Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = zinc ferrite nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9508 KiB  
Article
Responses of Tomato Photosystem II Photochemistry to Pegylated Zinc-Doped Ferrite Nanoparticles
by Ilektra Sperdouli, Kleoniki Giannousi, Julietta Moustaka, Orestis Antonoglou, Catherine Dendrinou-Samara and Michael Moustakas
Nanomaterials 2025, 15(4), 288; https://doi.org/10.3390/nano15040288 - 13 Feb 2025
Viewed by 858
Abstract
Various metal-based nanomaterials have been the focus of research regarding their use in controlling pests and diseases and in improving crop yield and quality. In this study, we synthesized via a solvothermal procedure pegylated zinc-doped ferrite (ZnFer) NPs and characterized their physicochemical properties [...] Read more.
Various metal-based nanomaterials have been the focus of research regarding their use in controlling pests and diseases and in improving crop yield and quality. In this study, we synthesized via a solvothermal procedure pegylated zinc-doped ferrite (ZnFer) NPs and characterized their physicochemical properties by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), FT-IR and UV–Vis spectroscopies, as well as transmission electron microscopy (TEM). Subsequently, their impact on tomato photosynthetic efficiency was evaluated by using chlorophyll a fluorescence imaging analysis to estimate the light energy use efficiency of photosystem II (PSII), 30, 60, and 180 min after foliar spray of tomato plants with distilled water (control plants) or 15 mg L−1 and 30 mg L−1 ZnFer NPs. The PSII responses of tomato leaves to foliar spray with ZnFer NPs showed time- and dose-dependent biphasic hormetic responses, characterized by a short-time inhibitory effect by the low dose and stimulatory effect by the high dose, while at a longer exposure period, the reverse phenomenon was recorded by the low and high doses. An inhibitory effect on PSII function was observed after more than ~120 min exposure to both ZnFer NPs concentrations, implying a negative effect on PSII photochemistry. We may conclude that the synthesized ZnFer NPs, despite their ability to induce hormesis of PSII photochemistry, have a negative impact on photosynthetic function. Full article
(This article belongs to the Special Issue Advances in Toxicity of Nanoparticles in Organisms (2nd Edition))
Show Figures

Figure 1

17 pages, 2785 KiB  
Article
Zn-Ferrite and Hematite Dispersed by SBA-15 Silica Grains: Visible Light-Driven Photocatalytic Activity for Advanced Oxidation Process on Amoxicillin
by Aya Jezzini, Anne Davidson, Gilles Wallez, Jean-Marc Grenèche, Tayssir Hamieh and Joumana Toufaily
J. Compos. Sci. 2025, 9(2), 73; https://doi.org/10.3390/jcs9020073 - 5 Feb 2025
Viewed by 834
Abstract
Nanoparticles of ZnFe2O4 and hematite with varied sizes and distributions were synthesized using the two-solvent method (cyclohexane, water) on SBA-15 silica batches. Calcination is performed in air at 700 °C (2 °C/min) with rapid quenching produced catalysts with distinct nanoparticle [...] Read more.
Nanoparticles of ZnFe2O4 and hematite with varied sizes and distributions were synthesized using the two-solvent method (cyclohexane, water) on SBA-15 silica batches. Calcination is performed in air at 700 °C (2 °C/min) with rapid quenching produced catalysts with distinct nanoparticle configurations, namely, internal zinc ferrite and external hematite. The choice of precursor was critical, and nitrate salts yielded only zinc ferrite nanoparticles, while chloride salts produced a mixture of hematite and zinc ferrite. The photocatalytic activity of these materials was evaluated under visible light irradiation from an LED lamp, using O2 from air as an oxidizing agent without the addition of H2O2. Samples enriched with external hematite nanoparticles from chloride precursors achieved the highest activity, decomposing 30% of AMX in 225 min. In contrast, nitrate-derived samples with predominantly internal zinc ferrite nanoparticles exhibited lower catalytic activity. Characterization via TEM, XRD, N2 sorption, and Mössbauer spectroscopy confirmed the structural and magnetic properties of the nanoparticles. Mössbauer spectra, particularly at 12K and under a magnetic field, demonstrated the presence of hematite nanoparticles, distinguishing them from isolated Fe (III) cations. Zinc ferrite nanoparticles exhibited specific magnetic ordering, with Fe ions occupying tetrahedral and octahedral sites. The results demonstrate the critical role of nanoparticle, composition, and positioning in optimizing photocatalytic efficiency for water decomposition. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Graphical abstract

28 pages, 7742 KiB  
Article
Structure and Functional Characteristics of Novel Polyurethane/Ferrite Nanocomposites with Antioxidant Properties and Improved Biocompatibility for Vascular Graft Development
by Marija V. Pergal, Jelena Brkljačić, Dana Vasiljević-Radović, Miloš Steinhart, Sanja Ostojić, Biljana Dojčinović, Bratislav Antić and Gordana Tovilović-Kovačević
Polymers 2025, 17(2), 152; https://doi.org/10.3390/polym17020152 - 9 Jan 2025
Viewed by 1487
Abstract
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper–zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type [...] Read more.
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper–zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test. The antioxidant activity was detected by UV–VIS spectroscopy using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. Embedding the different types of nanoparticles in the polyurethane matrix increased phase mixing, swelling ability, and DPPH scavenging, decreased surface roughness, and differently affected the stiffness of the prepared materials. The composite with zinc ferrite showed improved mechanical properties, hydrophilicity, cell adhesion, and antioxidant activity with similar thermal stability, but lower surface roughness and crosslinking density compared to the pristine polyurethane matrix. The in vitro biocompatibility evaluation demonstrates that all nanocomposites are non-toxic, exhibit good hemocompatibility, and promote cell adhesion, and recommends their use as biocompatible materials for the development of coatings for vascular implants. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

13 pages, 4139 KiB  
Article
Microstructural, Morphological, and Magnetic Effects of NiFe2O4 Shell Formation Around Nanospherical ZnFe2O4 Cores
by Marija Šuljagić, Vuk Uskoković, Lukasz Kilanski, Sabina Lewinska, Abdul Khaliq, Anna Ślawska-Waniewska, Aleksandar Kremenović, Vladimir Pavlović, Dejan A. Jeremić and Ljubica Andjelković
Magnetochemistry 2025, 11(1), 2; https://doi.org/10.3390/magnetochemistry11010002 - 5 Jan 2025
Viewed by 1554
Abstract
First-row transition metal oxides have relatively modest magnetic properties compared to those of permanent magnets based on rare earth elements. However, there is a hope that this gap might be bridged via proper compositional and structural adjustments. Bi-magnetic nanostructures with homogeneous interfaces often [...] Read more.
First-row transition metal oxides have relatively modest magnetic properties compared to those of permanent magnets based on rare earth elements. However, there is a hope that this gap might be bridged via proper compositional and structural adjustments. Bi-magnetic nanostructures with homogeneous interfaces often exhibit a combination or synergy of properties of both phases, resulting in improved performance compared to their monophasic magnetic counterparts. To gain a deeper insight into these complex structures, a bi-magnetic nanostructured material composed of superparamagnetic nanoparticles comprising a zinc ferrite core and a nickel ferrite shell was synthesized using the seed-mediated growth approach. The resulting ZnFe2O4@NiFe2O4 core–shell nanoparticles were characterized using a series of experimental techniques and were compared to the ZnFe2O4 cores. Most importantly, the formation of the NiFe2O4 shell around the ZnFe2O4 core improved the net crystallinity of the material and altered the particle morphology by reducing the convexity of the surface. Simultaneously, the magnetic measurements demonstrated the coherence of the interface between the core and the shell. These effects combined led to improved spin coupling and stronger magnetism, as evidenced by higher saturation magnetization and the doubling of the blocking temperature for the ZnFe2O4@NiFe2O4 core–shell particles relative to the ZnFe2O4 cores. Full article
Show Figures

Figure 1

19 pages, 5270 KiB  
Article
Environmentally Sustainable and Green Polymeric Method for Chitosan (CH) Film Synthesis Using Natural Acids and Impact of Zinc Ferrite Nanoparticles (NPs) on Water Solubility (WS) and Physical Properties
by Dilawar Hassan, Ayesha Sani, Ghulam Qadir Chanihoon, Aurora Antonio Pérez, Muhammad Ehsan and Ana Laura Torres Huerta
Polymers 2024, 16(24), 3466; https://doi.org/10.3390/polym16243466 - 12 Dec 2024
Cited by 4 | Viewed by 1152
Abstract
Currently, there is a rush to develop green polymeric films such as biodegradable chitosan (CH) films to control and prevent plastic pollution from degrading the environment. This study reports a novel and sustainable green approach to the development of CH films using lemon [...] Read more.
Currently, there is a rush to develop green polymeric films such as biodegradable chitosan (CH) films to control and prevent plastic pollution from degrading the environment. This study reports a novel and sustainable green approach to the development of CH films using lemon juice (LJ) and lemon peel extract (LPE), the latter to dilute the LJ. The LPE was also utilized for the synthesis of ZnFe2O4 nanoparticles (NPs), adding to this work’s novelty. The crystalline size of the ZnFe2O4 NPs was computed to be ~16 nm. The introduction of 1% and 2% ZnFe2O4 NPs improved not only the mechanical properties of the films, but also their barrier properties and water solubility (WS). The tensile strength increased from 0.641 MPa to 0.835 MPa when 2% NPs were incorporated, which is almost 1.30 times greater; the NPs also enhanced the surface strength by 2.66 times, which was demonstrated by the puncture strength. The introduction of NPs occupied the vacant spaces and improved the barrier capabilities of the CH film by reducing the water vapor permeability (WVP) value from 8.752 ± 0.015 for bare CH films to 6.299 ± 0.009 for 2% NP-containing CH films. Overall, the introduction of ZnFe2O4 NPs boosted the mechanical and barrier properties of the CH films, and offers a promising method for developing sustainable, eco-friendly, and biodegradable polymeric films for potential packaging and medical applications to contribute to circular economic efforts. Full article
(This article belongs to the Special Issue Green Polymers from Renewable Resources)
Show Figures

Figure 1

22 pages, 4738 KiB  
Article
The Impact of Nickel–Zinc Ferrite Nanoparticles on the Mechanical and Barrier Properties of Green-Synthesized Chitosan Films Produced Using Natural Juices
by Dilawar Hassan, Ayesha Sani, Aurora Antonio Pérez, Muhammad Ehsan, Josué D. Hernández-Varela, José J. Chanona-Pérez and Ana Laura Torres Huerta
Polymers 2024, 16(24), 3455; https://doi.org/10.3390/polym16243455 - 10 Dec 2024
Cited by 4 | Viewed by 1101
Abstract
A trend has been established concerning the research and development of various green and biodegradable plastics for multi-purpose applications, aiming to replace petroleum-based plastics. Herein, we report the synthesis of chitosan (CH) films using lemon juice; these were reinforced with NiZnFe2O [...] Read more.
A trend has been established concerning the research and development of various green and biodegradable plastics for multi-purpose applications, aiming to replace petroleum-based plastics. Herein, we report the synthesis of chitosan (CH) films using lemon juice; these were reinforced with NiZnFe2O4 nanoparticles (NiZnFe2O4 NPs) to obtain improved mechanical and barrier properties, facilitating their future application as sustainable, corrosion-resistant coatings for medical instruments. The synthesized NiZnFe2O4 NPs had a crystallite size of ~29 nm. Reinforcement with the nanoparticles in bio-sourced chitosan films was conducted at two concentrations: 1% and 2%. The mechanical strength of the CH film was found to be 1.52 MPa, while the 2% NiZnFe2O4 NP-containing films showed stress-bearing potential of 1.04 MPa with a larger strain value, confirming the elastic nature of the films. Furthermore, the % elongation was directly proportional to the NP concentration, with the highest value of 36.833% obtained for the 2% NP-containing films. The CH films presented improved barrier properties with the introduction of the NiZnFe2O4 NPs, making them promising candidates for coatings in medical instruments; this could protect such instruments from corrosion under controlled conditions. This approach not only broadens the application range of biopolymeric films but also aligns with global sustainability goals, serving to reduce the reliance on non-renewable corrosion-resistant coatings. Full article
(This article belongs to the Special Issue Green Polymers from Renewable Resources)
Show Figures

Figure 1

6 pages, 2404 KiB  
Proceeding Paper
Microwave-Assisted Green Synthesis of Binary/Ternary ZnxCo1−xFe2O4 (x = 0, 0.5, 1) Nanoparticles
by Sanaz Chamani and Masoumeh Khatamian
Chem. Proc. 2024, 16(1), 29; https://doi.org/10.3390/ecsoc-28-20248 - 15 Nov 2024
Viewed by 539
Abstract
In this study, magnetic binary/ternary ZnxCo1−xFe2O4 (x = 0, 0.5, 1) nanoparticles were synthesized using a straightforward one-step microwave technique. To produce the ZnxCo1−xFe2O4 nanoparticles, iron [...] Read more.
In this study, magnetic binary/ternary ZnxCo1−xFe2O4 (x = 0, 0.5, 1) nanoparticles were synthesized using a straightforward one-step microwave technique. To produce the ZnxCo1−xFe2O4 nanoparticles, iron (III) nitrate nonahydrate, zinc nitrate hexahydrate, and cobalt nitrate hexahydrate were used as metal sources, with urea used as the fuel and ammonium nitrate as the oxidizer. These materials were combined in an alumina crucible covered by a CuO jacket to absorb microwave energy and facilitate calcination. The thermal treatment involved placing the alumina crucible in a domestic microwave oven at 450 W for 30 min. The key strengths of this experimental strategy include its simplicity, cost-effectiveness, and rapidity, aligning with green chemistry principles. The synthesized nanoparticles were characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, a vibrating sample magnetometer (VSM), and Brunauer–Emmett–Teller (BET) analysis. XRD analysis confirmed the presence of the pure ferrite nanocrystalline phase. Scanning electron microscopy (SEM), employed with energy-dispersive X-ray spectroscopy (EDS), was used to study the surface morphology and analyze the elemental composition. The SEM analysis revealed that the synthesized magnetic nanoparticles had particle sizes ranging from 30 to 50 nm. Furthermore, we explored the potential use of these magnetic nanoparticles as photocatalysts for degrading organic pollutants such as methylene blue in aqueous solutions. Full article
Show Figures

Figure 1

26 pages, 8101 KiB  
Article
Enhanced Removal of Rhodamine b Dye from Aqueous Media via Adsorption on Facilely Synthesized Zinc Ferrite Nanoparticles
by Asma S. Al-Wasidi and Salwa AlReshaidan
Inorganics 2024, 12(7), 191; https://doi.org/10.3390/inorganics12070191 - 12 Jul 2024
Cited by 13 | Viewed by 1905
Abstract
This paper studies the synthesis, characterization, and application of ZnFe2O4 nanoparticles for the removal of rhodamine b dye from aqueous media. Utilizing the combustion procedure, ZnFe2O4 nanoparticles were synthesized using two different fuels: glutamine (SG) and L-arginine [...] Read more.
This paper studies the synthesis, characterization, and application of ZnFe2O4 nanoparticles for the removal of rhodamine b dye from aqueous media. Utilizing the combustion procedure, ZnFe2O4 nanoparticles were synthesized using two different fuels: glutamine (SG) and L-arginine (SA). In addition, the synthesized ZnFe2O4 nanoparticles were characterized through various techniques, including Fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), high resolution transmission electron microscope (HR-TEM), and Brunauer-Emmett-Teller (BET) surface area analysis. XRD analysis verified the creation of a ZnFe2O4 cubic spinel structure without any contaminants, revealing average crystallite sizes of 43.72 and 29.38 nm for the SG and SA samples, respectively. The FTIR spectra exhibited peaks indicative of metal-oxygen bond stretching, verifying the presence of a spinel formation. Elemental analysis via EDX confirmed the stoichiometric composition typical of zinc ferrite. In addition, FE-SEM imaging displayed that the SG and SA samples are composed of particles with irregular and spherical shapes, measuring average diameters of 135.11 and 59.89 nm, respectively. Furthermore, the BET surface area of the SG and SA samples is 60 and 85 m2/g, respectively. The maximum adsorption capacity of the SA sample (409.84 mg/g) towards rhodamine b dye was higher than that of the SG sample (279.33 mg/g), which was ascribed to its larger surface area and porosity. Kinetic and equilibrium studies revealed that the adsorption process of rhodamine b dye onto the SG and SA samples followed the Langmuir isotherm and pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process was spontaneous, exothermic, and physical. The study concludes that ZnFe2O4 nanoparticles synthesized using L-arginine (SA) exhibit enhanced rhodamine b dye removal efficiency due to their smaller size, increased surface area, and higher porosity compared to those synthesized with glutamine (SG). The optimum conditions for the adsorption process of rhodamine b dye were found to be at pH 10, a contact time of 70 min, and a temperature of 298 K. These findings underscore the potential of L-arginine-synthesized ZnFe2O4 nanoparticles for effective and sustainable environmental cleanup applications. Full article
Show Figures

Graphical abstract

20 pages, 5338 KiB  
Article
Zinc/Magnesium Ferrite Nanoparticles Functionalized with Silver for Optimized Photocatalytic Removal of Malachite Green
by Ricardo J. C. Fernandes, Beatriz D. Cardoso, Ana Rita O. Rodrigues, Ana Pires, André M. Pereira, João P. Araújo, Luciana Pereira and Paulo J. G. Coutinho
Materials 2024, 17(13), 3158; https://doi.org/10.3390/ma17133158 - 27 Jun 2024
Cited by 6 | Viewed by 1893
Abstract
Water pollution is a major environmental challenge. Due to the inefficiency of conventional wastewater treatment plants in degrading many organic complex compounds, these recalcitrant pollutants end up in rivers, lakes, oceans and other bodies of water, affecting the environment and human health. Semiconductor [...] Read more.
Water pollution is a major environmental challenge. Due to the inefficiency of conventional wastewater treatment plants in degrading many organic complex compounds, these recalcitrant pollutants end up in rivers, lakes, oceans and other bodies of water, affecting the environment and human health. Semiconductor photocatalysis is considered an efficient complement to conventional methods, and the use of various nanomaterials for this purpose has been widely explored, with a particular focus on improving their activity under visible light. This work focuses on developing magnetic and photoactive zinc/magnesium mixed ferrites (Zn0.5Mg0.5Fe2O4) by sol-gel and solvothermal synthesis methods, which are two of the most important and efficient methods used for the synthesis of ferrite nanoparticles. The nanoparticles (NPs) synthesized by the sol-gel method exhibited an average size of 14.7 nm, while those synthesized by the solvothermal method had an average size of 17.4 nm. Both types possessed a predominantly cubic structure and demonstrated superparamagnetic behavior, reaching a magnetization saturation value of 60.2 emu g−1. Due to the high recombination rate of electrons/holes, which is an intrinsic feature of ferrites, surface functionalization with silver was carried out to enhance charge separation. The results demonstrated a strong influence of adsorption and of the deposition of silver. Several optimization steps were performed during synthesis, allowing us to create efficient catalysts, as proved by the almost full removal of the dye malachite green attaining 95.0% (at a rate constant of 0.091 min−1) and 87.6% (at a rate constant of 0.017 min−1) using NPs obtained by the sol-gel and solvothermal methods, respectively. Adsorption in the dark accounted for 89.2% of the dye removal for nanoparticles prepared by sol-gel and 82.8% for the ones obtained by the solvothermal method. These results make mixed zinc/magnesium ferrites highly promising for potential industrial application in effluent photoremediation using visible light. Full article
(This article belongs to the Special Issue Study on Advanced Nanomaterials Applied in Green Technologies)
Show Figures

