Iontophoretic Release of Ruthenium Complexes to the Skin
Molecules 2017, 22(1), 104; doi:10.3390/molecules22010104
Received: 24 September 2016 / Revised: 16 December 2016 / Accepted: 3 January 2017 / Published: 8 January 2017
PDF Full-text (2657 KB) | HTML Full-text | XML Full-text
Abstract
Ruthenium (Ru) complexes have been studied as promising anticancer agents. Ru nitrosyl complex (Ru-NO) is one which acts as a pro-drug for the release of nitric oxide (NO). The Ru-aqueous complex formed by the exchange of NO for a water molecule after NO
[...] Read more.
Ruthenium (Ru) complexes have been studied as promising anticancer agents. Ru nitrosyl complex (Ru-NO) is one which acts as a pro-drug for the release of nitric oxide (NO). The Ru-aqueous complex formed by the exchange of NO for a water molecule after NO release could also possess therapeutic effects. This study evaluates the influence of iontophoresis on enhancing the skin penetration of Ru-NO and Ru-aqueous and assesses its applicability as a tool in treating diverse skin diseases. Passive and iontophoretic (0.5 mA·cm−2) skin permeation of the complexes were performed for 4 h. The amount of Ru and NO in the stratum corneum (SC), viable epidermis (VE), and receptor solution was quantified while the influence of iontophoresis and irradiation on NO release from Ru-NO complex was also evaluated. Iontophoresis increased the amount of Ru-NO and Ru-aqueous recovered from the receptor solution by 15 and 400 times, respectively, as compared to passive permeation. Iontophoresis produced a higher accumulation of Ru-aqueous in the skin layers as compared to Ru-NO. At least 50% of Ru-NO penetrated the SC was stable after 4 h. The presence of Ru-NO in this skin layer suggests that further controlled release of NO can be achieved by photo-stimulation after iontophoresis. Full article
(This article belongs to the Special Issue Transdermal Delivery Systems: Current Landscape and Trends)
Figures

Figure 1

Open AccessArticle Literature Survey and Further Studies on the 3-Alkylation of N-Unprotected 3-Monosubstituted Oxindoles. Practical Synthesis of N-Unprotected 3,3-Disubstituted Oxindoles and Subsequent Transformations on the Aromatic Ring
Molecules 2017, 22(1), 24; doi:10.3390/molecules22010024
Received: 5 November 2016 / Revised: 15 December 2016 / Accepted: 17 December 2016 / Published: 26 December 2016
Cited by 1 | PDF Full-text (2674 KB) | HTML Full-text | XML Full-text
Abstract
The paper provides a comprehensive review of the base-catalysed C3-alkylation of N-unprotected-3-monosubstituted oxindoles. Based on a few, non-systematic studies described in the literature using butyllithium as the deprotonating agent, an optimized method has now been elaborated, via the corresponding lithium salt, for the
[...] Read more.
The paper provides a comprehensive review of the base-catalysed C3-alkylation of N-unprotected-3-monosubstituted oxindoles. Based on a few, non-systematic studies described in the literature using butyllithium as the deprotonating agent, an optimized method has now been elaborated, via the corresponding lithium salt, for the selective C3-alkylation of this family of compounds. The optimal excess of butyllithium and alkylating agent, and the role of the halogen atom in the latter (alkyl bromides vs. iodides) were also studied. The alkylation protocol has also been extended to some derivatives substituted at the aromatic ring. Finally, various substituents were introduced into the aromatic ring of the N-unprotected 3,3-dialkyloxindoles obtained by this optimized method. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Open AccessArticle Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba
Molecules 2017, 22(1), 74; doi:10.3390/molecules22010074
Received: 20 November 2016 / Revised: 20 December 2016 / Accepted: 27 December 2016 / Published: 2 January 2017
PDF Full-text (2082 KB) | HTML Full-text | XML Full-text
Abstract
Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba. Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C-acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two
[...] Read more.
Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba. Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C-acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT (GbAACT, GenBank Accession No. KX904942) and MVK (GbMVK, GenBank Accession No. KX904944) were cloned from G. biloba. The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding
open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis. Full article
Figures

Figure 1

Open AccessArticle Isolation of CHS Gene from Brunfelsia acuminata Flowers and Its Regulation in Anthocyanin Biosysthesis
Molecules 2017, 22(1), 44; doi:10.3390/molecules22010044
Received: 17 November 2016 / Revised: 23 December 2016 / Accepted: 25 December 2016 / Published: 29 December 2016
PDF Full-text (8541 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chalcone synthase gene (BaCHS) from Brunfelsia acuminata flowers was isolated using RT-PCR and RACE. The coding region of the gene is 1425-bp with an open reading frame of 1170-bp, 73-bp 5′UTR, and 172-bp 3′UTR. Its deduced protein does not have a
[...] Read more.
Chalcone synthase gene (BaCHS) from Brunfelsia acuminata flowers was isolated using RT-PCR and RACE. The coding region of the gene is 1425-bp with an open reading frame of 1170-bp, 73-bp 5′UTR, and 172-bp 3′UTR. Its deduced protein does not have a signal peptide but does contain a cond_enzyme superfamily domain, and consists of 389 amino acids with a predicted molecular mass of 42,699 Da and a pI of 6.57. The deduced amino acid sequence of BaCHS shares 90%, 88%, 85%, 84% and 79% identity with CHS from Petunia hybrida, Nicotiana tabacum, Solanum lycopersicum, Capsicum annuum and Camellia sinensis, respectively. The striking color change from dark purple to light purple and ultimately lead to pure white resulted from a decline in anthocyanin content of the petals and was preceded by a decrease in the expression of BaCHS. Its gene expression was positively correlated with the contents of anthocyanin (p ≤ 0.01). Full article
(This article belongs to the Section Bioorganic Chemistry)
Figures

Figure 1

Open AccessArticle Anti-HBV Activities of Three Compounds Extracted and Purified from Herpetospermum Seeds
Molecules 2017, 22(1), 14; doi:10.3390/molecules22010014
Received: 7 November 2016 / Revised: 19 December 2016 / Accepted: 20 December 2016 / Published: 27 December 2016
PDF Full-text (1294 KB) | HTML Full-text | XML Full-text
Abstract
The goal of this research was to evaluate the anti-hepatitis B virus (HBV) activities of three compounds extracted and purified from Herpetospermum seeds (HS) on HepG2.2.15 cells. Herpetin (HPT), herpetone (HPO), and herpetfluorenone (HPF) were isolated from HS and identified using HR-ESI-MS and
[...] Read more.
The goal of this research was to evaluate the anti-hepatitis B virus (HBV) activities of three compounds extracted and purified from Herpetospermum seeds (HS) on HepG2.2.15 cells. Herpetin (HPT), herpetone (HPO), and herpetfluorenone (HPF) were isolated from HS and identified using HR-ESI-MS and NMR. Different concentrations of the drugs were added to the HepG2.2.15 cells. Cell toxicity was observed with an MTT assay, cell culture supernatants were collected, and HBsAg and HBeAg were detected by ELISA. The content of HBV DNA was determined via quantitative polymerase chain reaction (PCR) with fluorescent probes. The 50% toxicity concentration (TC50) of HPF was 531.48 μg/mL, suggesting that this species is less toxic than HPT and HPO. HPT and HPF showed more potent antiviral activities than HPO. The 50% inhibition concentration (IC50) values of HPF on HBsAg and HBeAg were 176.99 and 134.53 μg/mL, respectively, and the corresponding therapeutic index (TI) values were 2.66 and 3.49, respectively. HPT and HPF were shown to significantly reduce the level of HBV DNA in the HepG2.2.15 culture medium compared to the negative control. This initial investigation of the anti-HBV constituents of HS yielded three compounds that revealed a synergistic effect of multiple components in the ethnopharmacological use of HS. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Figure 1

Open AccessArticle Novel 2,3-Dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones: Synthesis and Biological Evaluation
Molecules 2017, 22(1), 55; doi:10.3390/molecules22010055
Received: 8 December 2016 / Revised: 21 December 2016 / Accepted: 28 December 2016 / Published: 30 December 2016
PDF Full-text (1338 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Herein we describe the synthesis and evaluation of a series of novel 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones for in vitro cytotoxicity against three human cancer cell lines as well as for potential antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum.
[...] Read more.
Herein we describe the synthesis and evaluation of a series of novel 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones for in vitro cytotoxicity against three human cancer cell lines as well as for potential antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The title compounds were prepared via PdCl2-mediated endo-dig cyclization of 2-aryl-8-(arylethynyl)-6-bromo-2,3-dihydroquinazolin-4(1H)-ones. The latter were prepared, in turn, via initial Sonogashira cross-coupling of 2-amino-5-bromo-3-iodobenzamide with aryl acetylenes followed by boric acid-mediated cyclocondensation of the intermediate 2-amino-3-(arylethynyl)-5-bromobenzamides with benzaldehyde derivatives. The 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones 4ak were evaluated for potential in vitro cytotoxicity against the breast (MCF-7), melanoma (B16) and endothelioma (sEnd.2) cell lines. All of the compounds except 4h and 4i were found to be inactive against the three cancer cell lines. Compound 4h substituted with a 4-methoxyphenyl and 4-fluorophenyl groups at the 3- and 5-positions was found to exhibit significant cytotoxicity against the three cancer cell lines. The presence of phenyl and 3-chlorophenyl groups at the 3- and 5-posiitons of the pyrroloquinazolinone 4i, on the other hand, resulted in significant cytotoxicity against vascular tumour endothelial cells (sEnd.2), but reduced activity against the melanoma (B16) and breast cancer (MCF-7) cells except at higher concentrations. The 2,3-dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones 4al were found to be inactive against the chloroquine sensitive 3D7 strain of Plasmodium falciparum. Full article
(This article belongs to the collection Heterocyclic Compounds)
Figures

Open AccessArticle Lectin Digestibility and Stability of Elderberry Antioxidants to Heat Treatment In Vitro
Molecules 2017, 22(1), 95; doi:10.3390/molecules22010095
Received: 4 October 2016 / Revised: 18 December 2016 / Accepted: 29 December 2016 / Published: 6 January 2017
Cited by 1 | PDF Full-text (2071 KB) | HTML Full-text | XML Full-text
Abstract
Elderberry contains healthy low molecular weight nutraceuticals and lectins which are sequence-related to the elderberry allergen Sam n1. Some of these lectins are type II ribosome-inactivating proteins. The sensitivity of native lectins present in elderberry fruits and bark to the proteolysis triggered by
[...] Read more.
Elderberry contains healthy low molecular weight nutraceuticals and lectins which are sequence-related to the elderberry allergen Sam n1. Some of these lectins are type II ribosome-inactivating proteins. The sensitivity of native lectins present in elderberry fruits and bark to the proteolysis triggered by in vitro simulated gastric and duodenal fluids has been investigated. It was found that these lectins are refractory to proteolysis. Nonetheless, incubation for 5–10 min in a boiling water bath completely sensitized them to the hydrolytic enzymes in vitro. Under these conditions neither total Folin-Ciocalteau’s reagent reactive compounds, total anthocyanins and the mixture of cyanidin-3-glucoside plus cyanidin-3-sambubioside, nor antioxidant and free-radical scavenging activities were affected by more than 10% for incubations of up to 20 min. Therefore, short-time heat treatment reduces potential allergy-related risks deriving from elderberry consumption without seriously affecting its properties as an antioxidant and free-radical scavenging food. Full article
Figures

