Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = yokenella

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 323 KiB  
Review
Yokenella regensburgei—Past, Present and Future
by Dan Alexandru Toc, Carmen Costache, Vlad Sever Neculicioiu, Irina-Maria Rusu, Bogdan-Valentin Roznovan, Alexandru Botan, Adelina Georgiana Toc, Pavel Șchiopu, Paul-Stefan Panaitescu, Adrian Gabriel Pană and Ioana Alina Colosi
Antibiotics 2024, 13(7), 589; https://doi.org/10.3390/antibiotics13070589 - 26 Jun 2024
Cited by 1 | Viewed by 3171
Abstract
Yokenella regensburgei is a Gram-negative rod part of the Enterobacteriaceae family (order Enterobacterales) and a rare cause of human infections. Although improved diagnostic methods have led to an increase in reports of this elusive pathogen, information remains limited. In order to provide [...] Read more.
Yokenella regensburgei is a Gram-negative rod part of the Enterobacteriaceae family (order Enterobacterales) and a rare cause of human infections. Although improved diagnostic methods have led to an increase in reports of this elusive pathogen, information remains limited. In order to provide a better understanding of this bacterium, we developed the first comprehensive review of its biology, biochemical profile, antimicrobial resistance pattern, virulence factors, natural reservoir and involvement in various veterinary and human infections. Human infections with this bacterium are scarcely reported, most probably due to constraints regarding its identification and biochemical similarities to Hafnia alvei. Multiple systematic searches revealed 23 cases of human infection, with a seemingly worldwide distribution, mostly in middle-aged or elderly male patients, often associated with immunosuppression. To date, Y. regensburgei has been reported in skin and soft tissue infections, bacteremia and sepsis, osteoarticular infections and in others such as urinary tract and digestive infections. The unique ability of Y. regensburgei to degrade polystyrene presents a novel and promising avenue for addressing plastic pollution in the near future. However, large-scale applications of this bacterium will undoubtedly increase human exposure, highlighting the necessity for comprehensive research into its role in human and veterinary infections, pathogenicity and antibiotic resistance. Full article
11 pages, 574 KiB  
Article
A Bacteriological Comparison of the Hemolymph from Healthy and Moribund Unionid Mussel Populations in the Upper Midwestern U.S.A. Prompts the Development of Diagnostic Assays to Detect Yokenella regensburgei
by Eric M. Leis, Sara Dziki, Isaac Standish, Diane Waller, Jordan Richard, Jesse Weinzinger, Cleyo Harris, Susan Knowles and Tony Goldberg
Microorganisms 2023, 11(4), 1068; https://doi.org/10.3390/microorganisms11041068 - 19 Apr 2023
Cited by 7 | Viewed by 1869
Abstract
Recent bacteriological investigations of freshwater mussel mortality events in the southeastern United States have identified a variety of bacteria and differences in bacterial communities between sick and healthy mussels. In particular, Yokenella regensburgei and Aeromonas spp. have been shown to be associated with [...] Read more.
Recent bacteriological investigations of freshwater mussel mortality events in the southeastern United States have identified a variety of bacteria and differences in bacterial communities between sick and healthy mussels. In particular, Yokenella regensburgei and Aeromonas spp. have been shown to be associated with moribund mussels, although it remains unclear whether these bacteria are causes or consequences of disease. To further understand the role of bacteria in mussel epizootics, we investigated mortality events that occurred in the upper Midwest in the Embarrass River (Wisconsin) and the Huron River (Michigan). For comparison, we also studied mussels from an unaffected population in the St. Croix River (Wisconsin). Diverse bacterial genera were identified from these sites, including Y. regensburgei from moribund mussels in the Embarrass River (Wisconsin). This bacterium has also been consistently isolated during ongoing mortality events in the Clinch River (Virginia). Subsequently, we developed and validated molecular assays for the detection of Yokenella to use in future investigations of mussel mortality events and to identify environmental reservoirs of this bacterium. Full article
(This article belongs to the Special Issue Microorganisms and Diseases Associated with Aquatic Animals)
Show Figures

Figure 1

17 pages, 2605 KiB  
Article
Bacteriological Quality and Biotoxin Profile of Ready-to-Eat Foods Vended in Lagos, Nigeria
by Oluwadamilola M. Makinde, Michael Sulyok, Rasheed A. Adeleke, Rudolf Krska and Chibundu N. Ezekiel
Foods 2023, 12(6), 1224; https://doi.org/10.3390/foods12061224 - 13 Mar 2023
Cited by 10 | Viewed by 3852
Abstract
A comprehensive study of bacterial and biotoxin contaminants of ready-to-eat (RTE) foods in Nigeria is yet to be reported. Hence, this study applied 16S rRNA gene sequencing and a dilute-and-shoot LC-MS/MS method to profile bacteria and biotoxins, respectively, in 199 RTE food samples [...] Read more.
A comprehensive study of bacterial and biotoxin contaminants of ready-to-eat (RTE) foods in Nigeria is yet to be reported. Hence, this study applied 16S rRNA gene sequencing and a dilute-and-shoot LC-MS/MS method to profile bacteria and biotoxins, respectively, in 199 RTE food samples comprising eko (n = 30), bread (n = 30), shawarma (n = 35), aadun (n = 35), biscuits (n = 34), and kokoro (n = 35). A total of 631 bacterial isolates, clustered into seven operational taxonomic units, namely Acinetobacter, Bacillus, Klebsiella, Proteus and Kosakonia, Kurthia, and Yokenella, that are reported for the first time were recovered from the foods. One hundred and eleven metabolites comprising mycotoxins and other fungal metabolites, phytoestrogenic phenols, phytotoxins, and bacterial metabolites were detected in the foods. Aflatoxins, fumonisins, and ochratoxins contaminated only the artisanal foods (aadun, eko, and kokoro), while deoxynivalenol and zearalenone were found in industrially-processed foods (biscuit, bread, and shawarma), and citrinin was present in all foods except eko. Mean aflatoxin (39.0 µg/kg) in artisanal foods exceeded the 10 µg/kg regulatory limit adopted in Nigeria by threefold. Routine surveillance, especially at the informal markets; food hygiene and safety education to food processors and handlers; and sourcing of high-quality raw materials are proposed to enhance RTE food quality and safeguard consumer health. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

14 pages, 3262 KiB  
Article
Engineering the Activity of Old Yellow Enzyme NemR-PS for Efficient Reduction of (E/Z)-Citral to (S)-Citronellol
by Binbin Feng, Xia Li, Lijun Jin, Yi Wang, Yi Tang, Yuhao Hua, Chenze Lu, Jie Sun, Yinjun Zhang and Xiangxian Ying
Catalysts 2022, 12(6), 631; https://doi.org/10.3390/catal12060631 - 9 Jun 2022
Cited by 2 | Viewed by 2720
Abstract
The cascade catalysis of old yellow enzyme, alcohol dehydrogenase and glucose dehydrogenase has become a promising approach for one pot, two-step reduction of (E/Z)-citral to (S)-citronellol, serving as a chiral alcohol with rose fragrance. During the multi-enzymatic [...] Read more.
The cascade catalysis of old yellow enzyme, alcohol dehydrogenase and glucose dehydrogenase has become a promising approach for one pot, two-step reduction of (E/Z)-citral to (S)-citronellol, serving as a chiral alcohol with rose fragrance. During the multi-enzymatic cascade catalysis, old yellow enzyme is responsible for the reduction of the conjugated C=C and the introduction of the chiral center, requiring high activity and (S)-enantioselectiviy. Herein, to improve the activity of the old yellow enzyme from Providencia stuartii (NemR-PS) with strict (S)-enantioselectivity, the semi-rational design on its substrate binding pocket was performed through a combination of homology modeling, molecular docking analysis, alanine scanning and iterative saturation mutagenesis. The NemR-PS variant D275G/F351A with improved activity was obtained and then purified for characterization, obeying the substrate inhibition kinetics. Compared with the wild type, the parameters Ki and Kcat/Km were increased from 39.79 mM and 2.09 s−1mM−1 to 128.50 mM and 5.01 s−1mM−1, respectively. Moreover, the variant D275G/F351A maintained strict (S)-enantioselectivity, avoiding the trade-off effect between activity and enantioselectivity. Either the enzyme NemR-PS or the variant D275G/F351A was co-expressed with alcohol dehydrogenase from Yokenella sp. WZY002 (YsADH) and glucose dehydrogenase from Bacillus megaterium (BmGDHM6). In contrast to the whole-cell biocatalyst co-expressing NemR-PS, that co-expressing the variant D275G/F351A shortened the reaction time from 36 h to 12 h in the reduction of 400 mM (E/Z)-citral. In the manner of substrate constant feeding, the accumulated product concentration reached up to 500 mM and completely eliminate the residual intermediate and by-product, suggesting the effectiveness of protein engineering and substrate engineering to improve catalytic efficiency. Full article
(This article belongs to the Special Issue Current State-of-the-Art of Biocatalysts)
Show Figures

Figure 1

18 pages, 3180 KiB  
Article
Screening of Antimicrobial Activities and Lipopeptide Production of Endophytic Bacteria Isolated from Vetiver Roots
by Yuka Munakata, Egon Heuson, Théo Daboudet, Barbara Deracinois, Matthieu Duban, Alain Hehn, François Coutte and Sophie Slezack-Deschaumes
Microorganisms 2022, 10(2), 209; https://doi.org/10.3390/microorganisms10020209 - 19 Jan 2022
Cited by 21 | Viewed by 4820
Abstract
The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas [...] Read more.
The exploration of certain microbial resources such as beneficial endophytic microorganisms is considered a promising strategy for the discovery of new antimicrobial compounds for the pharmaceutical industries and agriculture. Thirty-one endophytic bacterial strains affiliated with Bacillus, Janthinobacterium, Yokenella, Enterobacter, Pseudomonas, Serratia, and Microbacterium were previously isolated from vetiver (Chrysopogon zizanioides (L.) Roberty) roots. These endophytes showed antifungal activity against Fusarium graminearum and could be a source of antimicrobial metabolites. In this study, in particular, using high-throughput screening, we analyzed their antagonistic activities and those of their cell-free culture supernatants against three species of Fusarium plant pathogens, a bacterial strain of Escherichia coli, and a yeast strain of Saccharomyces cerevisiae, as well as their capacity to produce lipopeptides. The results showed that the culture supernatants of four strains close to B. subtilis species exhibited antimicrobial activities against Fusarium species and E. coli. Using mass spectrometry analyses, we identified two groups of lipopeptides (surfactins and plipastatins) in their culture supernatants. Whole-genome sequencing confirmed that these bacteria possess NRPS gene clusters for surfactin and plipastatin. In vitro tests confirmed the inhibitory effect of plipastatin alone or in combination with surfactin against the three Fusarium species. Full article
(This article belongs to the Special Issue Antimicrobial Lipopeptide Biosurfactant)
Show Figures

Figure 1

15 pages, 1891 KiB  
Article
Mussel Mass Mortality and the Microbiome: Evidence for Shifts in the Bacterial Microbiome of a Declining Freshwater Bivalve
by Jordan C. Richard, Lewis J. Campbell, Eric M. Leis, Rose E. Agbalog, Chris D. Dunn, Diane L. Waller, Susan Knowles, Joel G. Putnam and Tony L. Goldberg
Microorganisms 2021, 9(9), 1976; https://doi.org/10.3390/microorganisms9091976 - 17 Sep 2021
Cited by 31 | Viewed by 4914
Abstract
Freshwater mussels (Unionida) are suffering mass mortality events worldwide, but the causes remain enigmatic. Here, we describe an analysis of bacterial loads, community structure, and inferred metabolic pathways in the hemolymph of pheasantshells (Actinonaias pectorosa) from the Clinch River, USA, during [...] Read more.
Freshwater mussels (Unionida) are suffering mass mortality events worldwide, but the causes remain enigmatic. Here, we describe an analysis of bacterial loads, community structure, and inferred metabolic pathways in the hemolymph of pheasantshells (Actinonaias pectorosa) from the Clinch River, USA, during a multi-year mass mortality event. Bacterial loads were approximately 2 logs higher in moribund mussels (cases) than in apparently healthy mussels (controls). Bacterial communities also differed between cases and controls, with fewer sequence variants (SVs) and higher relative abundances of the proteobacteria Yokenella regensburgei and Aeromonas salmonicida in cases than in controls. Inferred bacterial metabolic pathways demonstrated a predominance of degradation, utilization, and assimilation pathways in cases and a predominance of biosynthesis pathways in controls. Only two SVs correlated with Clinch densovirus 1, a virus previously shown to be strongly associated with mortality in this system: Deinococcota and Actinobacteriota, which were associated with densovirus-positive and densovirus-negative mussels, respectively. Overall, our results suggest that bacterial invasion and shifts in the bacterial microbiome during unionid mass mortality events may result from primary insults such as viral infection or environmental stressors. If so, bacterial communities in mussel hemolymph may be sensitive, if generalized, indicators of declining mussel health. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 2292 KiB  
Article
Cascading Old Yellow Enzyme, Alcohol Dehydrogenase and Glucose Dehydrogenase for Selective Reduction of (E/Z)-Citral to (S)-Citronellol
by Yunpeng Jia, Qizhou Wang, Jingjing Qiao, Binbin Feng, Xueting Zhou, Lijun Jin, Yingting Feng, Duxia Yang, Chenze Lu and Xiangxian Ying
Catalysts 2021, 11(8), 931; https://doi.org/10.3390/catal11080931 - 30 Jul 2021
Cited by 13 | Viewed by 3594
Abstract
Citronellol is a kind of unsaturated alcohol with rose-like smell and its (S)-enantiomer serves as an important intermediate for organic synthesis of (-)-cis-rose oxide. Chemical methods are commonly used for the synthesis of citronellol and its (S)-enantiomer, [...] Read more.
Citronellol is a kind of unsaturated alcohol with rose-like smell and its (S)-enantiomer serves as an important intermediate for organic synthesis of (-)-cis-rose oxide. Chemical methods are commonly used for the synthesis of citronellol and its (S)-enantiomer, which suffers from severe reaction conditions and poor selectivity. Here, the first one-pot double reduction of (E/Z)-citral to (S)-citronellol was achieved in a multi-enzymatic cascade system: N-ethylmaleimide reductase from Providencia stuartii (NemR-PS) was selected to catalyze the selective reduction of (E/Z)-citral to (S)-citronellal, alcohol dehydrogenase from Yokenella sp. WZY002 (YsADH) performed the further reduction of (S)-citronellal to (S)-citronellol, meanwhile a variant of glucose dehydrogenase from Bacillus megaterium (BmGDHM6), together with glucose, drove efficient NADPH regeneration. The Escherichia coli strain co-expressing NemR-PS, YsADH, and BmGDHM6 was successfully constructed and used as the whole-cell catalyst. Various factors were investigated for achieving high conversion and reducing the accumulation of the intermediate (S)-citronellal and by-products. 0.4 mM NADP+ was essential for maintaining high catalytic activity, while the feeding of the cells expressing BmGDHM6 effectively eliminated the intermediate and by-products and shortened the reaction time. Under optimized conditions, the bio-transformation of 400 mM citral caused nearly complete conversion (>99.5%) to enantio-pure (S)-citronellol within 36 h, demonstrating promise for industrial application. Full article
(This article belongs to the Special Issue Biocatalytic Cascade Reactions)
Show Figures

Figure 1

19 pages, 2368 KiB  
Article
Developing a Microbial Consortium for Enhanced Metabolite Production from Simulated Food Waste
by Nathan D. Schwalm, Wais Mojadedi, Elliot S. Gerlach, Marcus Benyamin, Matthew A. Perisin and Katherine L. Akingbade
Fermentation 2019, 5(4), 98; https://doi.org/10.3390/fermentation5040098 - 27 Nov 2019
Cited by 19 | Viewed by 5453
Abstract
Food waste disposal and transportation of commodity chemicals to the point-of-need are substantial challenges in military environments. Here, we propose addressing these challenges via the design of a microbial consortium for the fermentation of food waste to hydrogen. First, we simulated the exchange [...] Read more.
Food waste disposal and transportation of commodity chemicals to the point-of-need are substantial challenges in military environments. Here, we propose addressing these challenges via the design of a microbial consortium for the fermentation of food waste to hydrogen. First, we simulated the exchange metabolic fluxes of monocultures and pairwise co-cultures using genome-scale metabolic models on a food waste proxy. We identified that one of the top hydrogen producing co-cultures comprised Clostridium beijerinckii NCIMB 8052 and Yokenella regensburgei ATCC 43003. A consortium of these two strains produced a similar amount of hydrogen gas and increased butyrate compared to the C. beijerinckii monoculture, when grown on an artificial garbage slurry. Increased butyrate production in the consortium can be attributed to cross-feeding of lactate produced by Y. regensburgei. Moreover, exogenous lactate promotes the growth of C. beijerinckii with or without a limited amount of glucose. Increasing the scale of the consortium fermentation proved challenging, as two distinct attempts to scale-up the enhanced butyrate production resulted in different metabolic profiles than observed in smaller scale fermentations. Though the genome-scale metabolic model simulations provided a useful starting point for the design of microbial consortia to generate value-added products from waste materials, further model refinements based on experimental results are required for more robust predictions. Full article
(This article belongs to the Special Issue Food Wastes: Feedstock for Value-Added Products)
Show Figures

Figure 1

Back to TopTop