Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = zenith path

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 915 KiB  
Article
Measurement Along the Path of Unmanned Aerial Vehicles for Best Horizontal Dilution of Precision and Geometric Dilution of Precision
by Yanwu Ding, Dan Shen, Khanh Pham and Genshe Chen
Sensors 2025, 25(13), 3901; https://doi.org/10.3390/s25133901 - 23 Jun 2025
Viewed by 320
Abstract
In the zenith-horizon placement for achieving minimum geometric dilution of precision (GDOP), one access node or sensor is positioned along the z-axis, while the remaining nodes are placed symmetrically on a three-dimensional (3D) cone. This configuration yields the minimum GDOP at the cone’s [...] Read more.
In the zenith-horizon placement for achieving minimum geometric dilution of precision (GDOP), one access node or sensor is positioned along the z-axis, while the remaining nodes are placed symmetrically on a three-dimensional (3D) cone. This configuration yields the minimum GDOP at the cone’s tip, which we term the designated min-GDOP point. However, in practical localization applications, the unknown node is not necessarily located at this designated min-GDOP point; instead, it may be situated anywhere within an area. As a result, evaluating localization accuracy across the entire area, rather than at a single point, is more relevant. Averaged horizontal dilution of precision (HDOP) and GDOP across the region provide more meaningful metrics for system-wide performance than values computed only at a specific location. Although many recent positioning applications leverage multiple unmanned aerial vehicles (UAVs), many established fixed sensor deployments predate the widespread adoption of UAVs. This paper proposes a novel approach with a single UAV working in conjunction with existing fixed access nodes for positioning. This approach offers improved adaptability for fixed infrastructure while circumventing the expense of establishing entirely new UAV systems, thus providing a valuable compromise. We investigate the criteria of average HDOP and GDOP over the given area. The objective is to determine optimal UAV positions along the flight path that minimize the average HDOP and/or GDOP across the area. Due to the analytical complexity, we employ numerical methods. Our simulation results demonstrate that minimizing average HDOP and GDOP often requires different UAV positions, depending on the number of access nodes and the size of the area. Consequently, achieving simultaneous minimization of both metrics with a single UAV trajectory is generally infeasible. When minimizing the average HDOP with a small number of access nodes, aligning the UAV’s XY-plane angle with those of the stationary nodes, offset by 60, proves advantageous. This angular alignment becomes less critical as the number of access nodes increases. For scenarios where both HDOP and GDOP are important, UAV placement can be optimized by selecting appropriate trade-offs. Additionally, we quantify how increasing the number of access nodes improves the average HDOP and GDOP over the specified area. Full article
Show Figures

Figure 1

26 pages, 47051 KiB  
Article
Dynamic Light Path and Bidirectional Reflectance Effects on Solar Noise in UAV-Borne Photon-Counting LiDAR
by Kuifeng Luan, Jinhui Zheng, Wei Kong, Weidong Zhu, Lizhe Zhang, Peiyao Zhang and Lin Liu
Remote Sens. 2025, 17(10), 1708; https://doi.org/10.3390/rs17101708 - 13 May 2025
Viewed by 530
Abstract
Accurate solar background noise modeling in island-reef LiDAR surveys is hindered by anisotropic coastal reflectivity and dynamic light paths, which isotropic models fail to address. We propose BNR-B, a bidirectional reflectance distribution function (BRDF)-based noise model that integrates solar-receiver geometry with micro-facet scattering [...] Read more.
Accurate solar background noise modeling in island-reef LiDAR surveys is hindered by anisotropic coastal reflectivity and dynamic light paths, which isotropic models fail to address. We propose BNR-B, a bidirectional reflectance distribution function (BRDF)-based noise model that integrates solar-receiver geometry with micro-facet scattering dynamics. Validated via single-photon LiDAR field tests on diverse coastal terrains at Jiajing Island, China, BNR-B reveals the following: (1) Solar zenith/azimuth angles non-uniformly modulate noise fields—higher solar zenith angles reduce noise intensity and homogenize spatial distribution; (2) surface reflectivity linearly correlates with noise rate (R2 > 0.99), while roughness governs scattering directionality through micro-facet redistribution. BNR-B achieves 28.6% higher noise calculation accuracy than Lambertian models, with a relative phase error < 2% against empirical data. As the first BRDF-derived solar noise correction framework for coastal LiDAR, it addresses critical limitations of isotropic assumptions by resolving directional noise modulation. The model’s adaptability to marine–terrestrial interfaces enhances precision in coastal monitoring and submarine mapping, offering transformative potential for geospatial applications requiring photon-counting LiDAR in complex environments. Key innovations include dynamic coupling of geometric optics and surface scattering physics, enabling robust spatiotemporal noise quantification, critical for high-resolution terrain reconstruction. Full article
Show Figures

Figure 1

23 pages, 7707 KiB  
Article
Unraveling Aerosol and Low-Level Cloud Interactions Under Multi-Factor Constraints at the Semi-Arid Climate and Environment Observatory of Lanzhou University
by Qinghao Li, Jinming Ge, Yize Li, Qingyu Mu, Nan Peng, Jing Su, Bo Wang, Chi Zhang and Bochun Liu
Remote Sens. 2025, 17(9), 1533; https://doi.org/10.3390/rs17091533 - 25 Apr 2025
Viewed by 455
Abstract
The response of low-level cloud properties to aerosol loading remains ambiguous, particularly due to the confounding influence of meteorological factors and water vapor availability. We utilize long-term data from Ka-band Zenith Radar, Clouds and the Earth’s Radiant Energy System, Modern-Era Retrospective analysis for [...] Read more.
The response of low-level cloud properties to aerosol loading remains ambiguous, particularly due to the confounding influence of meteorological factors and water vapor availability. We utilize long-term data from Ka-band Zenith Radar, Clouds and the Earth’s Radiant Energy System, Modern-Era Retrospective analysis for Research and Applications Version 2, and European Centre for Medium-Range Weather Forecasts Reanalysis v5 to evaluate aerosol’s effects on low-level clouds under the constrains of meteorological conditions and liquid water path (LWP) over the Semi-Arid Climate and Environment Observatory of Lanzhou University during 2014–2019. To better constrain meteorological variability, we apply Principal Component Analysis to derive the first principal component (PC1), which strongly correlates with cloud properties, thereby enabling more accurate assessment of aerosol–cloud interaction (ACI) under constrained meteorological conditions delineated by PC1. Analysis suggests that under favorable meteorological conditions for low-level cloud formation (low PC1) and moderate LWP levels (25–150 g/m2), ACI is characterized by a significantly negative ACI index, with the cloud effective radius (CER) increasing in response to rising aerosol concentrations. When constrained by both PC1 and LWP, the relationship between CER and the aerosol optical depth shows a distinct bifurcation into positive and negative correlations. Different aerosol types show contrasting effects: dust aerosols increase CER under favorable meteorological conditions, whereas sulfate, organic carbon, and black carbon aerosols consistently decrease it, even under high-LWP conditions. Full article
Show Figures

Figure 1

16 pages, 13892 KiB  
Article
ZPD Retrieval Performances of the First Operational Ship-Based Network of GNSS Receivers over the North-West Mediterranean Sea
by Andrea Antonini, Luca Fibbi, Massimo Viti, Aldo Sonnini, Simone Montagnani and Alberto Ortolani
Sensors 2024, 24(10), 3177; https://doi.org/10.3390/s24103177 - 16 May 2024
Viewed by 1452
Abstract
This work presents the design and implementation of an operational infrastructure for the monitoring of atmospheric parameters at sea through GNSS meteorology sensors installed on liners operating in the north-west Mediterranean Sea. A measurement system, capable of operationally and continuously providing the values [...] Read more.
This work presents the design and implementation of an operational infrastructure for the monitoring of atmospheric parameters at sea through GNSS meteorology sensors installed on liners operating in the north-west Mediterranean Sea. A measurement system, capable of operationally and continuously providing the values of surface parameters, is implemented together with software procedures based on a float-PPP approach for estimating zenith path delay (ZPD) values. The values continuously registered over a three year period (2020–2022) from this infrastructure are compared with the data from a numerical meteorological reanalysis model (MERRA-2). The results clearly prove the ability of the system to estimate the ZPD from ship-based GNSS-meteo equipment, with the accuracy evaluated in terms of correlation and root mean square error reaching values between 0.94 and 0.65 and between 18.4 and 42.9 mm, these extreme values being from the best and worst performing installations, respectively. This offers a new perspective on the operational exploitation of GNSS signals over sea areas in climate and operational meteorological applications. Full article
(This article belongs to the Special Issue GNSS Software-Defined Radio Receivers: Status and Perspectives)
Show Figures

Figure 1

18 pages, 4848 KiB  
Article
A Small Power Margin and Bandwidth Expansion Allow Data Transmission during Rainfall despite Large Attenuation: Application to GeoSurf Satellite Constellations at mm–Waves
by Emilio Matricciani
Electronics 2024, 13(9), 1639; https://doi.org/10.3390/electronics13091639 - 24 Apr 2024
Viewed by 981
Abstract
The traditional approach of considering the probability distribution of rain attenuation leads to provide very large power margin (overdesign) in data channels. We have extended a method which, with a small power margin, bandwidth expansion and variable symbol rate, avoids overdesign and can [...] Read more.
The traditional approach of considering the probability distribution of rain attenuation leads to provide very large power margin (overdesign) in data channels. We have extended a method which, with a small power margin, bandwidth expansion and variable symbol rate, avoids overdesign and can transfer the same data volume as if the link were in clear–sky conditions. It is characterized only by the link mean efficiency, suitably defined. It is useful only if: (a) data must be up– and downloaded when it is raining; (b) real–time communication is not required. We have applied it to the links of GeoSurf satellite constellations (in which, at any latitude of ground stations, propagation paths are at the local zenith) by simulating rain attenuation time series at 80 GHz (mm–wave)–the new frontier of satellite frequencies–with the Synthetic Storm Technique, from rain–rate time series recorded on–site, at sites located in different climatic regions. The power margin to be implemented at 80 GHz ranges from 2.0 dB to 7.4 dB–well within the current technology–regardless the instantaneous rain attenuation. The clear–sky bandwidth is expanded 1.75 to 2.80 times, a factor not large per se, but it may challenge current technology if the clear–sky bandwidth is already large. Full article
(This article belongs to the Special Issue Future Generation Non-Terrestrial Networks)
Show Figures

Figure 1

21 pages, 17022 KiB  
Review
A Review of Remote Sensing of Atmospheric Profiles and Cloud Properties by Ground-Based Microwave Radiometers in Central China
by Guirong Xu
Remote Sens. 2024, 16(6), 966; https://doi.org/10.3390/rs16060966 - 10 Mar 2024
Cited by 3 | Viewed by 1937
Abstract
Thermodynamic and liquid water profiles can be retrieved by a ground-based microwave radiometer (MWR) in nearly all weather conditions, which is useful for detecting mesoscale phenomena. This paper reviews the advances in remote sensing of atmospheric profiles and cloud properties by MWR in [...] Read more.
Thermodynamic and liquid water profiles can be retrieved by a ground-based microwave radiometer (MWR) in nearly all weather conditions, which is useful for detecting mesoscale phenomena. This paper reviews the advances in remote sensing of atmospheric profiles and cloud properties by MWR in central China. Comparative studies indicate that MWR retrieval accuracy is different under various skies, especially those that decay under precipitation. The off-zenith method is proven to be capable of reducing the impact of precipitation and snow on MWR retrieval accuracy. Application studies demonstrate that MWR retrievals are helpful for early warning of rainstorms, hailstorms, and thunderstorms. Moreover, MWR retrievals provide a way to study cloud properties. The temporal variations of cloud occurrence frequency (COF) and liquid water path (LWP) are different for low, middle, and high clouds, and the vertical distribution of COF is also different in autumn and other seasons. Note that MWR can infer valid retrievals over the eastern Tibetan Plateau due to the weak precipitation over there. Also, cloud properties over the eastern Tibetan Plateau present differences from those over central China, and this is related to the different characteristics of atmospheric water vapor between these two regions. To bring more benefits for mechanism study and early warning of severe weather and numerical weather prediction, the decayed accuracy of MWR zenith retrievals under precipitation should be resolved. And combining MWR with other instruments is necessary for MWR application in detecting multi-layer clouds and ice clouds. Full article
(This article belongs to the Special Issue Advances in Microwave Remote Sensing for Earth Observation (EO))
Show Figures

Figure 1

20 pages, 13093 KiB  
Article
Duration of Rainfall Fades in GeoSurf Satellite Constellations
by Emilio Matricciani and Carlo Riva
Appl. Sci. 2024, 14(5), 1865; https://doi.org/10.3390/app14051865 - 24 Feb 2024
Cited by 1 | Viewed by 2173
Abstract
We have studied the stochastic processes A and B concerning fade durations due to rain, by simulating attenuation time series A(t) (dB) in the zenith paths of GeoSurf satellite constellations, at sites located in different climatic regions, with the Synthetic [...] Read more.
We have studied the stochastic processes A and B concerning fade durations due to rain, by simulating attenuation time series A(t) (dB) in the zenith paths of GeoSurf satellite constellations, at sites located in different climatic regions, with the Synthetic Storm Technique. Process B gives the statistics of outages (occurrences) and process A gives the statistics of outage duration (fraction of time), for the same rain attenuation threshold A(t)>S. The two processes are not independent; therefore, we have studied the relationship between their probabilities and defined a uniformity index 0<U(S)1. U(S) is useful for comparing real cases–fade durations fragmented in many different intervals, with changing S and site—and the limiting case of all fades lasting the same time. As S increases, U(S) increases, approaching 1 at very large thresholds. These results should guide the designers of satellite constellations to consider the impact of A(t) on diverse communications services. Process B (occurrences) impacts mainly on non–real-time services, such as data delivery, more disturbed by the number of outages rather than by their duration. Process A (fraction of time) impacts mainly on real–time services such as television, video conference etc., more disturbed by the duration of the outage. Full article
Show Figures

Figure 1

17 pages, 1903 KiB  
Article
Spillover Effect of Network Public Opinion on Market Prices of Small-Scale Agricultural Products
by Xingchen Lv, Weijun Lin, Jun Meng and Linan Mo
Mathematics 2024, 12(4), 539; https://doi.org/10.3390/math12040539 - 8 Feb 2024
Viewed by 1267
Abstract
Network public opinion plays a crucial role in the behavior and decision making of various stakeholders, including farmers, middlemen, and consumers. It also affects the price fluctuations of small-scale agricultural products. Understanding the transmission path and spillover effect of network public opinion on [...] Read more.
Network public opinion plays a crucial role in the behavior and decision making of various stakeholders, including farmers, middlemen, and consumers. It also affects the price fluctuations of small-scale agricultural products. Understanding the transmission path and spillover effect of network public opinion on the price fluctuations of these products is essential for ensuring their sustainable development and price stability. This paper selects the monthly data of network public opinion and related market prices of small-scale agricultural products from January 2014 to December 2021, constructs a network public opinion value through the sentiment classification results of deep learning models, and uses the trivariate VAR-BEKK-GARCH(1,1) model and spillover index model to study the spillover effect and spillover index of network public opinion on the market prices of small-scale agricultural products (national average price and origin price). The results show that: (1) There is a bidirectional volatility spillover effect between public opinion sentiment and the market prices of small-scale agricultural products. Additionally, this two-way volatility spillover effect is also evident between the average market prices and the origin prices of these commodities. (2) The influence of network public opinion on the market prices of small-scale agricultural products is substantial, with the spillover index being more pronounced for origin prices than for national average prices and reaching its zenith earlier. Consequently, based on these results, recommendations are provided to adapt planting and inventory strategies, enhance vigilance towards price risk transmission amongst small-scale agricultural product markets, and improve the comprehensive information platform encompassing the entire industry chain. Full article
(This article belongs to the Special Issue Machine Learning, Statistics and Big Data)
Show Figures

Figure 1

18 pages, 13901 KiB  
Article
The Method of Multi-Angle Remote Sensing Observation Based on Unmanned Aerial Vehicles and the Validation of BRDF
by Hongtao Cao, Dongqin You, Dabin Ji, Xingfa Gu, Jianguang Wen, Jianjun Wu, Yong Li, Yongqiang Cao, Tiejun Cui and Hu Zhang
Remote Sens. 2023, 15(20), 5000; https://doi.org/10.3390/rs15205000 - 18 Oct 2023
Cited by 7 | Viewed by 6539
Abstract
The measurement of bidirectional reflectivity for ground-based objects is a highly intricate task, with significant limitations in the capabilities of both ground-based and satellite-based observations from multiple viewpoints. In recent years, unmanned aerial vehicles (UAVs) have emerged as a novel remote sensing method, [...] Read more.
The measurement of bidirectional reflectivity for ground-based objects is a highly intricate task, with significant limitations in the capabilities of both ground-based and satellite-based observations from multiple viewpoints. In recent years, unmanned aerial vehicles (UAVs) have emerged as a novel remote sensing method, offering convenience and cost-effectiveness while enabling multi-view observations. This study devised a polygonal flight path along the hemisphere to achieve bidirectional reflectance distribution function (BRDF) measurements for large zenith angles and all azimuth angles. By employing photogrammetry’s principle of aerial triangulation, accurate observation angles were restored, and the geometric structure of “sun-object-view” was constructed. Furthermore, three BRDF models (M_Walthall, RPV, RTLSR) were compared and evaluated at the UAV scale in terms of fitting quality, shape structure, and reflectance errors to assess their inversion performance. The results demonstrated that the RPV model exhibited superior inversion performance followed, by M_Walthall; however, RTLST performed comparatively poorly. Notably, the M_Walthall model excelled in capturing smooth terrain object characteristics while RPV proved applicable to various types of rough terrain objects with multi-scale applicability for both UAVs and satellites. These methods and findings are crucial for an extensive exploration into the bidirectional reflectivity properties of ground-based objects, and provide an essential technical procedure for studying various ground-based objects’ in-plane reflection properties. Full article
Show Figures

Figure 1

19 pages, 6029 KiB  
Article
A Novel Method for Monitoring Tropical Cyclones’ Movement Using GNSS Zenith Tropospheric Delay
by Dajun Lian, Qimin He, Li Li, Kefei Zhang, Erjiang Fu, Guangyan Li, Rui Wang, Biqing Gao and Kangming Song
Remote Sens. 2023, 15(13), 3247; https://doi.org/10.3390/rs15133247 - 23 Jun 2023
Cited by 7 | Viewed by 2101
Abstract
Precipitable water vapor (PWV) is an important meteorological factor for predicting extreme weather events such as tropical cyclones, which can be obtained from zenith tropospheric delay (ZTD) by using a conversion. A time difference of ZTD arrival (TDOZA) model was proposed to monitor [...] Read more.
Precipitable water vapor (PWV) is an important meteorological factor for predicting extreme weather events such as tropical cyclones, which can be obtained from zenith tropospheric delay (ZTD) by using a conversion. A time difference of ZTD arrival (TDOZA) model was proposed to monitor the movement of tropical cyclones, and the fifth-generation reanalysis dataset of the European Centre for Medium-range Weather Forecasting (ERA5)-derived ZTD (ERA5-ZTD) was used to estimate the movement of tropical cyclones based on the model. The global navigation satellite system-derived ZTD and radiosonde data-derived PWV (RS-PWV) were used to test the accuracy of the ERA5-ZTD and analyze the correlation between ZTD and PWV, respectively. The statistics showed that the mean Bias, RMS and STD of the ERA5-ZTD were 6.4 mm, 17.1 mm and 16.5 mm, respectively, and the mean correlation coefficient of the ERA5-ZTD and RS-PWV was 0.951, which indicates that the ZTD can be used to predict weather events instead of PWV. Then, spatiao-temporal characteristics of ZTD during the four tropical cyclone (i.e., Merbok, ROKE, Neast and Hato) periods in 2017 were analyzed, and the result showed that the moving directions of ZTD and the tropical cyclones were consistent. Thus, the ZTD time series over the ERA5 grids around the tropical cyclones’ paths were used to estimate the velocity of the tropical cyclones based on the TDOZA model, when the tropical cyclones are approaching or leaving. Compared with the result from the China Meteorological Administration, the mean absolute and relative deviations of the TDOZA model-derived velocity were 2.55 km/h and 10.0%, respectively. These results suggest that ZTD can be used as a new supplementary meteorological parameter for monitoring tropical cyclone events. Full article
(This article belongs to the Special Issue Beidou/GNSS Precise Positioning and Atmospheric Modeling II)
Show Figures

Figure 1

26 pages, 8726 KiB  
Article
On the Impact of GPS Multipath Correction Maps and Post-Fit Residuals on Slant Wet Delays for Tracking Severe Weather Events
by Addisu Hunegnaw, Hüseyin Duman, Yohannes Getachew Ejigu, Hakki Baltaci, Jan Douša and Felix Norman Teferle
Atmosphere 2023, 14(2), 219; https://doi.org/10.3390/atmos14020219 - 20 Jan 2023
Cited by 2 | Viewed by 2868
Abstract
Climate change has increased the frequency and intensity of weather events with heavy precipitation, making communities worldwide more vulnerable to flash flooding. As a result, accurate fore- and nowcasting of impending excessive rainfall is crucial for warning and mitigating these hydro-meteorological hazards. The [...] Read more.
Climate change has increased the frequency and intensity of weather events with heavy precipitation, making communities worldwide more vulnerable to flash flooding. As a result, accurate fore- and nowcasting of impending excessive rainfall is crucial for warning and mitigating these hydro-meteorological hazards. The measurement of integrated water vapour along slant paths is made possible by ground-based global positioning system (GPS) receiver networks, delivering three-dimensional (3D) water vapour distributions at low cost and in real-time. As a result, these data are an invaluable supplementary source of knowledge for monitoring storm events and determining their paths. However, it is generally known that multipath effects at GPS stations have an influence on incoming signals, particularly at low elevations. Although estimates of zenith total delay and horizontal linear gradients make up the majority of the GPS products for meteorology to date, these products are not sufficient for understanding the full 3D distribution of water vapour above a station. Direct utilization of slant delays can address this lack of azimuthal information, although, at low elevations it is more prone to multipath (MP) errors. This study uses the convective storm event that happened on 27 July 2017 over Bulgaria, Greece, and Turkey, which caused flash floods and severe damage, to examine the effects of multipath-corrected slant wet delay (SWD) estimations on monitoring severe weather events. First, we reconstructed the one-way SWD by adding GPS post-fit phase residuals, describing the anisotropic component of the SWD. Because MP errors in the GPS phase observables can considerably impact SWD from individual satellites, we used an averaging technique to build station-specific MP correction maps by stacking the post-fit phase residuals acquired from a precise point positioning (PPP) processing strategy. The stacking was created by spatially organizing the residuals into congruent cells with an optimal resolution in terms of the elevation and azimuth at the local horizon.This enables approximately equal numbers of post-fit residuals to be distributed across each congruent cell. Finally, using these MP correction maps, the one-way SWD was improved for use in the weather event analysis. We found that the anisotropic component of the one-way SWD accounts for up to 20% of the overall SWD estimates. For a station that is strongly influenced by site-specific multipath error, the anisotropic component of SWD can reach up to 4.3 mm in equivalent precipitable water vapour. The result also showed that the spatio-temporal changes in the SWD as measured by GPS closely reflected the moisture field estimated from a numerical weather prediction model (ERA5 reanalysis) associated with this weather event. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

14 pages, 2341 KiB  
Article
Unmanned Aerial Vehicle (UAV) Robot Microwave Imaging Based on Multi-Path Scattering Model
by Zhihua Chen, Xinya Qiao, Pei Wu, Tiancai Zhang, Tao Hong and Linquan Fang
Sensors 2022, 22(22), 8736; https://doi.org/10.3390/s22228736 - 11 Nov 2022
Viewed by 2044
Abstract
Unmanned Aerial Vehicle (UAV) robot microwave imaging systems have attracted comprehensive attention. Compared with visible light and infrared imaging systems, microwave imaging is not susceptible to weather. Active microwave imaging systems have been realized in UAV robots. However, the scattering signals of geographical [...] Read more.
Unmanned Aerial Vehicle (UAV) robot microwave imaging systems have attracted comprehensive attention. Compared with visible light and infrared imaging systems, microwave imaging is not susceptible to weather. Active microwave imaging systems have been realized in UAV robots. However, the scattering signals of geographical objects from satellite transmitting systems received by UAV robots to process imaging is studied rarely, which reduces the need of load weight for the UAV robot. In this paper, a multi-path scattering model of vegetation on the earth surface is proposed, and then the microwave imaging algorithm is introduced to reconstruct the images from the UAV robot receiving the scattering data based on the multi-path model. In image processing, it is assumed that the orbit altitude of a transmitter loaded on the satellite remains unchanged, and the receiver loaded UAV robot obtains the reflective information from ground vegetation with different zenith angles. The imaging results show that the angle change has an impact on the imaging resolution. The combination of electromagnetic scattering model and image processing method contributes to understanding the image results and the multi-path scattering mechanisms of vegetation, which provide a reference for the research and development of microwave imaging systems of UAV robot networking using satellite transmitting signals. Full article
(This article belongs to the Special Issue Sensors for Robots II)
Show Figures

Figure 1

17 pages, 4902 KiB  
Article
WTM: The Site-Wise Empirical Wuhan University Tropospheric Model
by Yaozong Zhou, Yidong Lou, Weixing Zhang, Peida Wu, Jingna Bai and Zhenyi Zhang
Remote Sens. 2022, 14(20), 5182; https://doi.org/10.3390/rs14205182 - 17 Oct 2022
Cited by 2 | Viewed by 1981
Abstract
The tropospheric model is the key model in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI). In this paper, we established the site-wise empirical Wuhan University Tropospheric Model (WTM) by using 10-year (2011–2020) monthly mean [...] Read more.
The tropospheric model is the key model in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI). In this paper, we established the site-wise empirical Wuhan University Tropospheric Model (WTM) by using 10-year (2011–2020) monthly mean and 5-year (2016–2020) hourly ERA5 reanalysis data, where the Zenith Path Delay (ZPD), mapping function, and horizontal gradient as well as meteorological parameters are provided at 1583 specific space geodetic stations with additionally considering the diurnal and semi-diurnal variations. The mapping function and horizontal gradient from the WTM model were evaluated at 524 globally distributed GNSS stations during the year 2020 and compared with the latest grid-wise (1° × 1°) Global Pressure and Temperature 3 (GPT3) model. The significant improvements of the WTM model to the GPT3 model were found at the stations with terrain relief, and the maximal mapping function and horizontal gradient accuracy improvements reached 12.8 and 14.71 mm. The ZPD and mapping functions from the two models were also validated at 31 Multi-GNSS Experiment (MGEX) stations spanning the year 2020 by BeiDou Navigation Satellite System (BDS) Precise Point Positioning (PPP). The significant vertical coordinate and ZTD difference biases between the PPP schemes adopted by the two models were also found, and the largest biases reached −1.78 and 0.87 mm. Full article
(This article belongs to the Special Issue Advances in Beidou/GNSS High Precision Positioning and Navigation)
Show Figures

Figure 1

13 pages, 3174 KiB  
Article
A Synthetic Angle Normalization Model of Vegetation Canopy Reflectance for Geostationary Satellite Remote Sensing Data
by Yinghao Lin, Qingjiu Tian, Baojun Qiao, Yu Wu, Xianyu Zuo, Yi Xie and Yang Lian
Agriculture 2022, 12(10), 1658; https://doi.org/10.3390/agriculture12101658 - 10 Oct 2022
Cited by 2 | Viewed by 1961
Abstract
High-frequency imaging characteristics allow a geostationary satellite (GSS) to capture the diurnal variation in vegetation canopy reflectance spectra, which is of very important practical significance for monitoring vegetation via remote sensing (RS). However, the observation angle and solar angle of high-frequency GSS RS [...] Read more.
High-frequency imaging characteristics allow a geostationary satellite (GSS) to capture the diurnal variation in vegetation canopy reflectance spectra, which is of very important practical significance for monitoring vegetation via remote sensing (RS). However, the observation angle and solar angle of high-frequency GSS RS data usually differ, and the differences in bidirectional reflectance from the reflectance spectra of the vegetation canopy are significant, which makes it necessary to normalize angles for GSS RS data. The BRDF (Bidirectional Reflectance Distribution Function) prototype library is effective for the angle normalization of RS data. However, its spatiotemporal applicability and error propagation are currently unclear. To resolve this problem, we herein propose a synthetic angle normalization model (SANM) for RS vegetation canopy reflectance; this model exploits the GSS imaging characteristics, whereby each pixel has a fixed observation angle. The established model references a topographic correction method for vegetation canopies based on path-length correction, solar zenith angle normalization, and the Minnaert model. It also considers the characteristics of diurnal variations in vegetation canopy reflectance spectra by setting the time window. Experiments were carried out on the eight Geostationary Ocean Color Imager (GOCI) images obtained on 22 April 2015 to validate the performance of the proposed SANM. The results show that SANM significantly improves the phase-to-phase correlation of the GOCI band reflectance in the morning time window and retains the instability of vegetation canopy spectra in the noon time window. The SANM provides a preliminary solution for normalizing the angles for the GSS RS data and makes the quantitative comparison of spatiotemporal RS data possible. Full article
Show Figures

Figure 1

21 pages, 4883 KiB  
Article
Defect Dynamics in Anomalous Latching of a Grating Aligned Bistable Nematic Liquid Crystal Device
by J. C. Jones, S. A. Jones, Z. R. Gradwell, F. A. Fernandez and S. E. Day
Crystals 2022, 12(9), 1291; https://doi.org/10.3390/cryst12091291 - 13 Sep 2022
Cited by 1 | Viewed by 2266
Abstract
Deliberate manipulation of topological defects is of particular interest for liquid crystal applications. For example, surface bistability occurs in the grating aligned Zenithal Bistable Device due to the stabilisation of ±½ defects at the points of high surface curvature. Conventional latching between continuous [...] Read more.
Deliberate manipulation of topological defects is of particular interest for liquid crystal applications. For example, surface bistability occurs in the grating aligned Zenithal Bistable Device due to the stabilisation of ±½ defects at the points of high surface curvature. Conventional latching between continuous and defect states has previously been simulated satisfactorily using Q-tensor models that include the effect of weak-anchoring and flexoelectricity. However, experimental studies show that some arrangements lead to anomalous latching regimes. The Q-tensor model is used to show that such effects occur when the defects become detached from the surface and have more complex paths in the bulk of the sample. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in UK)
Show Figures

Figure 1

Back to TopTop