Figure 1

Open AccessArticle Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production
Molecules 2017, 22(1), 15; doi:10.3390/molecules22010015
Received: 31 October 2016 / Revised: 13 December 2016 / Accepted: 22 December 2016 / Published: 24 December 2016
PDF Full-text (6967 KB) | HTML Full-text | XML Full-text
Abstract
Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated
[...] Read more.
Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated cadmium (Cd) tolerance in the roots of tobacco (Nicotiana tabacum) seedlings. Treatment with CdCl2 at 20 μM for 72 h resulted in the significant decrease in root elongation by 40.39% as compared to control. CA alleviated Cd-inhibited root elongation in dose- and time-dependent manners. The addition of CA at 20 μM induced significant increase in root elongation by 42.58% as compared to Cd treatment alone. CA abolished Cd-induced ROS (reactive oxygen species) accumulation, lipid peroxidation, loss of membrane integrity, cell death, and free Cd2+ accumulation in roots. CA blocked the Cd-induced increase in the endogenous H2S level through the down-regulation of d-cysteine desulfhydrase (DCD) expression. H2S scavenger hypotaurine (HT) or potent H2S-biosynthetic inhibitor dl-propargylglicine (PAG) were able mimic the action of CA on the blockade of Cd-induced H2S accumulation, cell death, and growth inhibition. Enhancement of the endogenous H2S level with NaHS (H2S donor) abrogated all the beneficial capabilities of CA, HT, and PAG. Collectively, these results suggest that CA has great potential to confer plant tolerance against Cd stress, which is closely associated with its capability to inhibit Cd-induced H2S production. This study not only provides evidences for the regulation of plant physiology by CA but also sheds new light on the cross-talk between CA and H2S in physiological modulations. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Serum Interleukin-34 Levels Are Elevated in Patients with Systemic Lupus Erythematosus
Molecules 2017, 22(1), 35; doi:10.3390/molecules22010035
Received: 25 October 2016 / Revised: 18 December 2016 / Accepted: 21 December 2016 / Published: 28 December 2016
Cited by 1 | PDF Full-text (1529 KB) | HTML Full-text | XML Full-text
Abstract
Interleukin-34 (IL-34) was initially identified as an alternative ligand for the colony-stimulating factor-1 receptor (CSF-1R) to mediate the biology of mononuclear phagocytic cells. Recently, IL-34 was found to be associated with chronic inflammation, such as in rheumatoid arthritis (RA). Both RA and systemic
[...] Read more.
Interleukin-34 (IL-34) was initially identified as an alternative ligand for the colony-stimulating factor-1 receptor (CSF-1R) to mediate the biology of mononuclear phagocytic cells. Recently, IL-34 was found to be associated with chronic inflammation, such as in rheumatoid arthritis (RA). Both RA and systemic lupus erythematosus (SLE) are multifactorial autoimmune diseases and are characterized by excessive immune and inflammatory responses. Thus, we investigated whether IL-34 is involved in the pathogenesis of SLE. In all, 78 SLE patients and 53 healthy controls were enrolled in the research. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the concentrations of serological IL-34. Then serum IL-34 levels between the SLE group and healthy controls were analyzed by the Mann-Whitney U test. Meanwhile, the correlations between the serum IL-34 levels and disease activity indexes and other established serum markers were assessed. Furthermore, the serum IL-34 levels of 20 active SLE patients were reevaluated when diseases were in the remission stage from corticosteroids or immunosuppressive drugs. Serum IL-34 levels were significantly higher in SLE patients compared to healthy controls. Their levels were remarkably associated with accumulation of the clinical features of SLE. Additionally, IL-34 titers were positively correlated with the SLE disease activity indexes, anti-double-stranded DNA antibody (anti-dsDNA) titers and C-reactive protein (CRP) levels, and inversely with complement3 (C3) levels. Moreover, serum IL-34 levels were significantly decreased after successful treatment of SLE. Serum IL-34 could be a candidate biomarker for SLE as there are elevated serum levels in treatment-naive SLE patients and we saw a significant decrease after effective treatment. Full article
Figures

Figure 1

Open AccessCommunication Design, Synthesis and Cellular Characterization of a Dual Inhibitor of 5-Lipoxygenase and Soluble Epoxide Hydrolase
Molecules 2017, 22(1), 45; doi:10.3390/molecules22010045
Received: 7 November 2016 / Revised: 15 December 2016 / Accepted: 23 December 2016 / Published: 29 December 2016
Cited by 1 | PDF Full-text (1072 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The arachidonic acid cascade is a key player in inflammation, and numerous well-established drugs interfere with this pathway. Previous studies have suggested that simultaneous inhibition of 5-lipoxygenase (5-LO) and soluble epoxide hydrolase (sEH) results in synergistic anti-inflammatory effects. In this study, a novel
[...] Read more.
The arachidonic acid cascade is a key player in inflammation, and numerous well-established drugs interfere with this pathway. Previous studies have suggested that simultaneous inhibition of 5-lipoxygenase (5-LO) and soluble epoxide hydrolase (sEH) results in synergistic anti-inflammatory effects. In this study, a novel prototype of a dual 5-LO/sEH inhibitor KM55 was rationally designed and synthesized. KM55 was evaluated in enzyme activity assays with recombinant enzymes. Furthermore, activity of KM55 in human whole blood and endothelial cells was investigated. KM55 potently inhibited both enzymes in vitro and attenuated the formation of leukotrienes in human whole blood. KM55 was also tested in a cell function-based assay. The compound significantly inhibited the LPS-induced adhesion of leukocytes to endothelial cells by blocking leukocyte activation. Full article
(This article belongs to the Special Issue Polypharmacology and Multitarget Drug Discovery)
Figures

Figure 1

Open AccessArticle Banana Passion Fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, Phytochemical Composition and Antioxidant Capacity
Molecules 2017, 22(1), 85; doi:10.3390/molecules22010085
Received: 27 October 2016 / Revised: 23 December 2016 / Accepted: 27 December 2016 / Published: 17 January 2017
Cited by 2 | PDF Full-text (1791 KB) | HTML Full-text | XML Full-text
Abstract
Passiflora mollissima (Kunth) L.H. Bailey is an exotic fruit native to South America, known as taxo in Ecuador. This paper characterizes its flavonoid and carotenoid composition and antioxidant capacity and evaluates the effect of the spray-drying process on its phytochemical composition and antioxidant
[...] Read more.
Passiflora mollissima (Kunth) L.H. Bailey is an exotic fruit native to South America, known as taxo in Ecuador. This paper characterizes its flavonoid and carotenoid composition and antioxidant capacity and evaluates the effect of the spray-drying process on its phytochemical composition and antioxidant capacity. A total of 18 flavonoid compounds, nine proanthocyanidins and nine flavan-3-ol monomers, were identified and quantified. Glycosides of (epi)-afzelechin stood out as the most abundant flavonoid. Three carotenoids were identified, with β-carotene having the highest concentration. The DPPH· and ORAC assay methods indicated a high antioxidant capacity. Furthermore, the bioactive content showed a positive and direct correlation with antioxidant capacity. On the other hand, the spray-drying process produced a stable phytochemical composition and antioxidant activity of taxo. These results demonstrate the potential applicability of microencapsulated taxo as a functional ingredient in the food industry. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Figures

Figure 1

Open AccessArticle Assignment of Absolute Configuration of a New Hepatoprotective Schiartane-Type Nortriterpenoid Using X-Ray Diffraction
Molecules 2017, 22(1), 65; doi:10.3390/molecules22010065
Received: 9 December 2016 / Revised: 28 December 2016 / Accepted: 29 December 2016 / Published: 2 January 2017
PDF Full-text (626 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new schiartane-type nortriterpenoid, micrandilactone H was isolated from Kadsura longipedunculata Finet et Gagnep. Its 2D (two dimension) structure was elucidated by NMR spectroscopic analysis, and it is similar to that of Kadnanolactones H and the absolute configuration was established through X-ray diffraction
[...] Read more.
A new schiartane-type nortriterpenoid, micrandilactone H was isolated from Kadsura longipedunculata Finet et Gagnep. Its 2D (two dimension) structure was elucidated by NMR spectroscopic analysis, and it is similar to that of Kadnanolactones H and the absolute configuration was established through X-ray diffraction and ECD data analysis. This represents the first complete assignment of the absolute configuration of a schiartane-type nortriterpenoid by X-ray diffraction and the ECD method. Micrandilactone H showed moderate hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced toxicity in HepG2 cells with cell survival rates of 56.84% at 10 μM. Full article
Figures

Figure 1

Open AccessArticle Tamaractam, a New Bioactive Lactam from Tamarix ramosissima, Induces Apoptosis in Rheumatoid Arthritis Fibroblast-Like Synoviocytes
Molecules 2017, 22(1), 96; doi:10.3390/molecules22010096
Received: 8 November 2016 / Revised: 1 January 2017 / Accepted: 4 January 2017 / Published: 10 January 2017
PDF Full-text (1403 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chemical investigation of Tamarix ramosissima Ledeb, a traditional herbal medicine used for rheumatoid arthritis (RA) treatment in northwest China, led to the discovery of a new phenolic aromatic rings substituted lactam, tamaractam (1), together with the previously reported compounds cis-
[...] Read more.
Chemical investigation of Tamarix ramosissima Ledeb, a traditional herbal medicine used for rheumatoid arthritis (RA) treatment in northwest China, led to the discovery of a new phenolic aromatic rings substituted lactam, tamaractam (1), together with the previously reported compounds cis-N-feruloyl-3-O-methyldopamine (2) and trans-N-feruloyl-3-O-methyldopamine (3). The structures of the compounds were determined by high resolution electrospray ionization mass spectroscopy (HRESIMS) and 1D and 2D-NMR experiments, as well as comparison with the literature data. The effects of the three compounds on the viability of RA fibroblast-like synoviocytes (RA-FLS) were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Pro-apoptosis effect of compound 1 in RA-FLS was further investigated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, activated caspase-3/7 level assessment using luminescence assay, and sub-G1 fraction measurement using flow cytometry. It was found that these three compounds displayed variable proliferation inhibitory activity in RA-FLS, and compound 1 exhibited the strongest effect. Compound 1 could remarkably induce cellular apoptosis of RA-FLS, increase activated caspase-3/7 levels, and significantly increase sub-G1 fraction in the cell cycle. The results suggested that compound 1 may inhibit the proliferation of RA-FLS through apoptosis-inducing effect, and these compounds may contribute to the anti-RA effect of T. ramosissima. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Phosphorylated Radix Cyathulae officinalis Polysaccharides Act as Adjuvant via Promoting Dendritic Cell Maturation
Molecules 2017, 22(1), 106; doi:10.3390/molecules22010106
Received: 16 November 2016 / Revised: 24 December 2016 / Accepted: 4 January 2017 / Published: 10 January 2017
PDF Full-text (3001 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this study was to investigate whether phosphorylated Radix Cyathulae officinalis Kuan polysaccharides (pRCPS) used as adjuvant with foot-and-mouth disease vaccine (FMDV) can stimulate specific humoral and cellular immune responses in ICR mice. The results demonstrated that pRCPS significantly up-regulated FMDV-specific
[...] Read more.
The aim of this study was to investigate whether phosphorylated Radix Cyathulae officinalis Kuan polysaccharides (pRCPS) used as adjuvant with foot-and-mouth disease vaccine (FMDV) can stimulate specific humoral and cellular immune responses in ICR mice. The results demonstrated that pRCPS significantly up-regulated FMDV-specific IgG, IgG1, IgG2b and IgG2a antibody levels and splenocyte proliferation. pRCPS also promoted the killing activities of cytotoxic T lymphocytes (CTL) and natural killer cells (NK). In addition, pRCPS enhanced the expression levels of IL-2, IL-4, and IFN-γ in CD4+ T cells and the level of IFN-γ in CD8+ T cells. Importantly, pRCPS enhanced the expression of MHCII, CD40+, CD86+, and CD80+ in dendritic cells (DCs). This study indicated that phosphorylation modification could increase immune-enhancing activities of RCPS, and pRCPS could promote humoral and cellular immune responses through facilitating DC maturation. Full article
(This article belongs to the Special Issue Natural Polysaccharides)
Figures

Figure 1

Open AccessArticle Novel PEI/Poly-γ-Gutamic Acid Nanoparticles for High Efficient siRNA and Plasmid DNA Co-Delivery
Molecules 2017, 22(1), 86; doi:10.3390/molecules22010086
Received: 30 October 2016 / Revised: 21 December 2016 / Accepted: 29 December 2016 / Published: 4 January 2017
Cited by 1 | PDF Full-text (3776 KB) | HTML Full-text | XML Full-text
Abstract
The efficient delivery of sufficient amounts of nucleic acids into target cells is critical for successful gene therapy and gene knockdown. The DNA/siRNA co-delivery system has been considered a promising approach for cancer therapy to simultaneously express and inhibit tumor suppressor genes and
[...] Read more.
The efficient delivery of sufficient amounts of nucleic acids into target cells is critical for successful gene therapy and gene knockdown. The DNA/siRNA co-delivery system has been considered a promising approach for cancer therapy to simultaneously express and inhibit tumor suppressor genes and overexpressed oncogenes, respectively, triggering synergistic anti-cancer effects. Polyethylenimine (PEI) has been identified as an efficient non-viral vector for transgene expression. In this study, we created a very high efficient DNA/siRNA co-delivery system by incorporating a negatively-charged poly-γ-glutamic acid (γ-PGA) into PEI/nucleic acid complexes. Spherical nanoparticles with about 200 nm diameter were formed by mixing PEI/plasmid DNA/siRNA/γ-PGA (dual delivery nanoparticles; DDNPs) with specific ratio (N/P/C ratio) and the particles present positive surface charge under all manufacturing conditions. The gel retardation assay shows both nucleic acids were effectively condensed by PEI, even at low N/P ratios. The PEI-based DDNPs reveal excellent DNA/siRNA transfection efficiency in the human hepatoma cell line (Hep 3B) by simultaneously providing high transgene expression efficiency and high siRNA silencing effect. The results indicated that DDNP can be an effective tool for gene therapy against hepatoma. Full article
(This article belongs to the Special Issue Nucleic Acid-based Drug)
Figures

Figure 1

Open AccessArticle Xanthohumol, a Prenylated Chalcone from Hops, Inhibits the Viability and Stemness of Doxorubicin-Resistant MCF-7/ADR Cells
Molecules 2017, 22(1), 36; doi:10.3390/molecules22010036
Received: 14 November 2016 / Revised: 24 December 2016 / Accepted: 25 December 2016 / Published: 28 December 2016
PDF Full-text (3794 KB) | HTML Full-text | XML Full-text
Abstract
Xanthohumol is a unique prenylated flavonoid in hops (Humulus lupulus L.) and beer. Xanthohumol has been shown to possess a variety of pharmacological activities. There is little research on its effect on doxorubicin-resistant breast cancer cells (MCF-7/ADR) and the cancer stem-like cells
[...] Read more.
Xanthohumol is a unique prenylated flavonoid in hops (Humulus lupulus L.) and beer. Xanthohumol has been shown to possess a variety of pharmacological activities. There is little research on its effect on doxorubicin-resistant breast cancer cells (MCF-7/ADR) and the cancer stem-like cells exiting in this cell line. In the present study, we investigate the effect of xanthohumol on the viability and stemness of MCF-7/ADR cells. Xanthohumol inhibits viability, induces apoptosis, and arrests the cell cycle of MCF-7/ADR cells in a dose-dependent manner; in addition, xanthohumol sensitizes the inhibition effect of doxorubicin on MCF-7/ADR cells. Interestingly, we also find that xanthohumol can reduce the stemness of MCF-7/ADR cells evidenced by the xanthohumol-induced decrease in the colony formation, the migration, the percentage of side population cells, the sphere formation, and the down-regulation of stemness-related biomarkers. These results demonstrate that xanthohumol is a promising compound targeting the doxorubicin resistant breast cancer cells and regulating their stemness, which, therefore, will be applied as a potential candidate for the development of a doxorubicin-resistant breast cancer agent and combination therapy of breast cancer. Full article
Figures

Figure 1

Open AccessArticle A Multifunctional and Possible Skin UV Protectant, (3R)-5-Hydroxymellein, Produced by an Endolichenic Fungus Isolated from Parmotrema austrosinense
Molecules 2017, 22(1), 26; doi:10.3390/molecules22010026
Received: 7 September 2016 / Revised: 14 December 2016 / Accepted: 22 December 2016 / Published: 26 December 2016
PDF Full-text (3178 KB) | HTML Full-text | XML Full-text
Abstract
Lichens are considered a great bio-resource because they produce large numbers of secondary metabolites with many biological activities; however, they have not been cultivated under artificial conditions to date. As a result, lichen substances from natural sources are limited and have not been
[...] Read more.
Lichens are considered a great bio-resource because they produce large numbers of secondary metabolites with many biological activities; however, they have not been cultivated under artificial conditions to date. As a result, lichen substances from natural sources are limited and have not been widely utilized in commercial applications. Accordingly, interest in lichen-associated fungi, especially endogenic fungi, has increased. Ultraviolet (UV) radiation in sunlight is harmful to human health, resulting in demand for effective UV filtering agents for use in sunscreen. In this study, we purified (3R)-5-hydroxymellein, which has UVA absorption activity, from the secondary metabolites of an endolichenic fungus (ELF000039). The antioxidant properties were then assessed by in vitro tests. The antioxidant activity of (3R)-5-hydroxymellein was high when compared to the recognized antioxidants ascorbic acid (ASA) and butyl hydroxyl anisole (BHA). Moreover, the compound exhibited no cytotoxicity toward mouse melanoma cell lines, B16F1 and B16F10, or the normal cell line, HaCaT. Furthermore, (3R)-5-hydroxymellein recovered the damage caused by UVB irradiation and inhibited melanin synthesis. Taken together, these results suggest that (3R)-5-hydroxymellein could have an interesting and vital profile to go further development as a multifunctional skin UV protectant. Full article
(This article belongs to the Special Issue Lichens: Chemistry, Ecological and Biological Activities)
Figures

Figure 1

Open AccessArticle Meadowsweet Teas as New Functional Beverages: Comparative Analysis of Nutrients, Phytochemicals and Biological Effects of Four Filipendula Species
Molecules 2017, 22(1), 16; doi:10.3390/molecules22010016
Received: 10 November 2016 / Revised: 9 December 2016 / Accepted: 21 December 2016 / Published: 26 December 2016
PDF Full-text (1126 KB) | HTML Full-text | XML Full-text
Abstract
In recent years, the increased popularity of functional beverages such as herbal teas and decoctions has led to the search for new sources of raw materials that provide appropriate taste and functionality to consumers. The objective of this study was to investigate the
[...] Read more.
In recent years, the increased popularity of functional beverages such as herbal teas and decoctions has led to the search for new sources of raw materials that provide appropriate taste and functionality to consumers. The objective of this study was to investigate the nutritional, phytochemical profiles and bioactivities of possible functional beverages produced from F. ulmaria and its alternative substitutes (F. camtschatica, F. denudata, F. stepposa). The investigated decoctions were analyzed regarding their macronutrient, carbohydrate, organic acid, amino acid and mineral composition. Quantification of the main phenolic compounds in the decoctions of meadowsweet floral teas was performed by a microcolumn RP-HPLC-UV procedure; the highest content was revealed in F. stepposa tea. The investigation of the essential oil of four meadowsweet teas revealed the presence of 28 compounds, including simple phenols, monoterpenes, sesquiterpenes and aliphatic components. The dominance of methyl salicylate and salicylaldehyde was noted in all samples. Studies on the water soluble polysaccharides of Filipendula flowers allowed us to establish their general affiliation to galactans and/or arabinogalactans with an admixture of glucans of the starch type and galacturonans as minor components. The bioactivity data demonstrated a good ability of meadowsweet teas to inhibit amylase, α-glucosidase and AGE formation. Tea samples showed antioxidant properties by the DPPH, ABTS•+ and Br free radicals scavenging assays and the carotene bleaching assay, caused by the presence of highly active ellagitannins. The anti-complement activity of the water-soluble polysaccharide fraction of meadowsweet teas indicated their possible immune-modulating properties. Filipendula beverage formulations can be expected to deliver beneficial effects due to their unique nutritional and phytochemical profiles. Potential applications as health-promoting functional products may be suggested. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Synthesis and Single Crystal Structures of Substituted-1,3-Selenazol-2-amines
Molecules 2017, 22(1), 46; doi:10.3390/molecules22010046
Received: 15 December 2016 / Revised: 23 December 2016 / Accepted: 26 December 2016 / Published: 29 December 2016
PDF Full-text (1944 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The synthesis and X-ray single crystal structures of a series of new 4-substituted-1,3-selenazol-2-amines is reported. The efficient preparation of these compounds was carried out by two-component cyclization of the selenoureas with equimolar amounts of α-haloketones. The selenoureas were obtained from the reaction of
[...] Read more.
The synthesis and X-ray single crystal structures of a series of new 4-substituted-1,3-selenazol-2-amines is reported. The efficient preparation of these compounds was carried out by two-component cyclization of the selenoureas with equimolar amounts of α-haloketones. The selenoureas were obtained from the reaction of Woollins’ reagent with cyanamides, followed by hydrolysis with water. All new compounds have been characterized by IR spectroscopy, multi-NMR (1H, 13C, 77Se) spectroscopy, accurate mass measurement and single crystal X-ray structure analysis. Full article
Figures

Figure 1a

Open AccessArticle Antibacterial Activities and Possible Modes of Action of Acacia nilotica (L.) Del. against Multidrug-Resistant Escherichia coli and Salmonella
Molecules 2017, 22(1), 47; doi:10.3390/molecules22010047
Received: 18 November 2016 / Revised: 18 December 2016 / Accepted: 21 December 2016 / Published: 14 January 2017
PDF Full-text (5008 KB) | HTML Full-text | XML Full-text
Abstract
Medicinal plants are frequently used for the treatment of various infectious diseases. The objective of this study was to evaluate the antibacterial activity and mode of action of Acacia nilotica and the antibiogram patterns of foodborne and clinical strains of Escherichia coli and
[...] Read more.
Medicinal plants are frequently used for the treatment of various infectious diseases. The objective of this study was to evaluate the antibacterial activity and mode of action of Acacia nilotica and the antibiogram patterns of foodborne and clinical strains of Escherichia coli and Salmonella. The mechanism of action of acacia extracts against E. coli and Salmonella was elucidated by observing morphological damages including cell integrity and cell membrane permeability, as well as changes in cell structures and growth patterns in kill-time experiments. The clinical isolates of E. coli and Salmonella were found resistant to more of the tested antibiotics, compared to food isolates. Minimum inhibitory concentration and minimum bactericidal concentration of acacia leaf extracts were in the ranges of 1.56–3.12 mg/mL and 3.12–6.25 mg/mL, respectively, whereas pods and bark extracts showed somewhat higher values of 3.12–6.25 mg/mL and 6.25–12.5 mg/mL, respectively, against all tested pathogens. The release of electrolytes and essential cellular constituents (proteins and nucleic acids) indicated that acacia extracts damaged the cellular membrane of the pathogens. These changes corresponded to simultaneous reduction in the growth of viable bacteria. This study indicates that A. nilotica can be a potential source of new antimicrobials, effective against antibiotic-resistant strains of pathogens. Full article
Figures

Figure 1

Open AccessArticle Purification and Characterization of Antioxidant Peptides of Pseudosciaena crocea Protein Hydrolysates
Molecules 2017, 22(1), 57; doi:10.3390/molecules22010057
Received: 12 November 2016 / Revised: 28 December 2016 / Accepted: 29 December 2016 / Published: 30 December 2016
Cited by 1 | PDF Full-text (1835 KB) | HTML Full-text | XML Full-text
Abstract
Two peptides with antioxidant activity were isolated from Pseudosciaena crocea proteins. Pseudosciaena crocea muscle was hydrolyzed with neutral protease to obtain Pseudosciaena crocea protein hydrolysates (PCPH). After ultrafiltration through molecular weight cut-off membranes of 10, 5 and 3 kDa and assessment of free
[...] Read more.
Two peptides with antioxidant activity were isolated from Pseudosciaena crocea proteins. Pseudosciaena crocea muscle was hydrolyzed with neutral protease to obtain Pseudosciaena crocea protein hydrolysates (PCPH). After ultrafiltration through molecular weight cut-off membranes of 10, 5 and 3 kDa and assessment of free radical scavenging ability, the fraction (PCPH-IV) with the highest antioxidant activity was obtained. Several purification steps, i.e., ion exchange chromatography, gel filtration chromatography and reversed phase high performance liquid chromatography, were applied to further purify PCPH-IV. Two antioxidant peptides with the amino acid sequences Ser-Arg-Cys-His-Val and Pro-Glu-His-Trp were finally identified by LC-MS/MS. Full article
Figures

Figure 1

Open AccessArticle Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29
Molecules 2017, 22(1), 107; doi:10.3390/molecules22010107
Received: 17 October 2016 / Revised: 2 January 2017 / Accepted: 5 January 2017 / Published: 10 January 2017
Cited by 1 | PDF Full-text (1402 KB) | HTML Full-text | XML Full-text
Abstract
This study was conducted to investigate the inhibitory effect of Lactobacillus cells and supernatants on the growth of the human colon cancer cell line HT-29. Our study results indicated that the PM153 strain exhibits the best adhesion ability and the highest survival in
[...] Read more.
This study was conducted to investigate the inhibitory effect of Lactobacillus cells and supernatants on the growth of the human colon cancer cell line HT-29. Our study results indicated that the PM153 strain exhibits the best adhesion ability and the highest survival in the gastrointestinal tract simulation experiment. Furthermore, after an 8-h co-culture of PM153 and HT-29 cells, the PM153 strain can induce the secretion of nitric oxide from the HT-29 cells. In addition, after the co-culture of the BCRC17010 strain (109 cfu/mL) and HT-29 cells, the Bax/Bcl-2 ratio in the HT-29 cells was 1.19, which showed a significant difference from the other control and LAB groups (p < 0.05), which therefore led to the inference that the BCRC17010 strain exerts a pro-apoptotic effect on the HT-29 cells. Upon co-culture with HT-29 cells for 4, 8 and 12 h, the BCRC14625 strain (109 cfu/mL) demonstrated a significant increase in lactate dehydrogenase (LDH) activity (p < 0.05), causing harm to the HT-29 cell membrane; further, after an 8-h co-culture with the HT-29 cells, it induced the secretion of nitric oxide (NO) from the HT-29 cells. Some lactic acid bacteria (LAB) strains have ability to inhibit the growth of the colorectal cancer cell line HT-29 Bax/Bcl-2 pathway or NO production. In summary, we demonstrated that the BCRC17010 strain, good abilities of adhesion and increased LDH release, was the best probiotic potential for inhibition of HT-29 growth amongst the seven LAB strains tested in vitro. Full article
(This article belongs to the Section Metabolites)
Figures

Figure 1a

Open AccessArticle Inhibitory Effects of Viscum coloratum Extract on IgE/Antigen-Activated Mast Cells and Mast Cell-Derived Inflammatory Mediator-Activated Chondrocytes
Molecules 2017, 22(1), 37; doi:10.3390/molecules22010037
Received: 17 November 2016 / Revised: 15 December 2016 / Accepted: 20 December 2016 / Published: 28 December 2016
PDF Full-text (7722 KB) | HTML Full-text | XML Full-text
Abstract
The accumulation and infiltration of mast cells are found in osteoarthritic lesions in humans and rodents. Nonetheless, the roles of mast cells in osteoarthritis are almost unknown. Although Viscum coloratum has various beneficial actions, its effect on allergic and osteoarthritic responses is unknown.
[...] Read more.
The accumulation and infiltration of mast cells are found in osteoarthritic lesions in humans and rodents. Nonetheless, the roles of mast cells in osteoarthritis are almost unknown. Although Viscum coloratum has various beneficial actions, its effect on allergic and osteoarthritic responses is unknown. In this study, we established an in vitro model of mast cell-mediated osteoarthritis and investigated the effect of the ethanol extract of Viscum coloratum (VEE) on IgE/antigen (IgE/Ag)-activated mast cells and mast cell-derived inflammatory mediator (MDIM)-stimulated chondrocytes. The anti-allergic effect of VEE was evaluated by degranulation, inflammatory mediators, and the FcεRI signaling cascade in IgE/Ag-activated RBL-2H3 cells. The anti-osteoarthritic action of VEE was evaluated by cell migration, and the expression, secretion, and activity of MMPs in MDIM-stimulated SW1353 cells. VEE significantly inhibited degranulation (IC50: 93.04 μg/mL), the production of IL-4 (IC50: 73.28 μg/mL), TNF-α (IC50: 50.59 μg/mL), PGD2 and LTC4, and activation of the FcεRI signaling cascade in IgE/Ag-activated RBL-2H3 cells. Moreover, VEE not only reduced cell migration but also inhibited the expression, secretion, and/or activity of MMP-1, MMP-3, or MMP-13 in MDIM-stimulated SW1353 cells. In conclusion, VEE possesses both anti-allergic and anti-osteoarthritic properties. Therefore, VEE could possibly be considered a new herbal drug for anti-allergic and anti-osteoarthritic therapy. Moreover, the in vitro model may be useful for the development of anti-osteoarthritic drugs. Full article
(This article belongs to the Special Issue Natural Products and Chronic Diseases)
Figures

Open AccessArticle Capparis spinosa Fruit Ethanol Extracts Exert Different Effects on the Maturation of Dendritic Cells
Molecules 2017, 22(1), 97; doi:10.3390/molecules22010097
Received: 29 November 2016 / Revised: 30 December 2016 / Accepted: 2 January 2017 / Published: 7 January 2017
PDF Full-text (2107 KB) | HTML Full-text | XML Full-text
Abstract
Capparis spinosa L. (C. spinosa) has been used as food and traditional medicine and shows anti-inflammatory and anti-oxidant activities. Here, we prepared the C. spinosa fruit ethanol extracts (CSEs) using different procedures and investigated the effects of CSE on the maturation
[...] Read more.
Capparis spinosa L. (C. spinosa) has been used as food and traditional medicine and shows anti-inflammatory and anti-oxidant activities. Here, we prepared the C. spinosa fruit ethanol extracts (CSEs) using different procedures and investigated the effects of CSE on the maturation of mouse bone marrow-derived dendritic cells (DCs) in the absence or presence of lipopolysaccharide (LPS). DC maturation and cytokine production were detected by flow cytometry and ELISA, respectively. We obtained three different CSEs and dissolved in water or DMSO, named CSE2W, CSEMW, CSE3W, CSE2D, CSEMD, and CSE3D, respectively. These CSEs showed different effects on DC maturation. CSEMW and CSEMD significantly increased the expressions of CD40, CD80, and CD86, in a dose-dependent manner. CSE2W and CSE2D also showed a modest effect on DC maturation, which enhanced the expression of CD40. CSE3W and CSE3D did not change DC maturation but suppressed LPS-induced DC maturation characterized by the decreased levels of CD40 and CD80. CSE3W and CSE3D also significantly inhibited the secretions of IL-12p40, IL-6, IL-1β, and TNF-α induced by LPS. CSE3W further increased the level of IL-10 induced by LPS. Moreover, CSE3D suppressed LPS-induced DC maturation in vivo, which decreased the expressions of CD40 and CD80. These results suggested that CSE3W and CSE3D might be used to treat inflammatory diseases. Full article
Figures

Open AccessArticle Preparation, Phytochemical Investigation, and Safety Evaluation of Chlorogenic Acid Products from Eupatorium adenophorum
Molecules 2017, 22(1), 67; doi:10.3390/molecules22010067
Received: 6 December 2016 / Revised: 27 December 2016 / Accepted: 29 December 2016 / Published: 31 December 2016
Cited by 1 | PDF Full-text (813 KB) | HTML Full-text | XML Full-text
Abstract
Eupatorium adenophorum is widely distributed throughout the world’s tropical and temperate regions. It has become a harmful weed of crops and natural environments. Its leaves contain bioactive compounds such as chlorogenic acid and may be used as feed additives. In this study, chlorogenic
[...] Read more.
Eupatorium adenophorum is widely distributed throughout the world’s tropical and temperate regions. It has become a harmful weed of crops and natural environments. Its leaves contain bioactive compounds such as chlorogenic acid and may be used as feed additives. In this study, chlorogenic acid was extracted and separated from leaves of E. adenophorum. Three chlorogenic acid products were prepared with different purities of 6.11%, 22.17%, and 96.03%. Phytochemical analysis demonstrated that the main toxins of sesquiterpenes were almost completely removed in sample preparation procedure. The three products were evaluated for safety via in vitro and in vivo toxicological studies. All the products exhibited no cytotoxic effects at a dose of 400 μg/mL in an in vitro cell viability assay. When administered in vivo at a single dose up to 1.5 g/kg bw, all three products caused no signs or symptoms of toxicity in mice. These results encourage further exploration of extracts from E. adenophorum in feed additive application. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessCommunication Production and Anti-Melanoma Activity of Methoxyisoflavones from the Biotransformation of Genistein by Two Recombinant Escherichia coli Strains
Molecules 2017, 22(1), 87; doi:10.3390/molecules22010087
Received: 17 November 2016 / Revised: 20 December 2016 / Accepted: 3 January 2017 / Published: 4 January 2017
PDF Full-text (680 KB) | HTML Full-text | XML Full-text
Abstract
Biotransformation of the soy isoflavone genistein by sequential 3′-hydroxylation using recombinant Escherichia coli expressing tyrosinase from Bacillus megaterium and then methylation using another recombinant E. coli expressing O-methyltransferase from Streptomyces peucetius was conducted. The results showed that two metabolites were produced from
[...] Read more.
Biotransformation of the soy isoflavone genistein by sequential 3′-hydroxylation using recombinant Escherichia coli expressing tyrosinase from Bacillus megaterium and then methylation using another recombinant E. coli expressing O-methyltransferase from Streptomyces peucetius was conducted. The results showed that two metabolites were produced from the biotransformation, identified as 5,7,4′-trihydroxy-3′-methoxyisoflavone and 5,7,3′-trihydroxy-4′-methoxyisoflavone, respectively, based on their mass and nuclear magnetic resonance spectral data. 5,7,4′-Trihydroxy-3′-methoxyisoflavone showed potent antiproliferative activity toward mouse B16 melanoma cells with an IC50 value of 68.8 μM. In contrast, the compound did not show any cytotoxicity toward mouse normal fibroblast cells, even at 350 μM concentration. The results of the present study offer insight on the production of both 5,7,4′-trihydroxy-3′-methoxyisoflavone and 5,7,3′-trihydroxy-4′-methoxyisoflavone by two recombinant E. coli strains and the potential anti-melanoma applications of 5,7,4′-trihydroxy-3′-methoxyisoflavone. Full article
(This article belongs to the Special Issue Natural Product: A Continuing Source of Novel Drug Leads)
Figures

Open AccessCommunication Synthesis and Preliminary Biological Evaluation of Indol-3-yl-oxoacetamides as Potent Cannabinoid Receptor Type 2 Ligands
Molecules 2017, 22(1), 77; doi:10.3390/molecules22010077
Received: 21 October 2016 / Revised: 22 December 2016 / Accepted: 22 December 2016 / Published: 4 January 2017
Cited by 1 | PDF Full-text (527 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract A small series of indol-3-yl-oxoacetamides was synthesized starting from the literature known N-(adamantan-1-yl)-2-(5-(furan-2-yl)-1-pentyl-1H-indol-3-yl)-2-oxoacetamide (5) by substituting the 1-pentyl-1H-indole subunit. Our preliminary biological evaluation showed that the fluorinated derivative 8 is a potent and selective CB2 ligand with Ki = 6.2 nM. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessArticle Anti-Neuroinflammatory ent-Kaurane Diterpenoids from Pteris multifida Roots
Molecules 2017, 22(1), 27; doi:10.3390/molecules22010027
Received: 29 November 2016 / Revised: 21 December 2016 / Accepted: 22 December 2016 / Published: 26 December 2016
Cited by 2 | PDF Full-text (1496 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Activated microglia are known to be a major source of cellular neuroinflammation which causes various neurodegenerative diseases, including Alzheimer’s disease. In our continuing efforts to search for new bioactive phytochemicals against neuroinflammatory diseases, the 80% methanolic extract of Pteris multifida (Pteridaceae) roots was
[...] Read more.
Activated microglia are known to be a major source of cellular neuroinflammation which causes various neurodegenerative diseases, including Alzheimer’s disease. In our continuing efforts to search for new bioactive phytochemicals against neuroinflammatory diseases, the 80% methanolic extract of Pteris multifida (Pteridaceae) roots was found to exhibit significant NO inhibitory activity in lipopolysaccharide (LPS)-activated BV-2 microglia cells. Three new ent-kaurane diterpenoids, pterokaurane M1 2-O-β-d-glucopyranoside (4), 2β,16α-dihydroxy-ent-kaurane 2,16-di-O-β-d-glucopyranoside (10), and 2β,16α,17-trihydroxy-ent-kaurane 2-O-β-d-glucopyranoside (12), were isolated along with nine other known compounds from P. multifida roots. The chemical structures of the new compounds were determined by 1D- and 2D-NMR, HR-ESI-MS, and CD spectroscopic data analysis. Among the isolates, compounds 1 and 7 significantly inhibited NO production in LPS-stimulated BV-2 cells reducing the expression of the cyclooxygenase-2 (COX-2) protein and the level of pro-inflammatory mediators such as prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. These results suggest that ent-kaurane diterpenes from P. multifida could be potential lead compounds that act as anti-neuroinflammatory agents. Full article
(This article belongs to the Special Issue Diterpene and Its Significance in Natural Medicine)
Figures

Open AccessArticle Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum
Molecules 2017, 22(1), 108; doi:10.3390/molecules22010108
Received: 14 November 2016 / Revised: 2 January 2017 / Accepted: 2 January 2017 / Published: 11 January 2017
Cited by 1 | PDF Full-text (1183 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hericium erinaceum, commonly called lion’s mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate (6), was isolated from the fruiting bodies of
[...] Read more.
Hericium erinaceum, commonly called lion’s mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate (6), was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 15 and five sterols 711. The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, 1D-NMR (1H, 13C, and DEPT) and 2D-NMR (COSY, HMQC, HMBC, and NOESY) spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 111 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1, 3, and 4 showed potent reducing capacity. Moreover, compounds 1, 2, 4, and 5 showed moderate effects on cellular antioxidant activity and inhibited the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastic differentiation. These results suggested that H. erinaceum could be utilized in the development of natural antioxidant and anti-osteoporotic nutraceuticals and functional foods. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessArticle Effect of Film-Forming Alginate/Chitosan Polyelectrolyte Complex on the Storage Quality of Pork
Molecules 2017, 22(1), 98; doi:10.3390/molecules22010098
Received: 3 November 2016 / Revised: 25 December 2016 / Accepted: 4 January 2017 / Published: 6 January 2017
Cited by 2 | PDF Full-text (1298 KB) | HTML Full-text | XML Full-text
Abstract
Meat is one of the most challenging food products in the context of maintaining quality and safety. The aim of this work was to improve the quality of raw/cooked meat by coating it with sodium alginate (A), chitosan (C), and sodium alginate-chitosan polyelectrolyte
[...] Read more.
Meat is one of the most challenging food products in the context of maintaining quality and safety. The aim of this work was to improve the quality of raw/cooked meat by coating it with sodium alginate (A), chitosan (C), and sodium alginate-chitosan polyelectrolyte complex (PEC) hydrosols. Antioxidant properties of A, C, and PEC hydrosols were determined. Subsequently, total antioxidant capacity (TAC), sensory quality of raw/cooked pork coated with experimental hydrosols, and antimicrobial efficiency of those hydrosols on the surface microbiota were analysed. Application analyses of hydrosol were performed during 0, 7, and 14 days of refrigerated storage in MAP (modified atmosphere packaging). Ferric reducing antioxidant power (FRAP) and (2,2-diphenyll-picrylhydrazyl (DPPH) analysis confirmed the antioxidant properties of A, C, and PEC. Sample C (1.0%) was characterized by the highest DPPH value (174.67 μM Trolox/mL) of all variants. PEC samples consisted of A 0.3%/C 1.0% and A 0.6%/C 1.0% were characterized by the greatest FRAP value (~7.21 μM Fe2+/mL) of all variants. TAC losses caused by thermal treatment of meat were reduced by 45% by coating meat with experimental hydrosols. Application of PEC on the meat surface resulted in reducing the total number of micro-organisms, psychrotrophs, and lactic acid bacteria by about 61%, and yeast and molds by about 45% compared to control after a two-week storage. Full article
(This article belongs to the Special Issue Antibacterial Materials and Coatings)
Figures

Open AccessArticle Achiral Molecular Recognition of Aromatic Position Isomers by Polysaccharide-Based CSPs in Relation to Chiral Recognition
Molecules 2017, 22(1), 38; doi:10.3390/molecules22010038
Received: 16 November 2016 / Revised: 19 December 2016 / Accepted: 23 December 2016 / Published: 28 December 2016
Cited by 1 | PDF Full-text (2665 KB) | HTML Full-text | XML Full-text
Abstract
Chromatographic separation of several sets of aromatic position isomers on three cellulose- and one amylose-based chiral stationary phases was performed to evaluate the potential of a polysaccharide-based chiral stationary phase (CSP) in the separation of isomeric or closely similar molecules, and to understand
[...] Read more.
Chromatographic separation of several sets of aromatic position isomers on three cellulose- and one amylose-based chiral stationary phases was performed to evaluate the potential of a polysaccharide-based chiral stationary phase (CSP) in the separation of isomeric or closely similar molecules, and to understand the interaction mechanism of this type of CSP with analytes. Their ability of molecular recognition was quite outstanding, but the selection rule was particular to each polysaccharide derivative. In the series of analytes, cellulose tris(4-methylbenzoate) and tris(3,5-dimethylphenylcarbamate) exhibited a contrasting selection rule, and the recognition mechanism was considered based on the computer-simulation of the former polymer. Full article
Figures

Open AccessArticle Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products
Molecules 2017, 22(1), 48; doi:10.3390/molecules22010048
Received: 1 December 2016 / Revised: 1 December 2016 / Accepted: 22 December 2016 / Published: 29 December 2016
PDF Full-text (1737 KB) | HTML Full-text | XML Full-text
Abstract
Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use
[...] Read more.
Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond. Full article
(This article belongs to the Special Issue Chemicals from Biomass)
Figures

Figure 1

Open AccessArticle Promising Inhibitory Effects of Anthraquinones, Naphthopyrone, and Naphthalene Glycosides, from Cassia obtusifolia on α-Glucosidase and Human Protein Tyrosine Phosphatases 1B
Molecules 2017, 22(1), 28; doi:10.3390/molecules22010028
Received: 6 December 2016 / Revised: 22 December 2016 / Accepted: 23 December 2016 / Published: 27 December 2016
Cited by 2 | PDF Full-text (1617 KB) | HTML Full-text | XML Full-text
Abstract
The present work aims to evaluate the anti-diabetic potentials of 16 anthraquinones, two naphthopyrone glycosides, and one naphthalene glycoside from Cassia obtusifolia via inhibition against the protein tyrosine phosphatases 1B (PTP1B) and α-glucosidase. Among them, anthraquinones emodin and alaternin exhibited the highest inhibitory
[...] Read more.
The present work aims to evaluate the anti-diabetic potentials of 16 anthraquinones, two naphthopyrone glycosides, and one naphthalene glycoside from Cassia obtusifolia via inhibition against the protein tyrosine phosphatases 1B (PTP1B) and α-glucosidase. Among them, anthraquinones emodin and alaternin exhibited the highest inhibitory activities on PTP1B and α-glucosidase, respectively. Moreover, we examined the effects of alaternin and emodin on stimulation of glucose uptake by insulin-resistant human HepG2 cells. The results showed that alaternin and emodin significantly increased the insulin-provoked glucose uptake. In addition, our kinetic study revealed that alaternin competitively inhibited PTP1B, and showed mixed-type inhibition against α-glucosidase. In order to confirm enzyme inhibition, we predicted the 3D structure of PTP1B using Autodock 4.2 to simulate the binding of alaternin. The docking simulation results demonstrated that four residues of PTP1B (Gly183, Arg221, Ile219, Gly220) interact with three hydroxyl groups of alaternin and that the binding energy was negative (−6.30 kcal/mol), indicating that the four hydrogen bonds stabilize the open form of the enzyme and potentiate tight binding of the active site of PTP1B, resulting in more effective PTP1B inhibition. The results of the present study clearly demonstrate that C. obtusifolia and its constituents have potential anti-diabetic activity and can be used as a functional food for the treatment of diabetes and associated complications. Full article
Figures

Figure 1

Open AccessCommunication Atom-Economic Synthesis of 4-Pyrones from Diynones and Water
Molecules 2017, 22(1), 109; doi:10.3390/molecules22010109
Received: 21 December 2016 / Revised: 5 January 2017 / Accepted: 5 January 2017 / Published: 10 January 2017
PDF Full-text (1889 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract Transition-metal-free synthesis of 4-pyrones via TfOH-promoted nucleophilic addition/cyclization of diynones and water has been developed. This transformation is simple, atom economical and environmentally benign, providing rapid and efficient access to substituted 4-pyrones. Full article
(This article belongs to the Special Issue Reactions of Hydrocarbons and other C‒H Compounds)
Figures

Open AccessArticle Effect of Selected Plant Phenolics on Fe2+-EDTA-H2O2 System Mediated Deoxyribose Oxidation: Molecular Structure-Derived Relationships of Anti- and Pro-Oxidant Actions
Molecules 2017, 22(1), 59; doi:10.3390/molecules22010059
Received: 26 November 2016 / Revised: 17 December 2016 / Accepted: 24 December 2016 / Published: 31 December 2016
PDF Full-text (2539 KB) | HTML Full-text | XML Full-text
Abstract
In the presence of transition metal ions and peroxides, polyphenols, well-known dietary antioxidants, can act as pro-oxidants. We investigated the effect of 13 polyphenols and their metabolites on oxidative degradation of deoxyribose by an OH generating Fenton system (Fe2+-ethylenediaminetetraacetic acid
[...] Read more.
In the presence of transition metal ions and peroxides, polyphenols, well-known dietary antioxidants, can act as pro-oxidants. We investigated the effect of 13 polyphenols and their metabolites on oxidative degradation of deoxyribose by an OH generating Fenton system (Fe2+-ethylenediaminetetraacetic acid (EDTA)-H2O2). The relationship between phenolics pro-oxidant/anti-oxidant effects and their molecular structure was analyzed using multivariate analysis with multiple linear regression and a backward stepwise technique. Four phenolics revealed a significant inhibitory effect on OH-induced deoxyribose degradation, ranging from 54.4% ± 28.6% (3,4-dihydroxycinnamic acid) to 38.5% ± 10.4% (catechin) (n = 6), correlating with the number of –OH substitutions (r = 0.58). Seven phenolics augmented the oxidative degradation of deoxyribose with the highest enhancement at 95.0% ± 21.3% (quercetin) and 60.6% ± 12.2% (phloridzin). The pro-oxidant effect correlated (p < 0.05) with the number of –OH groups (r = 0.59), and aliphatic substitutes (r = −0.22) and weakly correlated with the occurrence of a catechol structure within the compound molecule (r = 0.17). Selective dietary supplementation with phenolics exhibiting pro-oxidant activity may increase the possibility of systemic oxidative stress in patients treated with medications containing chelating properties or those with high plasma concentrations of H2O2 and non-transferrin bound iron. Full article
(This article belongs to the Section Natural Products)
Figures

Figure 1

Open AccessCommunication Modeling of the Bioactivation of an Organic Nitrate by a Thiol to Form a Thionitrate Intermediate
Molecules 2017, 22(1), 19; doi:10.3390/molecules22010019
Received: 22 November 2016 / Revised: 20 December 2016 / Accepted: 23 December 2016 / Published: 25 December 2016
PDF Full-text (2125 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Thionitrates (R–SNO2) have been proposed as key intermediates in the biotransformation of organic nitrates that have been used for the clinical treatment of angina pectoris for over 100 years. It has been proposed and widely accepted that a thiol would react
[...] Read more.
Thionitrates (R–SNO2) have been proposed as key intermediates in the biotransformation of organic nitrates that have been used for the clinical treatment of angina pectoris for over 100 years. It has been proposed and widely accepted that a thiol would react with an organic nitrate to afford a thionitrate intermediate. However, there has been no example of an experimental demonstration of this elementary chemical process in organic systems. Herein, we report that aryl- and primary-alkyl-substituted thionitrates were successfully synthesized by the reaction of the corresponding lithium thiolates with organic nitrates by taking advantage of cavity-shaped substituents. The structure of a primary-alkyl-substituted thionitrate was unambiguously established by X-ray crystallographic analysis. Full article
(This article belongs to the Special Issue Cutting-Edge Organic Chemistry in Japan)
Figures

Figure 1

Open AccessArticle Synthesis of Alkyl Aryl Sulfones via Reaction of N-Arylsulfonyl Hydroxyamines with Electron-Deficient Alkenes
Molecules 2017, 22(1), 39; doi:10.3390/molecules22010039
Received: 4 December 2016 / Revised: 25 December 2016 / Accepted: 26 December 2016 / Published: 28 December 2016
PDF Full-text (1680 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract Alkyl aryl sulfones were prepared in high yields via the reaction of N-arylsulfonyl hydroxylamines with electron-deficient alkenes. These reactions have the advantages of simplicity, easily available starting materials and mild reaction conditions. Full article
(This article belongs to the Section Organic Synthesis)
Figures

Open AccessArticle Asymmetric Total Syntheses of Two 3-Acyl-5,6- dihydro-2H-pyrones: (R)-Podoblastin-S and (R)- Lachnelluloic Acid with Verification of the Absolute Configuration of (−)-Lachnelluloic Acid
Molecules 2017, 22(1), 69; doi:10.3390/molecules22010069
Received: 20 November 2016 / Accepted: 25 December 2016 / Published: 1 January 2017
PDF Full-text (1563 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Expedient asymmetric total syntheses of both (R)-podoblastin-S and (R)-lachnelluloic acid, representative of natural 3-acyl-5,6-dihydro-2H-pyran-2-ones, were performed. Compared with the reported total synthesis of (R)-podoblastin-S (14 steps, overall 5% yield), the present study was achieved in only five
[...] Read more.
Expedient asymmetric total syntheses of both (R)-podoblastin-S and (R)-lachnelluloic acid, representative of natural 3-acyl-5,6-dihydro-2H-pyran-2-ones, were performed. Compared with the reported total synthesis of (R)-podoblastin-S (14 steps, overall 5% yield), the present study was achieved in only five steps in an overall 40% yield and with 98% ee (HPLC analysis). In a similar strategy, the first asymmetric total synthesis of the relevant (R)-lachnelluloic acid was achieved in an overall 40% yield with 98% ee (HPLC analysis). The crucial step utilized readily accessible and reliable Soriente and Scettri’s Ti(OiPr)4/(S)-BINOL‒catalyzed asymmetric Mukaiyama aldol addition of 1,3-bis(trimethylsiloxy)diene, derived from ethyl acetoacetate with n-butanal for (R)- podoblastin-S and n-pentanal for (R)-lachnelluloic acid. With the comparison of the specific rotation values between the natural product and the synthetic specimen, the hitherto unknown absolute configuration at the C(6) position of (−)-lachnelluloic acid was unambiguously elucidated as 6R. Full article
(This article belongs to the Special Issue Asymmetric Synthesis 2017)
Figures

Open AccessArticle Stepwise, Protecting Group Free Synthesis of [4]Rotaxanes
Molecules 2017, 22(1), 89; doi:10.3390/molecules22010089
Received: 21 November 2016 / Revised: 22 December 2016 / Accepted: 25 December 2016 / Published: 9 January 2017
PDF Full-text (2018 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Despite significant advances in the last three decades towards high yielding syntheses of rotaxanes, the preparation of systems constructed from more than two components remains a challenge. Herein we build upon our previous report of an active template copper-catalyzed azide-alkyne cycloaddition (CuAAC) rotaxane
[...] Read more.
Despite significant advances in the last three decades towards high yielding syntheses of rotaxanes, the preparation of systems constructed from more than two components remains a challenge. Herein we build upon our previous report of an active template copper-catalyzed azide-alkyne cycloaddition (CuAAC) rotaxane synthesis with a diyne in which, following the formation of the first mechanical bond, the steric bulk of the macrocycle tempers the reactivity of the second alkyne unit. We have now extended this approach to the use of 1,3,5-triethynylbenzene in order to successively prepare [2]-, [3]- and [4]rotaxanes without the need for protecting group chemistry. Whilst the first two iterations proceeded in good yield, the steric shielding that affords this selectivity also significantly reduces the efficacy of the active template (AT)-CuAAC reaction of the third alkyne towards the preparation of [4]rotaxanes, resulting in severely diminished yields. Full article
(This article belongs to the Special Issue Recent Advances in CuAAC Click Chemistry)
Figures

Open AccessArticle Inhibitory Effects of Constituents from the Aerial Parts of Rosmarinus officinalis L. on Triglyceride Accumulation
Molecules 2017, 22(1), 110; doi:10.3390/molecules22010110
Received: 10 November 2016 / Revised: 26 December 2016 / Accepted: 8 January 2017 / Published: 17 January 2017
Cited by 3 | PDF Full-text (4157 KB) | HTML Full-text | XML Full-text
Abstract
Sixteen flavonoids (116) including two new ones, named officinoflavonosides A (1) and B (2) were obtained from the aerial parts of Rosmarinus officinalis. Among the known ones, 6, 10, and 13 were
[...] Read more.
Sixteen flavonoids (116) including two new ones, named officinoflavonosides A (1) and B (2) were obtained from the aerial parts of Rosmarinus officinalis. Among the known ones, 6, 10, and 13 were isolated from the rosmarinus genus for the first time. Their structures were elucidated by chemical and spectroscopic methods. Moreover, the effects on sodium oleate-induced triglyceride accumulation (TG) in HepG2 cells of the above-mentioned compounds and 16 other isolates (1732) reported previously to have been obtained in the plant were analyzed. Results show that eight kinds of flavonoids (compounds 1, 2, 3, 69 and 11) and seven kinds of other known isolates (compounds 1720, 23, 26 and 31) possessed significant inhibitory effects on intracellular TG content in HepG2 cells. Among them, the activities of compounds 1 and 20 were comparable to that of orlistat, which suggested that these compounds in this plant might be involved in lipid metabolism. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Figures

Figure 1

Open AccessArticle Comprehensive Quantitative Analysis of 32 Chemical Ingredients of a Chinese Patented Drug Sanhuang Tablet
Molecules 2017, 22(1), 111; doi:10.3390/molecules22010111
Received: 14 November 2016 / Revised: 24 December 2016 / Accepted: 5 January 2017 / Published: 12 January 2017
PDF Full-text (2122 KB) | HTML Full-text | XML Full-text
Abstract
Sanhuang Tablet (SHT) is a Chinese patented drug commonly used for the treatment of inflammations of the respiratory tract, gastrointestinal tract, and skin. It contains a special medicinal composition including the single compound berberine hydrochloride, extracts of Scutellariae Radix and Rhei Radix et
[...] Read more.
Sanhuang Tablet (SHT) is a Chinese patented drug commonly used for the treatment of inflammations of the respiratory tract, gastrointestinal tract, and skin. It contains a special medicinal composition including the single compound berberine hydrochloride, extracts of Scutellariae Radix and Rhei Radix et Rhizoma, as well as the powder of Rhei Radix et Rhizoma. Despite advances in analytical techniques, quantitative evaluation of a Chinese patented drug like SHT remains a challenge due to the complexity of its chemical profile. In this study, ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was used to simultaneously quantify 29 non-sugar small molecule components of SHT (11 flavonoids, two isoflavonoids, one flavanone, five anthraquinones, two dianthranones, five alkaloids, two organic acids and one stilbene). Three major saccharide components, namely fructose, glucose, and sucrose, were also quantitatively determined using high performance liquid chromatography-charged aerosol detector (HPLC-CAD) on an Asahipak NH2P-50 4E amino column. The established methods were validated in terms of linearity, sensitivity, precision, accuracy, and stability, and then successfully applied to analyze 27 batches of commercial SHT products. A total of up to 57.61% (w/w) of SHT could be quantified, in which the contents of the determined non-saccharide small molecules varied from 5.91% to 16.83% (w/w) and three saccharides accounted for 4.41% to 48.05% (w/w). The results showed that the quality of the commercial products was inconsistent, and only four of those met Chinese Pharmacopoeia criteria. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Figure 1

Open AccessArticle Preclinical Study of Antineoplastic Sinoporphyrin Sodium-PDT via In Vitro and In Vivo Models
Molecules 2017, 22(1), 112; doi:10.3390/molecules22010112
Received: 31 October 2016 / Revised: 26 December 2016 / Accepted: 4 January 2017 / Published: 11 January 2017
PDF Full-text (2534 KB) | HTML Full-text | XML Full-text
Abstract
Photodynamic therapy (PDT) investigations have seen stable increases and the development of new photosensitizers is a heated topic. Sinoporphyrin sodium is a new photosensitizer isolated from Photofrin. This article evaluated its anticancer effects by clonogenic assays, MTT assays and xenograft experiments in comparison
[...] Read more.
Photodynamic therapy (PDT) investigations have seen stable increases and the development of new photosensitizers is a heated topic. Sinoporphyrin sodium is a new photosensitizer isolated from Photofrin. This article evaluated its anticancer effects by clonogenic assays, MTT assays and xenograft experiments in comparison to Photofrin. The clonogenicity inhibition rates of sinoporphyrin sodium-PDT towards four human cancer cell lines ranged from 85.5% to 94.2% at 0.5 μg/mL under 630 nm irradiation of 30 mW/cm2 for 180 s. For MTT assays, the IC50 ranges of Photofrin-PDT and sinoporphyrin sodium-PDT towards human cancer cells were 0.3 μg/mL to 5.5 μg/mL and 0.1 μg/mL to 0.8 μg/mL under the same irradiation conditions, respectively. The IC50 values of Photofrin-PDT and sinoporphyrin sodium-PDT towards human skin cells, HaCaT, were 10 μg/mL and 1.0 μg/mL, respectively. Esophagus carcinoma and hepatoma xenograft models were established to evaluate the in vivo antineoplastic efficacy. A control group, Photofrin-PDT group (20 mg/kg) and sinoporphyrin sodium group at three doses, 0.5 mg/kg, 1 mg/kg and 2 mg/kg, were set. Mice were injected with photosensitizers 24 h before 60 J 630 nm laser irradiation. The tumor weight inhibition ratio of 2 mg/kg sinoporphyrin sodium-PDT reached approximately 90%. Besides, the tumor growths were significantly slowed down by 2 mg/kg sinoporphyrin sodium-PDT, which was equivalent to 20 mg/kg Photofrin-PDT. In sum, sinoporphyrin sodium-PDT showed great anticancer efficacy and with a smaller dose compared with Photofrin. Further investigations are warranted. Full article
(This article belongs to the Special Issue Photodynamic Therapy)
Figures

Figure 1

Open AccessArticle The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria
Molecules 2017, 22(1), 114; doi:10.3390/molecules22010114
Received: 12 December 2016 / Revised: 12 December 2016 / Accepted: 4 January 2017 / Published: 11 January 2017
PDF Full-text (387 KB) | HTML Full-text | XML Full-text
Abstract
The potential role of non-antibiotic medicinal products in the treatment of multidrug-resistant Gram-negative bacteria has recently been investigated. It is highly likely that the presence of efflux pumps may be one of the reasons for the weak activity of non-antibiotics, as in the
[...] Read more.
The potential role of non-antibiotic medicinal products in the treatment of multidrug-resistant Gram-negative bacteria has recently been investigated. It is highly likely that the presence of efflux pumps may be one of the reasons for the weak activity of non-antibiotics, as in the case of some non-steroidal anti-inflammatory drugs (NSAIDs), against Gram-negative rods. The activity of eight drugs of potential non-antibiotic activity, active substance standards, and relevant medicinal products were analysed with and without of efflux pump inhibitors against 180 strains of five Gram-negative rod species by minimum inhibitory concentration (MIC) value determination in the presence of 1 mM MgSO4. Furthermore, the influence of non-antibiotics on the susceptibility of clinical strains to quinolones with or without PAβN (Phe-Arg-β-naphthylamide) was investigated. The impacts of PAβN on the susceptibility of bacteria to non-antibiotics suggests that amitriptyline, alendronate, nicergoline, and ticlopidine are substrates of efflux pumps in Gram-negative rods. Amitriptyline/Amitriptylinum showed the highest direct antibacterial activity, with MICs ranging 100–800 mg/L against all studied species. Significant decreases in the MIC values of other active substances (acyclovir, atorvastatin, and famotidine) tested with pump inhibitors were not observed. The investigated non-antibiotic medicinal products did not alter the MICs of quinolones in the absence and in the presence of PAβN to the studied clinical strains of five groups of species. Full article
Figures

Figure 1

Open AccessArticle Characterization of the Micromorphology and Topochemistry of Poplar Wood during Mild Ionic Liquid Pretreatment for Improving Enzymatic Saccharification
Molecules 2017, 22(1), 115; doi:10.3390/molecules22010115
Received: 29 November 2016 / Revised: 20 December 2016 / Accepted: 9 January 2017 / Published: 11 January 2017
PDF Full-text (12798 KB) | HTML Full-text | XML Full-text
Abstract
Ionic liquids (ILs) as designer solvents have been applied in biomass pretreatment to increase cellulose accessibility and therefore improve the enzymatic hydrolysis. We investigated the characterization of the micromorphology and the topochemistry of poplar wood during 1-ethyl-3-methylimidazolium acetate pretreatment with mild conditions (90
[...] Read more.
Ionic liquids (ILs) as designer solvents have been applied in biomass pretreatment to increase cellulose accessibility and therefore improve the enzymatic hydrolysis. We investigated the characterization of the micromorphology and the topochemistry of poplar wood during 1-ethyl-3-methylimidazolium acetate pretreatment with mild conditions (90 °C for 20 and 40 min) by multiple microscopic techniques (FE-SEM, CLSM, and CRM). Chemical composition analysis, XRD, cellulase adsorption isotherm, and enzymatic hydrolysis were also performed to monitor the variation of substrate properties. Our results indicated that the biomass conversion was greatly enhanced (from 20.57% to 73.64%) due to the cell wall deconstruction and lignin dissolution (29.83% lignin was removed after incubation for 40 min), rather than the decrystallization or crystallinity transformation of substrates. The mild ILs pretreatment, with less energy input, can not only enhance enzymatic hydrolysis, but also provide a potential approach as the first step in improving the sequential pretreatment effectiveness in integrated methods. This study provides new insights on understanding the ILs pretreatment with low temperature and short duration, which is critical for developing individual and/or combined pretreatment technologies with reduced energy consumption. Full article
Figures

Open AccessArticle Radix isatidis Polysaccharides Inhibit Influenza a Virus and Influenza A Virus-Induced Inflammation via Suppression of Host TLR3 Signaling In Vitro
Molecules 2017, 22(1), 116; doi:10.3390/molecules22010116
Received: 28 November 2016 / Revised: 8 January 2017 / Accepted: 9 January 2017 / Published: 11 January 2017
PDF Full-text (1435 KB) | HTML Full-text | XML Full-text
Abstract
Influenza remains one of the major epidemic diseases worldwide, and rapid virus replication and collateral lung tissue damage caused by excessive pro-inflammatory host immune cell responses lead to high mortality rates. Thus, novel therapeutic agents that control influenza A virus (IAV) propagation and
[...] Read more.
Influenza remains one of the major epidemic diseases worldwide, and rapid virus replication and collateral lung tissue damage caused by excessive pro-inflammatory host immune cell responses lead to high mortality rates. Thus, novel therapeutic agents that control influenza A virus (IAV) propagation and attenuate excessive pro-inflammatory responses are needed. Polysaccharide extract from Radix isatidis, a traditional Chinese herbal medicine, exerted potent anti-IAV activity against human seasonal influenza viruses (H1N1 and H3N2) and avian influenza viruses (H6N2 and H9N2) in vitro. The polysaccharides also significantly reduced the expression of pro-inflammatory cytokines (IL-6) and chemokines (IP-10, MIG, and CCL-5) stimulated by A/PR/8/34 (H1N1) at a range of doses (7.5 mg/mL, 15 mg/mL, and 30 mg/mL); however, they were only effective against progeny virus at a high dose. Similar activity was detected against inflammation induced by avian influenza virus H9N2. The polysaccharides strongly inhibited the protein expression of TLR-3 induced by PR8, suggesting that they impair the upregulation of pro-inflammatory factors induced by IAV by inhibiting activation of the TLR-3 signaling pathway. The polysaccharide extract from Radix isatidis root therefore has the potential to be used as an adjunct to antiviral therapy for the treatment of IAV infection. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Figure 1

Open AccessArticle A Cytotoxic and Anti-inflammatory Campesterol Derivative from Genetically Transformed Hairy Roots of Lopezia racemosa Cav. (Onagraceae)
Molecules 2017, 22(1), 118; doi:10.3390/molecules22010118
Received: 12 November 2016 / Revised: 3 January 2017 / Accepted: 5 January 2017 / Published: 12 January 2017
PDF Full-text (1131 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The genetically transformed hairy root line LRT 7.31 obtained by infecting leaf explants of Lopezia racemosa Cav with the Agrobacterium rhizogenes strain ATCC15834/pTDT, was evaluated to identify the anti-inflammatory and cytotoxic compounds reported previously for the wild plant. After several subcultures of the
[...] Read more.
The genetically transformed hairy root line LRT 7.31 obtained by infecting leaf explants of Lopezia racemosa Cav with the Agrobacterium rhizogenes strain ATCC15834/pTDT, was evaluated to identify the anti-inflammatory and cytotoxic compounds reported previously for the wild plant. After several subcultures of the LRT 7.31 line, the bio-guided fractionation of the dichloromethane–methanol (1:1) extract obtained from dry biomass afforded a fraction that showed important in vivo anti-inflammatory, and in vitro cytotoxic activities. Chemical separation of the active fraction allowed us to identify the triterpenes ursolic (1) and oleanolic (2) acids, and (23R)-2α,3β,23,28-tetrahydroxy-14,15-dehydrocampesterol (3) as the anti-inflammatory principles of the active fraction. A new molecule 3 was characterized by spectroscopic analysis of its tetraacetate derivative 3a. This compound was not described in previous reports of callus cultures, in vitro germinated seedlings and wild plant extracts of whole L. racemosa plants. The anti-inflammatory and cytotoxic activities displayed by the fraction are associated to the presence of compounds 13. The present study reports the obtaining of the transformed hairy roots, the bioguided isolation of the new molecule 3, and its structure characterization. Full article
(This article belongs to the Section Natural Products)
Figures