Figure 1

20 pages, 3398 KiB  
Article
Photocatalytic Decomposition of Amoxicillin Using Zinc Ferrite Nanoparticles
by Aya Jezzini, Yujin Chen, Anne Davidson, Gilles Wallez, Tayssir Hamieh and Joumana Toufaily
Crystals 2024, 14(3), 291; https://doi.org/10.3390/cryst14030291 - 21 Mar 2024
Cited by 4 | Viewed by 2143
Abstract
Catalysts enriched in Zinc ferrite (ZFO) were synthesized using coprecipitation and hydrothermal methods. Mixtures of crystalline nanoparticles (ZFO and α-Fe2O3, several allotropic varieties of FeO) were characterized by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM, [...] Read more.
Catalysts enriched in Zinc ferrite (ZFO) were synthesized using coprecipitation and hydrothermal methods. Mixtures of crystalline nanoparticles (ZFO and α-Fe2O3, several allotropic varieties of FeO) were characterized by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM, SEM), N2 sorption, UV-visible spectrophotometry (UV-Vis) and X-ray photoelectron spectroscopy (XPS). After detailed characterizations, the catalytic performance of the solids (1 g/L) in the degradation of amoxicillin (AMX) (10 mg/L) as an antibiotic pollutant in water was evaluated. In addition, we used air as the oxygen source and adjusted the pH to 5.0. Consequently, the catalysts obtained via the hydrothermal method HT-ZFO had a high activity (100% of AMX removal in less than 100 min when an LED (75 W) light was used) compared to a similar mixture of oxides with graphene HT-ZFO-GO (a longer time of 150 min) that was necessary for the complete degradation of AMX. Impregnation with an aqueous solution containing 80 mg of GO obtained using Hummer’s method, reduced into RGO by an ultrasound treatment, enhances the initial reaction rate but is associated with a prolonged time for complete AMX removal (10 ppm in water) that we attribute to its spontaneous corrosion. Full article
(This article belongs to the Special Issue Photocatalytic Materials: New Perspectives and Challenges)
Show Figures

Figure 1

16 pages, 83850 KiB  
Article
Zinc Ferrite Nanoparticle Coatings on Austenitic Alloy Steel
by Martin Ochmann, Libor Machala, Miroslav Mašláň, Vítězslav Heger and Tomáš Krátký
Materials 2024, 17(4), 857; https://doi.org/10.3390/ma17040857 - 12 Feb 2024
Viewed by 1608
Abstract
The phase transition of austenitic stainless steel of commercial label CL20ES and zinc ferrite nanoparticles was studied in an oxidative atmosphere of dry air to develop a low-cost, effective technique for covering-layer fabrication. CL20ES powder and zinc ferrite powder were mechanically mixed. This [...] Read more.
The phase transition of austenitic stainless steel of commercial label CL20ES and zinc ferrite nanoparticles was studied in an oxidative atmosphere of dry air to develop a low-cost, effective technique for covering-layer fabrication. CL20ES powder and zinc ferrite powder were mechanically mixed. This mixture was studied in an atmosphere of dry air at different annealing temperatures from room temperature to 900 °C. The employed characterization techniques are X-ray powder diffraction, Mössbauer spectroscopy in the transmission geometry, and scanning electron microscopy with elemental mapping. The fabricated layers were also characterized by surface-specific techniques such as conversion electron Mössbauer spectroscopy and grazing incidence X-ray powder diffraction. The analyzed powder mixture shows resistance against oxidation in dry air and high temperatures. These results were employed to produce zinc ferrite covering layers on 3D-printed cylinders of CL20ES. The results show a predisposition of zinc ferrite to be recrystallized at temperatures above 350 °C without the production of corrosive substances on steel. The zinc ferrite layers were analyzed by an ultrasonic hardness tester as well, which proved the hardness enhancement. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

18 pages, 4794 KiB  
Article
Aqueous Dispersion of Manganese–Zinc Ferrite Nanoparticles Protected by PEG as a T2 MRI Temperature Contrast Agent
by Dorota Lachowicz, Angelika Kmita, Marta Gajewska, Elżbieta Trynkiewicz, Marek Przybylski, Stephen E. Russek, Karl F. Stupic, David A. Woodrum, Krzysztof R. Gorny, Zbigniew J. Celinski and Janusz H. Hankiewicz
Int. J. Mol. Sci. 2023, 24(22), 16458; https://doi.org/10.3390/ijms242216458 - 17 Nov 2023
Cited by 3 | Viewed by 1740
Abstract
Mixed manganese–zinc ferrite nanoparticles coated with PEG were studied for their potential usefulness in MRI thermometry as temperature-sensitive contrast agents. Particles in the form of an 8.5 nm core coated with a 3.5 nm layer of PEG were fabricated using a newly developed, [...] Read more.
Mixed manganese–zinc ferrite nanoparticles coated with PEG were studied for their potential usefulness in MRI thermometry as temperature-sensitive contrast agents. Particles in the form of an 8.5 nm core coated with a 3.5 nm layer of PEG were fabricated using a newly developed, one-step method. The composition of Mn0.48Zn0.46Fe2.06O4 was found to have a strong thermal dependence of magnetization in the temperature range between 5 and 50 °C. Nanoparticles suspended in an agar gel mimicking animal tissue and showing non-significant impact on cell viability in the biological test were studied with NMR and MRI over the same temperature range. For the concentration of 0.017 mg/mL of Fe, the spin–spin relaxation time T2 increased from 3.1 to 8.3 ms, while longitudinal relaxation time T1 shows a moderate decrease from 149.0 to 125.1 ms. A temperature map of the phantom exposed to the radial temperature gradient obtained by heating it with an 808 nm laser was calculated from T2 weighted spin-echo differential MR images. Analysis of temperature maps yields thermal/spatial resolution of 3.2 °C at the distance of 2.9 mm. The experimental relaxation rate R2 data of water protons were compared with those obtained from calculations using a theoretical model incorporating the motion averaging regime. Full article
Show Figures

Graphical abstract

19 pages, 8455 KiB  
Article
Development of Polymer-Encapsulated, Amine-Functionalized Zinc Ferrite Nanoparticles as MRI Contrast Agents
by Ágnes M. Ilosvai, László Forgách, Noémi Kovács, Fatemeh Heydari, Krisztián Szigeti, Domokos Máthé, Ferenc Kristály, Lajos Daróczi, Zoltán Kaleta, Béla Viskolcz, Miklós Nagy and László Vanyorek
Int. J. Mol. Sci. 2023, 24(22), 16203; https://doi.org/10.3390/ijms242216203 - 11 Nov 2023
Cited by 8 | Viewed by 2740
Abstract
The need for stable and well-defined magnetic nanoparticles is constantly increasing in biomedical applications; however, their preparation remains challenging. We used two different solvothermal methods (12 h reflux and a 4 min microwave, MW) to synthesize amine-functionalized zinc ferrite (ZnFe2O4 [...] Read more.
The need for stable and well-defined magnetic nanoparticles is constantly increasing in biomedical applications; however, their preparation remains challenging. We used two different solvothermal methods (12 h reflux and a 4 min microwave, MW) to synthesize amine-functionalized zinc ferrite (ZnFe2O4-NH2) superparamagnetic nanoparticles. The morphological features of the two ferrite samples were the same, but the average particle size was slightly larger in the case of MW activation: 47 ± 14 nm (Refl.) vs. 63 ± 20 nm (MW). Phase identification measurements confirmed the exclusive presence of zinc ferrite with virtually the same magnetic properties. The Refl. samples had a zeta potential of −23.8 ± 4.4 mV, in contrast to the +7.6 ± 6.8 mV measured for the MW sample. To overcome stability problems in the colloidal phase, the ferrite nanoparticles were embedded in polyvinylpyrrolidone and could be easily redispersed in water. Two PVP-coated zinc ferrite samples were administered (1 mg/mL ZnFe2O4) in X BalbC mice and were compared as contrast agents in magnetic resonance imaging (MRI). After determining the r1/r2 ratio, the samples were compared to other commercially available contrast agents. Consistent with other SPION nanoparticles, our sample exhibits a concentrated presence in the hepatic region of the animals, with comparable biodistribution and pharmacokinetics suspected. Moreover, a small dose of 1.3 mg/body weight kg was found to be sufficient for effective imaging. It should also be noted that no toxic side effects were observed, making ZnFe2O4-NH2 advantageous for pharmaceutical formulations. Full article
Show Figures

Graphical abstract

16 pages, 3231 KiB  
Article
Construction of Spinel/Perovskite Heterojunction for Boosting Photocatalytic Performance for Polyacrylamide
by Qinghan Zhu, Yuxue Luo, Ke Yang, Guangbo Che, Haiwang Wang and Jian Qi
Catalysts 2023, 13(11), 1424; https://doi.org/10.3390/catal13111424 - 8 Nov 2023
Cited by 5 | Viewed by 1598
Abstract
The use of photocatalytic technology to degrade polyacrylamide in crude oil extraction wastewater is a promising approach, but there have been few reports so far. In this study, ZnFe2O4/Ba0.7Sr0.3TiO3 heterogeneous composite materials of a [...] Read more.
The use of photocatalytic technology to degrade polyacrylamide in crude oil extraction wastewater is a promising approach, but there have been few reports so far. In this study, ZnFe2O4/Ba0.7Sr0.3TiO3 heterogeneous composite materials of a spinel/perovskite type with different proportions were synthesized. The composite materials with 31% ZnFe2O4 content exhibited a maximum polyacrylamide degradation efficiency of 46.54%, which demonstrated the unique role of the spinel/perovskite heterogeneous structure. When Ag nanoparticles were grown in situ on the surface of ZnFe2O4/Ba0.7Sr0.3TiO3, the photocatalytic degradation efficiency reached 81.28%. The main reason was that the introduction of Ag nanoparticles not only increased the active sites and enhanced light absorption capacity but also accelerated the separation of photo-generated charges. This work provides new ideas for the construction of spinel/perovskite heterogeneous composite materials and has reference significance for the application of photocatalytic degradation in the treatment of wastewater-containing polymers. Full article
Show Figures

Graphical abstract

25 pages, 9387 KiB  
Article
ZnFe2O4/Zeolite Nanocomposites for Sorption Extraction of Cu2+ from Aqueous Medium
by Elena Tomina, Lyudmila Novikova, Alexandra Kotova, Anna Meshcheryakova, Victoria Krupskaya, Ivan Morozov, Tatiana Koroleva, Ekaterina Tyupina, Nikolai Perov and Yuliya Alekhina
AppliedChem 2023, 3(4), 452-476; https://doi.org/10.3390/appliedchem3040029 - 30 Sep 2023
Cited by 4 | Viewed by 2253
Abstract
In order to enhance the efficiency of heavy metal ion extraction from aqueous medium, new nanocomposite magnetic sorbents were synthesized on the base of natural zeolite (Zt) and nanoparticles of ZnFe2O4 (F). The composition, structure and physical–chemical properties of new [...] Read more.
In order to enhance the efficiency of heavy metal ion extraction from aqueous medium, new nanocomposite magnetic sorbents were synthesized on the base of natural zeolite (Zt) and nanoparticles of ZnFe2O4 (F). The composition, structure and physical–chemical properties of new composites with 2% (Zt-2F), 8% (Zt-8F) and 16% (Zt-16F) of zinc ferrite were characterized by XRD, BET adsorption–desorption of nitrogen, SEM with elemental mapping, TEM and magnetometry. The sorption capacity of materials was assessed towards Cu2+ ions in aqueous solutions, for which kinetic and equilibrium features of sorption were established. The maximal sorption capacity (amax, mg/g) of the studied materials increased in the order: Zt (19.4) < Zt-2F (27.3) < Zt-8F (30.2) < Zt-16F (32.8) < ZnFe2O4 (161.3). The kinetics of the sorption process followed a pseudo-second order kinetic model. The sorption equilibrium at zinc ferrite was successfully described by the Langmuir model, while the Freundlich model better fitted the sorption equilibrium on zeolite and composites. The efficiency of Cu2+ ion extraction from 320 mg/dm3 aqueous solution was 63% for composite Zt-16F and 100% for a sample of ZnFe2O4. It was established that the proposed composite sorbents provide the operation of several cycles without regeneration, they can be easily recycled with 0.1 N HCl solution and are capable of magnetic separation. The advantages of new composites and the proposed method of synthesis allow recommending these materials as effective sorbents of heavy metals from wastewater. Full article
Show Figures

Figure 1

Back to TopTop