Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = yakuchinone A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3565 KiB  
Article
Extraction of Bound Polyphenols from Elaeagnus angustifolia L. by Ultrasonic-Assisted Enzymatic Hydrolysis and Evaluation of Its Antioxidant Activity In Vitro
by Jingjing Lv, Lu Li, Zilong Liang, Wenyue Wu, Na Zhang and Qinghua Jia
Foods 2025, 14(9), 1567; https://doi.org/10.3390/foods14091567 - 29 Apr 2025
Viewed by 567
Abstract
Herein, Elaeagnus angustifolia L. was utilized as a raw material to extract bound polyphenols using an ultrasound-assisted complex enzyme method for the first time. The effects of enzyme ratio, ultrasonic time, liquid-to-solid ratio, and pH value on the bound polyphenol yield were investigated [...] Read more.
Herein, Elaeagnus angustifolia L. was utilized as a raw material to extract bound polyphenols using an ultrasound-assisted complex enzyme method for the first time. The effects of enzyme ratio, ultrasonic time, liquid-to-solid ratio, and pH value on the bound polyphenol yield were investigated using single-factor experiments. The key parameters were subsequently optimized using the Box–Behnken design. The optimal conditions identified were as follows: enzyme ratio (α-amylase/cellulase = 5:1 mg/mg), ultrasonic time of 50 min, liquid-to-solid ratio of 12:1 mL/g, and pH value of 5. Under these conditions, the bound polyphenol yield was measured at 13.970 ± 0.3 mg/g. A total of 27 phenolic compounds were identified using ultrahigh-performance liquid chromatography–ion mobility quadrupole time-of-flight mass spectrometry (UPLC–IMS-QTOF-MS), including two coumarins, five lignins, 10 polyphenols, nine flavonoids, and one tannin, and specifically containing Angeloylgomisin Q, Yakuchinone A, Furosin, 6-Dehydrogingerdione, and 4′-Methylpinosylvin, and so on. Antioxidant activity was assessed using the 1,1-diphenyl-2-picryl-hydrazil (DPPH) and 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) methods, revealing significant antioxidant potential. This study introduced a novel extraction process for bound polyphenols from E. angustifolia L. and provided the first qualitative analysis of bound polyphenols in this species, establishing a scientific foundation for its development and application in the functional food, medicine, and cosmetics industries. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

15 pages, 2343 KiB  
Article
Protective Effect of Alpinia oxyphylla Fruit against tert-Butyl Hydroperoxide-Induced Toxicity in HepG2 Cells via Nrf2 Activation and Free Radical Scavenging and Its Active Molecules
by Chae Lee Park, Ji Hoon Kim, Je-Seung Jeon, Ju-hee Lee, Kaixuan Zhang, Shuo Guo, Do-hyun Lee, Eun Mei Gao, Rak Ho Son, Young-Mi Kim, Gyu Hwan Park and Chul Young Kim
Antioxidants 2022, 11(5), 1032; https://doi.org/10.3390/antiox11051032 - 23 May 2022
Cited by 11 | Viewed by 2980
Abstract
Alpinia oxyphylla Miq. (Zingiberaceae) extract exerts protective activity against tert-butyl hydroperoxide-induced toxicity in HepG2 cells, and the antioxidant response element (ARE) luciferase activity increased 6-fold at 30 μg/mL in HepG2 cells transiently transfected with ARE-luciferase. To identify active molecules, activity-guided isolation of [...] Read more.
Alpinia oxyphylla Miq. (Zingiberaceae) extract exerts protective activity against tert-butyl hydroperoxide-induced toxicity in HepG2 cells, and the antioxidant response element (ARE) luciferase activity increased 6-fold at 30 μg/mL in HepG2 cells transiently transfected with ARE-luciferase. To identify active molecules, activity-guided isolation of the crude extract led to four sesquiterpenes (1, 2, 5, 6) and two diarylheptanoids (3 and 4) from an n-hexane extract and six sesquiterpenes (712) from an ethyl acetate extract. Chemical structures were elucidated by one-dimensional, two-dimensional nuclear magnetic resonance (1D-, 2D-NMR), and mass (MS) spectral data. Among the isolated compounds, eudesma-3,11-dien-2-one (2) promoted the nuclear accumulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and increased the promoter property of the ARE. Diarylheptanoids, yakuchinone A (3), and 5′-hydroxyl-yakuchinone A (4) showed radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays. Furthermore, optimization of extraction solvents (ratios of water and ethanol) was performed by comparison of contents of active compounds, ARE-inducing activity, radical scavenging activity, and HepG2 cell protective activity. As a result, 75% ethanol was the best solvent for the extraction of A. oxyphylla fruit. This study demonstrated that A. oxyphylla exerted antioxidant effects via the Nrf2/HO-1 (heme oxygenase-1) pathway and radical scavenging along with active markers eudesma-3,11-dien-2-one (2) and yakuchinone A (3). Full article
Show Figures

Figure 1

13 pages, 2520 KiB  
Article
Microbial Transformation of Yakuchinone A and Cytotoxicity Evaluation of Its Metabolites
by Chen Huo, Fubo Han, Yina Xiao, Hyun Jung Kim and Ik-Soo Lee
Int. J. Mol. Sci. 2022, 23(7), 3992; https://doi.org/10.3390/ijms23073992 - 3 Apr 2022
Cited by 3 | Viewed by 3057
Abstract
Yakuchinone A (1) is a bioactive diarylheptanoid isolated from the dried fruits of Alpinia oxyphylla. Microbial transformation has been recognized as an efficient method to produce new biologically active derivatives from natural products. In the present study, microbial transformation of yakuchinone [...] Read more.
Yakuchinone A (1) is a bioactive diarylheptanoid isolated from the dried fruits of Alpinia oxyphylla. Microbial transformation has been recognized as an efficient method to produce new biologically active derivatives from natural products. In the present study, microbial transformation of yakuchinone A was performed with the fungus Mucor hiemalis KCTC 26779, which led to the isolation of nine new metabolites (2, 3a, 3b, and 49). Their structures were elucidated as (3S)-oxyphyllacinol (2), (3S,7R)- and (3S,7S)-7-hydroxyoxyphyllacinol (3a and 3b), (3S)-oxyphyllacinol-4′-O-β-d-glucopyranoside (4), (3S)-4″-hydroxyoxyphyllacinol (5), (3S)-3″-hydroxyoxyphyllacinol (6), (3S)-2″-hydroxyoxyphyllacinol (7), (3S)-2″-hydroxyoxyphyllacinol-2″-O-β-d-glucopyranoside (8), and (3S)-oxyphyllacinol-3-O-β-d-glucopyranoside (9) based on the comprehensive spectroscopic analyses and the application of modified Mosher’s method. All compounds were evaluated for their cytotoxic activities against melanoma, as well as breast, lung, and colorectal cancer cell lines. Compound 9, which was O-glucosylated on the diarylheptanoid alkyl chain, exhibited the most selective cytotoxic activities against melanoma cell lines with the IC50 values ranging from 6.09 to 9.74 μM, indicating that it might be considered as a possible anti-cancer lead compound. Full article
(This article belongs to the Special Issue Enzymatic Synthesis of Novel and Bioactive Compounds)
Show Figures

Graphical abstract

14 pages, 424 KiB  
Article
Different Accumulation Profiles of Multiple Components Between Pericarp and Seed of Alpinia oxyphylla Capsular Fruit as Determined by UFLC-MS/MS
by Feng Chen, Hai-Long Li, Yin-Feng Tan, Wei-Wei Guan, Jun-Qing Zhang, Yong-Hui Li, Yuan-Sheng Zhao and Zhen-Miao Qin
Molecules 2014, 19(4), 4510-4523; https://doi.org/10.3390/molecules19044510 - 10 Apr 2014
Cited by 31 | Viewed by 7662
Abstract
Plant secondary metabolites are known to not only play a key role in the adaptation of plants to their environment, but also represent an important source of active pharmaceuticals. Alpinia oxyphylla capsular fruits, made up of seeds and pericarps, are commonly used in [...] Read more.
Plant secondary metabolites are known to not only play a key role in the adaptation of plants to their environment, but also represent an important source of active pharmaceuticals. Alpinia oxyphylla capsular fruits, made up of seeds and pericarps, are commonly used in traditional East Asian medicines. In clinical utilization of these capsular fruits, inconsistent processing approaches (i.e., hulling pericarps or not) are employed, with the potential of leading to differential pharmacological effects. Therefore, an important question arises whether the content levels of pharmacologically active chemicals between the seeds and pericarps of A. oxyphylla are comparable. Nine secondary metabolites present in A. oxyphylla capsular fruits, including flavonoids (e.g., tectochrysin, izalpinin, chrysin, apigenin-4',7-dimethylether and kaempferide), diarylheptanoids (e.g., yakuchinone A and B and oxyphyllacinol) and sesquiterpenes (e.g., nootkatone), were regarded as representative constituents with putative pharmacological activities. This work aimed to investigate the abundance of the nine constituents in the seeds and pericarps of A. oxyphylla. Thirteen batches of A. oxyphylla capsular fruits were gathered from different production regions. Accordingly, an ultra-fast high performance liquid chromatography/quadrupole tandem mass spectrometry (UFLC-MS/MS) method was developed and validated. We found that: (1) the nine secondary metabolites were differentially concentrated in seeds and fruit capsules; (2) nootkatone is predominantly distributed in the seeds; in contrast, the flavonoids and diarylheptanoids are mainly deposited in the capsules; and (3) the content levels of the nine secondary metabolites occurring in the capsules varied greatly among different production regions, although the nootkatone levels in the seeds were comparable among production regions. These results are helpful to evaluating and elucidating pharmacological activities of A. oxyphylla capsular fruits. Additionally, it may be of interest to elucidate the mechanisms involved in the distinct accumulation profiles of these secondary metabolites between seeds and pericarps. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop