Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = yellow horn seed oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2256 KiB  
Article
Comparative Analysis of Key Odorants and Aroma Characteristics in Hot-Pressed Yellow Horn (Xanthoceras sorbifolia bunge) Seed Oil Via Gas Chromatography–Ion Mobility Spectrometry and Gas Chromatography–Olfactory-Mass Spectrometry
by Hui Gao, Mengkai Liu, Lili Zheng, Tingting Zhang, Xiuliang Chang, He Liu, Sen Zhou, Zhiran Zhang, Shengxin Li and Jie Sun
Foods 2023, 12(17), 3174; https://doi.org/10.3390/foods12173174 - 23 Aug 2023
Cited by 10 | Viewed by 2187
Abstract
Volatile compounds (VOCs) present in the oil extracted from yellow horn seeds were first analyzed using GC-IMS and GC-O-MS at varying roasting temperatures. A total of 97 VOCs were detected using GC-IMS, while 77 were tentatively identified using GC-O-MS. Moreover, both methods allowed [...] Read more.
Volatile compounds (VOCs) present in the oil extracted from yellow horn seeds were first analyzed using GC-IMS and GC-O-MS at varying roasting temperatures. A total of 97 VOCs were detected using GC-IMS, while 77 were tentatively identified using GC-O-MS. Moreover, both methods allowed the identification of 24 VOCs, of which the type of aldehydes is the most abundant. Combining the results of GC-IMS, GC-O-MS, OAVs, and VIP, it was concluded that hexanal, 2,5-dimethylpyrazine, heptanal, 2-pentylfuran, 1-hexanol, and 1-octen-3-ol were the key aroma compounds. The PLS-DA and OPLS-DA models have demonstrated the ability to discriminate between different oil roasting temperatures with high accuracy. The roasting temperature of 160 °C was found to yield the highest content of main aroma substances, indicating its optimality for yellow horn seed oil production. These findings will prove beneficial for optimizing industrial production and enhancing oil aroma control. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

12 pages, 664 KiB  
Article
Optimization of Supercritical Fluid CO2 Extraction from Yellow Horn Seed and Its Anti-Fatigue and Antioxidant Activity
by Siyan Lyu, Haoran Wang and Tingjun Ma
Molecules 2023, 28(12), 4853; https://doi.org/10.3390/molecules28124853 - 19 Jun 2023
Cited by 3 | Viewed by 1902
Abstract
A supercritical fluid carbon dioxide (SF-CO2) extraction method was used to obtain the optimum process for extracting yellow horn seed oil. The anti-fatigue and antioxidant properties of the extracted oil were investigated through animal experiments. The optimum process conditions for SF-CO [...] Read more.
A supercritical fluid carbon dioxide (SF-CO2) extraction method was used to obtain the optimum process for extracting yellow horn seed oil. The anti-fatigue and antioxidant properties of the extracted oil were investigated through animal experiments. The optimum process conditions for SF-CO2 extraction of the yellow horn oil were 40 MPa, 50 °C and 120 min, with an extraction yield of 31.61%. The high-dose group of yellow horn oil could significantly increase the weight-bearing swimming time, the hepatic glycogen (HG) content and decrease the lactic acid (LA) content and blood urea nitrogen (BUN) content (p < 0.05) in mice. Moreover, it improved the antioxidant ability by reducing the malondialdehyde (MDA) content (p < 0.01) and raising the glutathione reductase (GR) content and superoxide dismutase (SOD) content (p < 0.05) in mice. Yellow horn oil has the effects of being an anti-fatigue and antioxidant substance, which provides a basis for its further utilization and development. Full article
Show Figures

Figure 1

11 pages, 2774 KiB  
Article
Oil Extraction and Evaluation from Yellow Horn Using a Microwave-Assisted Aqueous Saline Process
by Yulong Huang, Zhenxiong Yin, Jie Guo, Fengxia Wang and Ji Zhang
Molecules 2019, 24(14), 2598; https://doi.org/10.3390/molecules24142598 - 17 Jul 2019
Cited by 16 | Viewed by 3170
Abstract
This study investigates an aqueous salt process (ASP) combined with microwave-assisted extraction (MAE) for the seed oil extraction from yellow horn (Xanthoceras sorbifolium Bunge). The NaCl concentration in the oil extraction process affected the oil extraction yield. Box–Behnken design (BBD) and response [...] Read more.
This study investigates an aqueous salt process (ASP) combined with microwave-assisted extraction (MAE) for the seed oil extraction from yellow horn (Xanthoceras sorbifolium Bunge). The NaCl concentration in the oil extraction process affected the oil extraction yield. Box–Behnken design (BBD) and response surface methodology (RSM) were used to optimize the extraction process. The optimal operating parameters were: 24 g/L NaCl, 300 W microwave power, 4:1 water to material ratio, an 80 min extraction time, and 45 °C extraction temperature. The chemical composition of the extracted seed oil was analyzed using gas chromatography–mass spectrometry (GC-MS). This extraction technique for yellow horn seed oil provided high throughput and high-quality oil. The present research offers a kind of green extraction method for edible oil in the food industry. Full article
(This article belongs to the Special Issue Green Extraction, Separation and Purification Processes)
Show Figures

Figure 1

18 pages, 2249 KiB  
Article
Comparative RNA-Seq Analysis of High- and Low-Oil Yellow Horn During Embryonic Development
by Li Wang, Chengjiang Ruan, Lingyue Liu, Wei Du and Aomin Bao
Int. J. Mol. Sci. 2018, 19(10), 3071; https://doi.org/10.3390/ijms19103071 - 8 Oct 2018
Cited by 22 | Viewed by 3718
Abstract
Yellow horn (Xanthoceras sorbifolium Bunge) is an endemic oil-rich shrub that has been widely cultivated in northern China for bioactive oil production. However, little is known regarding the molecular mechanisms that contribute to oil content in yellow horn. Herein, we measured the [...] Read more.
Yellow horn (Xanthoceras sorbifolium Bunge) is an endemic oil-rich shrub that has been widely cultivated in northern China for bioactive oil production. However, little is known regarding the molecular mechanisms that contribute to oil content in yellow horn. Herein, we measured the oil contents of high- and low-oil yellow horn embryo tissues at four developmental stages and investigated the global gene expression profiles through RNA-seq. The results found that at 40, 54, 68, and 81 days after anthesis, a total of 762, 664, 599, and 124 genes, respectively, were significantly differentially expressed between the high- and low-oil lines. Gene ontology (GO) enrichment analysis revealed some critical GO terms related to oil accumulation, including acyl-[acyl-carrier-protein] desaturase activity, pyruvate kinase activity, acetyl-CoA carboxylase activity, and seed oil body biogenesis. The identified differentially expressed genes also included several transcription factors, such as, AP2-EREBP family members, B3 domain proteins and C2C2-Dof proteins. Several genes involved in fatty acid (FA) biosynthesis, glycolysis/gluconeogenesis, and pyruvate metabolism were also up-regulated in the high-oil line at different developmental stages. Our findings indicate that the higher oil accumulation in high-oil yellow horn could be mostly driven by increased FA biosynthesis and carbon supply, i.e. a source effect. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop