Optimization of Supercritical Fluid CO2 Extraction from Yellow Horn Seed and Its Anti-Fatigue and Antioxidant Activity
Abstract
:1. Introduction
2. Results
2.1. Influence of SF-CO2 Extraction Conditions on the Yield of Yellow Horn Oil
2.2. Optimization of Conditions for SF-CO2 Extraction of Yellow Horn Oil
2.3. Anti-Fatigue Test with Extracted Yellow Horn Oil
2.4. Antioxidant Activity Test with Extracted Yellow Horn Oil
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Supercritical Fluid Carbon Dioxide (SF-CO2) Extraction of Yellow Horn Oil
4.2.1. Experimental Design
4.2.2. Fatty Acid Identification
4.3. Studies on the Anti-Fatigue and Antioxidant Properties of Yellow Horn Oil
4.3.1. Animals and Experimental Design
4.3.2. Mice Administered by Batch Gavage
4.3.3. Weight-Bearing Swimming Test in Mice
4.3.4. Sample Collection and Parameter Determination
4.4. Statistical Data Processing Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Guo, J.; Zhang, Y.; Yan, X. Integrated transcriptomic and metabolomic analyses of yellow horn (Xanthoceras sorbifolia) in response to cold stress. PLoS ONE 2020, 15, e0236588. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Sun, Y.; Feng, Y.; Qi, Z.; Yu, M.; Song, K. Recent Progress in the Molecular Investigations of Yellow Horn (Xanthoceras sorbifolia Bunge). Bot. Rev. 2020, 86, 136–148. [Google Scholar] [CrossRef]
- Zhang, S.; Zu, Y.-G.; Fu, Y.-J.; Luo, M.; Liu, W.; Li, J.; Efferth, T. Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity. Bioresour. Technol. 2010, 101, 2537–2544. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.-B.; Zhang, G.-J.; Du, L.; Du, J.; Qi, K.; Zhu, X.-L.; Zhang, X.-Y.; Jiang, Z.-H. Comparative study on the extraction of Xanthoceras sorbifolia Bunge (yellow horn) seed oil using subcritical n-butane, supercritical CO2, and the Soxhlet method. LWT 2019, 111, 548–554. [Google Scholar] [CrossRef]
- Chen, X.; Lei, Z.; Cao, J.; Zhang, W.; Wu, R.; Cao, F.; Guo, Q.; Wang, J. Traditional uses, phytochemistry, pharmacology and current uses of underutilized Xanthoceras sorbifolium bunge: A review. J. Ethnopharmacol. 2022, 283, 114747. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zu, Y.-G.; Luo, M.; Gu, C.-B.; Zhao, C.-J.; Efferth, T.; Fu, Y.-J. Aqueous enzymatic process assisted by microwave extraction of oil from yellow horn (Xanthoceras sorbifolia Bunge.) seed kernels and its quality evaluation. Food Chem. 2013, 138, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Enssle, J.; Pietzner, A.; Schmöcker, C.; Weiland, L.; Ritter, O.; Jaensch, M.; Elbelt, U.; Pagonas, N.; Weylandt, K.H. Essential Polyunsaturated Fatty Acids in Blood from Patients with and without Catheter-Proven Coronary Artery Disease. Int. J. Mol. Sci. 2022, 23, 766. [Google Scholar] [CrossRef]
- Umemoto, H.; Yasugi, S.; Tsuda, S.; Yoda, M.; Ishiguro, T.; Kaba, N.; Itoh, T. Protective Effect of Nervonic Acid Against 6-Hydroxydopamine-Induced Oxidative Stress in PC-12 Cells. J. Oleo Sci. 2021, 70, 95–102. [Google Scholar] [CrossRef]
- Huang, Y.; Yin, Z.; Guo, J.; Wang, F.; Zhang, J. Oil Extraction and Evaluation from Yellow Horn Using a Microwave-Assisted Aqueous Saline Process. Molecules 2019, 24, 2598. [Google Scholar] [CrossRef] [Green Version]
- Al Juhaimi, F.; Uslu, N.; Babiker, E.; Ghafoor, K.; Ahmed, I.A.M.; Özcan, M.M. The Effect of Different Solvent Types and Extraction Methods on Oil Yields and Fatty Acid Composition of Safflower Seed. J. Oleo Sci. 2019, 68, 1099–1104. [Google Scholar] [CrossRef] [Green Version]
- Prommaban, A.; Kuanchoom, R.; Seepuan, N.; Chaiyana, W. Evaluation of fatty acid compositions, antioxidant, and pharma-cological activities of pumpkin (Cucurbita moschata) seed oil from aqueous enzymatic extraction. Plants 2021, 10, 1582. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, Z.; Smith, S.; Chen, M.; Liu, H.; Zhang, J.; Tang, L.; Li, J.; Liu, Q.; Wu, X. Optimization of supercritical CO2 ex-traction of Moringa oleifera seed oil using response surface methodological approach and its antioxidant activity. Front. Nutr. 2022, 8, 829146. [Google Scholar] [CrossRef] [PubMed]
- De Aguiar, A.C.; Viganó, J.; Da-Silva-Anthero, A.; Dias, A.L.B.; Hubinger, M.D.; Martínez, J. Supercritical fluids and fluid mixtures to obtain high-value compounds from Capsicum peppers. Food Chem. X 2022, 13, 100228. [Google Scholar] [CrossRef]
- Olson, K.; Zimka, O.; Stein, E. The Nature of Fatigue in Chronic Fatigue Syndrome. Qual. Health Res. 2015, 25, 1410–1422. [Google Scholar] [CrossRef]
- Ewart, C.K.; Stewart, K.J.; Gillilan, R.E.; Kelemen, M.H.; Valenti, S.A.; Manley, J.D.; Kelemen, M.D. Usefulness of self-efficacy in predicting overexertion during programmed exercise in coronary artery disease. Am. J. Cardiol. 1986, 57, 557–561. [Google Scholar] [CrossRef]
- Li, J.; Zu, Y.-G.; Fu, Y.-J.; Yang, Y.-C.; Li, S.-M.; Li, Z.-N.; Wink, M. Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge.) kernel and evaluation of its antioxidant activity. Innov. Food Sci. Emerg. Technol. 2010, 11, 637–643. [Google Scholar] [CrossRef]
- Jokić, S.; Bijuk, M.; Aladić, K.; Bilić, M.; Molnar, M. Optimisation of supercritical CO2 extraction of grape seed oil using response surface methodology. Int. J. Food Sci. Technol. 2016, 51, 403–410. [Google Scholar] [CrossRef]
- Yu, J.; Wang, J.; Liu, C.; Liu, Z.; Wang, Q. Application of response surface methodology to optimise supercritical carbon dioxide extraction of oil from rapeseed (Brassica napus L.). Int. J. Food Sci. Technol. 2012, 47, 1115–1121. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, B.; Kang, H.; Yue, H.; Chen, C.; Jiang, L.; Shao, Y. Subcritical fluid extraction of Lycium ruthenicum seeds oil and its antioxidant activity. Int. J. Food Sci. Technol. 2019, 54, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Aladić, K.; Vidović, S.; Vladić, J.; Balić, D.; Jukić, H.; Jokić, S. Effect of supercritical CO2 extraction process parameters on oil yield and pigment content from by-product hemp cake. Int. J. Food Sci. Technol. 2016, 51, 885–893. [Google Scholar] [CrossRef]
- Chen, Z.; Mei, X.; Jin, Y.; Kim, E.-H.; Yang, Z.; Tu, Y. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity. J. Sci. Food Agric. 2014, 94, 316–321. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Liu, Y.-L.; Che, L.-M. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil. J. Oleo Sci. 2018, 67, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Ishak, I.; Hussain, N.; Coorey, R.; Ghani, M.A. Optimization and characterization of chia seed (Salvia hispanica L.) oil extraction using supercritical carbon dioxide. J. CO2 Util. 2021, 45, 101430. [Google Scholar] [CrossRef]
- Qu, X.-J.; Fu, Y.-J.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Li, C.-Y.; Wang, W.; Li, J.; Wei, Z.-F. Acidic pH based microwave-assisted aqueous extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.). Ind. Crops Prod. 2013, 43, 420–426. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, X.; Dong, X.; Tao, Z.; Lu, L.; Zou, X. Effects of parental dietary linoleic acid on growth performance, antioxidant capacity, and lipid metabolism in domestic pigeons (Columba livia). Poult. Sci. 2020, 99, 1471–1482. [Google Scholar] [CrossRef] [PubMed]
- Bettadahalli, S.; Acharya, P.; Ramaiyan, B.; Talahalli, R.R. Evidence on oleic acid and EPA + DHA role in retinal antioxidant defense, leukocyte adhesion, and vascular permeability: Insight from hyperlipidemic rat model. J. Funct. Foods 2020, 67, 103864. [Google Scholar] [CrossRef]
- López-Soldado, I.; Guinovart, J.J.; Duran, J. Increased liver glycogen levels enhance exercise capacity in mice. J. Biol. Chem. 2021, 297, 100976. [Google Scholar] [CrossRef]
- Hou, Y.; Tang, Y.; Wang, X.; Ai, X.; Wang, H.; Li, X.; Chen, X.; Zhang, Y.; Hu, Y.; Meng, X.; et al. Rhodiola Crenulata ameliorates exhaustive exercise-induced fatigue in mice by suppressing mitophagy in skeletal muscle. Exp. Ther. Med. 2020, 20, 3161–3173. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liang, D.; Huang, Z.; Jia, G.; Zhao, H.; Liu, G. Anti-fatigue effect of quercetin on enhancing muscle function and antioxidant capacity. J. Food Biochem. 2021, 45, e13968. [Google Scholar] [CrossRef] [PubMed]
- Charrin, E.; Faes, C.; Sotiaux, A.; Skinner, S.; Pialoux, V.; Joly, P.; Connes, P.; Martin, C. Receptor for Advanced Glycation End Products Antagonism Blunts Kidney Damage in Transgenic Townes Sickle Mice. Front. Physiol. 2019, 10, 880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Cha, H.; Kim, J.; Kim, J.; Yang, H.; Yoon, S.; Boonpraman, N.; Yi, S.; Yoo, I.; Moon, J. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 2021, 41, 101947. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tao, Y.; Lai, C.; Huang, C.; Ling, Z.; Yong, Q. Influence of extraction methods on navel orange peel pectin: Structural characteristics, antioxidant activity and cytoprotective capacity. Int. J. Food Sci. Technol. 2023, 58, 1382–1393. [Google Scholar] [CrossRef]
- Huang, W.-C.; Chiu, W.-C.; Chuang, H.-L.; Tang, D.-W.; Lee, Z.-M.; Deh-Wei, T.; Chen, F.-A. Effect of Curcumin Supplementation on Physiological Fatigue and Physical Performance in Mice. Nutrients 2015, 7, 905–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
(a) | |||||
Test Number | Factors | Extraction Yield/% | |||
A | B | C | D | ||
1 | 1 | 1 | 1 | 1 | 22.65 |
2 | 1 | 2 | 2 | 2 | 25.72 |
3 | 1 | 3 | 3 | 3 | 24.02 |
4 | 2 | 1 | 2 | 3 | 24.58 |
5 | 2 | 2 | 3 | 1 | 26.87 |
6 | 2 | 3 | 1 | 2 | 25.42 |
7 | 3 | 1 | 3 | 2 | 25.90 |
8 | 3 | 2 | 1 | 3 | 24.41 |
9 | 3 | 3 | 2 | 1 | 31.61 |
K1 | 24.13 | 24.38 | 24.16 | 27.04 | |
K2 | 25.62 | 25.67 | 27.31 | 25.68 | |
K3 | 27.31 | 27.02 | 25.60 | 24.34 | |
R | 3.18 | 2.64 | 3.15 | 2.71 | |
(b) | |||||
Source of Variance | Sum of Squared Deviations | Freedom | F-Value | Significance | |
A | 124.27 | 2 | 26.65 * | p < 0.05 | |
B | 75.45 | 2 | 16.23 | ||
C | 134.89 | 2 | 23.32 * | p < 0.05 | |
Error | 17.99 | 2 | |||
F0.05 (2, 2) | 19 | F0.01 (2, 2) | 99 |
Serial Number | Fatty Acids | Molecule Formula | Relative Content (%) |
---|---|---|---|
1 | Butyric acid | C4H8O2 | 0.03 |
2 | Palmitic acid | C16H32O2 | 4.82 |
3 | Linolenic acid | C18H30O2 | 4.49 |
4 | Linoleic acid | C18H32O2 | 44.81 |
5 | Oleic acid | C18H34O2 | 33.40 |
6 | Stearic acid | C18H36O2 | 1.30 |
7 | Eicosapentaenoic acid | C20H30O2 | 0.70 |
8 | Arachidonic acid | C20H32O2 | 0.10 |
9 | Paullinic acid | C20H38O2 | 0.08 |
10 | Arachidic acid | C20H40O2 | 0.08 |
11 | Docosahexaenoic acid | C22H32O2 | 4.63 |
12 | Erucic acid | C22H42O2 | 1.50 |
13 | Nervonic acid | C24H46O2 | 4.06 |
Levels | Factors | ||
---|---|---|---|
Extraction Pressure (MPa) | Extraction Temperature (°C) | Extraction Time (min) | |
1 | 20 | 20 | 60 |
2 | 25 | 30 | 90 |
3 | 30 | 40 | 120 |
4 | 35 | 50 | 150 |
5 | 40 | 60 | 180 |
Levels | Factors | |||
---|---|---|---|---|
A Pressure (MPa) | B Temperature (°C) | C Time (min) | D Empty Column | |
1 | 30 | 30 | 90 | 1 |
2 | 35 | 40 | 120 | 2 |
3 | 40 | 50 | 150 | 3 |
Dose Group | Group Number | Animal Count | Cage Number | Individual Number | Cage Card Color |
---|---|---|---|---|---|
Control | 1 | 6 | 01 | 1M0101~05 | White |
6 | 02 | 1M0201~05 | |||
LPT | 2 | 6 | 01 | 2M0101~05 | Red |
6 | 02 | 2M0201~05 | |||
Yho-L | 3 | 6 | 01 | 3M0101~05 | Light green |
6 | 02 | 3M0201~05 | |||
Yho-M | 4 | 6 | 01 | 4M0101~05 | Dark green |
6 | 02 | 4M0201~05 | |||
Yho-H | 5 | 6 | 01 | 5M0101~05 | Blue |
6 | 02 | 5M0201~05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, S.; Wang, H.; Ma, T. Optimization of Supercritical Fluid CO2 Extraction from Yellow Horn Seed and Its Anti-Fatigue and Antioxidant Activity. Molecules 2023, 28, 4853. https://doi.org/10.3390/molecules28124853
Lyu S, Wang H, Ma T. Optimization of Supercritical Fluid CO2 Extraction from Yellow Horn Seed and Its Anti-Fatigue and Antioxidant Activity. Molecules. 2023; 28(12):4853. https://doi.org/10.3390/molecules28124853
Chicago/Turabian StyleLyu, Siyan, Haoran Wang, and Tingjun Ma. 2023. "Optimization of Supercritical Fluid CO2 Extraction from Yellow Horn Seed and Its Anti-Fatigue and Antioxidant Activity" Molecules 28, no. 12: 4853. https://doi.org/10.3390/molecules28124853
APA StyleLyu, S., Wang, H., & Ma, T. (2023). Optimization of Supercritical Fluid CO2 Extraction from Yellow Horn Seed and Its Anti-Fatigue and Antioxidant Activity. Molecules, 28(12), 4853. https://doi.org/10.3390/molecules28124853