Open AccessArticle Synthetic Approaches to Mono- and Bicyclic Perortho-Esters with a Central 1,2,4-Trioxane Ring as the Privileged Lead Structure in Antimalarial and Antitumor-Active Peroxides and Clarification of the Peroxide Relevance
Molecules 2017, 22(1), 119; doi:10.3390/molecules22010119
Received: 8 December 2016 / Revised: 4 January 2017 / Accepted: 6 January 2017 / Published: 11 January 2017
PDF Full-text (1572 KB) | HTML Full-text | XML Full-text
Abstract
The synthesis of 4-styryl-substituted 2,3,8-trioxabicyclo[3.3.1]nonanes, peroxides with the core structure of the bioactive 1,2,4-trioxane ring, was conducted by a multistep route starting from the aryl methyl ketones 1a1c. Condensation and reduction/oxidation delivered enals 4a4c that were coupled with
[...] Read more.
The synthesis of 4-styryl-substituted 2,3,8-trioxabicyclo[3.3.1]nonanes, peroxides with the core structure of the bioactive 1,2,4-trioxane ring, was conducted by a multistep route starting from the aryl methyl ketones 1a1c. Condensation and reduction/oxidation delivered enals 4a4c that were coupled with ethyl acetate and reduced to the 1,3-diol substrates 6a6c. Highly diastereoselective photooxygenation delivered the hydroperoxides 7a7c and subsequent PPTS (pyridinium-p-toluenesulfonic acid)-catalyzed peroxyacetalization with alkyl triorthoacetates gave the cyclic peroxides 8a8e. These compounds in general show only moderate antimalarial activities. In order to extend the repertoire of cyclic peroxide structure, we aimed for the synthesis of spiro-perorthocarbonates from orthoester condensation of β-hydroxy hydroperoxide 9 but could only realize the monocyclic perorthocarbonate 10. That the central peroxide moiety is the key structural motif in anticancer active GST (glutathione S-transferase)-inhibitors was elucidated by the synthesis of a 1,3-dioxane 15—with a similar substitution pattern as the pharmacologically active peroxide 11—via a singlet oxygen ene route from the homoallylic alcohol 12. Full article
(This article belongs to the Special Issue Artemisinin: Against Malaria, Cancer and Viruses)
Figures

Open AccessCommunication Deep Eutectic Solvents as Novel and Effective Extraction Media for Quantitative Determination of Ochratoxin A in Wheat and Derived Products
Molecules 2017, 22(1), 121; doi:10.3390/molecules22010121
Received: 11 November 2016 / Revised: 3 January 2017 / Accepted: 10 January 2017 / Published: 12 January 2017
Cited by 2 | PDF Full-text (717 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
An unprecedented, environmentally friendly, and faster method for the determination of Ochratoxin A (OTA) (a mycotoxin produced by several species of Aspergillus and Penicillium and largely widespread in nature, in wheat and derived products) has, for the first time, been set up and
[...] Read more.
An unprecedented, environmentally friendly, and faster method for the determination of Ochratoxin A (OTA) (a mycotoxin produced by several species of Aspergillus and Penicillium and largely widespread in nature, in wheat and derived products) has, for the first time, been set up and validated using choline chloride (ChCl)-based deep eutectic solvents (DESs) (e.g., ChCl/glycerol (1:2) and ChCl/ urea (1:2) up to 40% (w/w) water) as privileged, green, and biodegradable extraction solvents. This also reduces worker exposure to toxic chemicals. Results are comparable to those obtained using conventional, hazardous and volatile organic solvents (VOCs) typical of the standard and official methods. OTA recovery from spiked durum wheat samples, in particular, was to up to 89% versus 93% using the traditional acetonitrile-water mixture with a repeatability of the results (RSDr) of 7%. Compatibility of the DES mixture with the antibodies of the immunoaffinity column was excellent as it was able to retain up to 96% of the OTA. Recovery and repeatability for durum wheat, bread crumbs, and biscuits proved to be within the specifications required by the current European Commission (EC) regulation. Good results in terms of accuracy and precision were achieved with mean recoveries between 70% (durum wheat) and 88% (bread crumbs) and an RSDr between 2% (biscuits) and 7% (bread). Full article
Figures

Open AccessArticle Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation
Molecules 2017, 22(1), 122; doi:10.3390/molecules22010122
Received: 2 December 2016 / Revised: 3 January 2017 / Accepted: 9 January 2017 / Published: 12 January 2017
PDF Full-text (3989 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Spinal cord injury (SCI) is one of the most devastating medical conditions; however, currently, there are no effective pharmacological interventions for SCI. Ginsenoside Rg3 (GRg3) is one of the protopanaxadiols that show anti-inflammatory, anti-oxidant, and neuroprotective effects. The present study investigated the neuroprotective
[...] Read more.
Spinal cord injury (SCI) is one of the most devastating medical conditions; however, currently, there are no effective pharmacological interventions for SCI. Ginsenoside Rg3 (GRg3) is one of the protopanaxadiols that show anti-inflammatory, anti-oxidant, and neuroprotective effects. The present study investigated the neuroprotective effect of GRg3 following SCI in rats. SCI was induced using a static compression model at vertebral thoracic level 10 for 5 min. GRg3 was administrated orally at a dose of 10 or 30 mg/kg/day for 14 days after the SCI. GRg3 (30 mg/kg) treatment markedly improved behavioral motor functions, restored lesion size, preserved motor neurons in the spinal tissue, reduced Bax expression and number of TUNEL-positive cells, and suppressed mRNA expression of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. GRg3 also attenuated the over-production of cyclooxygenase-2 and inducible nitric oxide synthase after SCI. Moreover, GRg3 markedly suppressed microglial activation in the spinal tissue. In conclusion, GRg3 treatment led to a remarkable recovery of motor function and a reduction in spinal tissue damage by suppressing neuronal apoptosis and inflammatory responses after SCI. These results suggest that GRg3 may be a potential therapeutic agent for the treatment of SCI. Full article
(This article belongs to the Special Issue Current Trends in Ginseng Research)
Figures

Figure 1

Open AccessArticle Novel Antihypertensive Peptides Derived from Adlay (Coix larchryma-jobi L. var. ma-yuen Stapf) Glutelin
Molecules 2017, 22(1), 123; doi:10.3390/molecules22010123
Received: 9 October 2016 / Revised: 25 November 2016 / Accepted: 29 December 2016 / Published: 13 January 2017
Cited by 2 | PDF Full-text (1020 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Our previous studies have shown that Coix glutelin pepsin hydrolysate can effectively inhibit angiotensin converting enzyme (ACE) activity in vitro. The main purpose of this study was to obtain potent anti-hypertensive peptides from Coix glutelin. The Coix glutelin hydrolysates (CGH) were prepared by
[...] Read more.
Our previous studies have shown that Coix glutelin pepsin hydrolysate can effectively inhibit angiotensin converting enzyme (ACE) activity in vitro. The main purpose of this study was to obtain potent anti-hypertensive peptides from Coix glutelin. The Coix glutelin hydrolysates (CGH) were prepared by pepsin catalysis and further separated by an ultrafitration (UF) system, gel filtration chromatography (GFC) and reversed-phase high performance liquid chromatography (RP-HPLC). As a result, the sub-fraction F5-3 had the highest ACE-inhibitory activity. Six ACE inhibitory peptides were identified using nano-liquid chromatography coupled to tandem mass spectrometry. The most potent peptide GAAGGAF (IC50 = 14.19 μmol·L−1) was finally obtained by further molecular simulation screening and a series of division and optimization. Single oral administration of synthesized GAAGGAF at 15 mg/kg body weight (BW) in spontaneously hypertensive rats (SHR) could reduce the systolic blood pressure (SBP) around 27.50 mmHg and the effect lasted for at least 8 h. The study demonstrated for the first time that the ACE inhibitory peptide GAAGGAF from Coix glutelin has a significant antihypertensive effect, and it could be a good natural ingredient for pharmaceuticals against hypertension and the related diseases. Full article
(This article belongs to the Special Issue Peptide-Based Drugs and Drug Delivery Systems)
Figures

Figure 1

Open AccessArticle GADD45a Regulates Olaquindox-Induced DNA Damage and S-Phase Arrest in Human Hepatoma G2 Cells via JNK/p38 Pathways
Molecules 2017, 22(1), 124; doi:10.3390/molecules22010124
Received: 15 November 2016 / Revised: 28 December 2016 / Accepted: 9 January 2017 / Published: 13 January 2017
PDF Full-text (6859 KB) | HTML Full-text | XML Full-text
Abstract
Olaquindox, a quinoxaline 1,4-dioxide derivative, is widely used as a feed additive in many countries. The potential genotoxicity of olaquindox, hence, is of concern. However, the proper mechanism of toxicity was unclear. The aim of the present study was to investigate the effect
[...] Read more.
Olaquindox, a quinoxaline 1,4-dioxide derivative, is widely used as a feed additive in many countries. The potential genotoxicity of olaquindox, hence, is of concern. However, the proper mechanism of toxicity was unclear. The aim of the present study was to investigate the effect of growth arrest and DNA damage 45 alpha (GADD45a) on olaquindox-induced DNA damage and cell cycle arrest in HepG2 cells. The results showed that olaquindox could induce reactive oxygen species (ROS)-mediated DNA damage and S-phase arrest, where increases of GADD45a, cyclin A, Cdk 2, p21 and p53 protein expression, decrease of cyclin D1 and the activation of phosphorylation-c-Jun N-terminal kinases (p-JNK), phosphorylation-p38 (p-p38) and phosphorylation-extracellular signal-regulated kinases (p-ERK) were involved. However, GADD45a knockdown cells treated with olaquindox could significantly decrease cell viability, exacerbate DNA damage and increase S-phase arrest, associated with the marked activation of p-JNK, p-p38, but not p-ERK. Furthermore, SP600125 and SB203580 aggravated olaquindox-induced DNA damage and S-phase arrest, suppressed the expression of GADD45a. Taken together, these findings revealed that GADD45a played a protective role in olaquindox treatment and JNK/p38 pathways may partly contribute to GADD45a regulated olaquindox-induced DNA damage and S-phase arrest. Our findings increase the understanding on the molecular mechanisms of olaquindox. Full article
(This article belongs to the Special Issue Chemistry and Pharmacology of Modulators of Oxidative Stress)
Figures

Figure 1

Open AccessArticle Chemical Constituents from the Roots and Rhizomes of Asarum heterotropoides var. mandshuricum and the In Vitro Anti-Inflammatory Activity
Molecules 2017, 22(1), 125; doi:10.3390/molecules22010125
Received: 14 December 2016 / Revised: 3 January 2017 / Accepted: 6 January 2017 / Published: 13 January 2017