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Simple Summary: The p53 protein family is a class of proteins successively known to be the
guardians of the genome, but also depending on the different isoforms have pro-tumoral and
pro-metastatic potential. This dual potential is also observed within the TGFb pathway. Several
interactions between those two proteins family start to explain this complexity.

Abstract: TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family,
which has many activities spanning from embryonic development through to tumor suppression.
The utilization of two promoters and alternative mRNA splicing has been shown to yield numer-
ous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear
accumulation following chemotherapy-induced DNA damage, according to a number of studies.
Overexpression of the nuclear ∆Np63 and ∆Np73 isoforms, on the other hand, suppresses TAp73’s
pro-apoptotic activity in human malignancies, potentially leading to metastatic spread or inhibition.
Another well-known pathway that has been associated to metastatic spread is the TGF pathway.
TGFs are a family of structurally related polypeptide growth factors that regulate a variety of cellular
functions including cell proliferation, lineage determination, differentiation, motility, adhesion, and
cell death, making them significant players in development, homeostasis, and wound repair. Various
studies have already identified several interactions between the p53 protein family and the TGFb
pathway in the context of tumor growth and metastatic spread, beginning to shed light on this
enigmatic intricacy.

Keywords: p53; TGF; metastasis

1. p53 Protein Family

The p53 transcription factor family, which includes TP53 (TP53), p73 (TP73), and p63
(TP63), is a protein family that has a wide range of functions, ranging from embryonic
development through to tumor suppression [1]. Unlike p53, p63 and p73 knockout (KO)
mice showed abnormal epithelial development, with truncated limbs, missing lachrymal
or salivary glands, and missing teeth and hair follicles [2,3]. p63 and p73 knockout (KO)
mice also showed defective neurological development, with congenital hydrocephalus,
hippocampal dysgenesis, and chronic inflammation, in the case of p73 KO [4,5].

In response to various cellular stress conditions such as DNA damage, hypoxia,
nucleotide imbalance, and others, the tumor suppressor p53 induces target genes that
are involved in cell cycle arrest, apoptosis, and DNA repair [6]. Most human cancers
have p53 inactivation due to direct mutation, deletion, or disruption of critical regulatory
mechanisms that are required for proper p53 function. Mutations or deletion of the p63
and p73 transcription factors, on the other hand, are uncommon in cancer [7,8].
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p53 Protein Family: Structure and Functions

All three p53 family members are very similar and present a high homology both at the
genomic and protein levels. Each contains an N-terminal transactivation domain (TAD), a
central DNA binding domain (DBD) through which they regulate both shared and distinct
transcriptional targets [9], and an oligomerization domain (OD) [1]. In addition, p63 and
p73, but not p53, can contain a long C-terminal that is mainly composed of a sterile alpha
motif (SAM) domain and a transactivation inhibitory domain (TID). The SAM consists
of four α-helices and a small helix which enables protein–protein interactions whereas
TID is a region that inhibits the transcriptional activity of TA isoforms through inter- or
intra-molecular association with their TAD [10,11] (Figure 1). The DBD exhibits more
than 60% homology between the three proteins, suggesting that they can bind to similar
sequences and transactivate the same promoters. Furthermore, the high conservation of OD
suggests the possibility of homo- and hetero-oligomer formation between the p53 family
protein partners.
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Figure 1. p53 family members. (A) Representation of the different domains in p53 and TA and ∆N
p63α and p73α isoforms: transactivation domain (TA, in light grey), DNA binding domain (DBD,
in red), oligomerization domain (OD, in yellow), sterile alpha domain (SAM, in dark grey), and the
transactivation inhibitory domain (TID, in orange), introns (black lines). (B) Represents p53, p63, and
p73 multiple spliced variants. P stands for different promoters, numbered boxes indicate exons, black
boxes are untranslated sequences, and black lines are introns.

Moreover, p63 and p73 can be expressed from two distinct promoters (one upstream
of exon 1 (P1) and another that is located within intron 3 (P2)) and can also be differentially
spliced, thereby producing different isoforms. Transcription from the P1 promoter gives
an N-terminal acidic TA domain (TAp63 and TAp73) whereas in the products that are
transcribed from P2, this TA domain is absent (∆Np63 and ∆Np73) [12].

From the C-terminal splicing of p63 and p73, a large variety of proteins can be gener-
ated. At least seven C-terminal isotypes have been identified for p73 (α, β, γ, δ, ε, ζ, and
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η) and three for p63 (α, β, and γ). In total, the p63 gene encodes for six different protein
isoforms and the p73 gene expresses 35 mRNA variants that can theoretically encode for
28 different protein isoforms. Only 14 isoforms have been described so far [13]. Their
contributions are not yet fully understood but some evidence points to the fact that these
different C-termini could be involved in the capacity of TA isoforms to transactivate gene
expression [7,8]. In both cases, p63α and p73α are the full-length isoforms (with SAM and
TID present at their C-termini) and the others are the result of different truncations of those
ones (Figure 1).

It has been shown that p53 also produces multiple isoforms through the use of two
promoters and alternative mRNA splicing. Those isoforms are expressed in normal human
tissues in a tissue-dependent manner [13].

Due to the high homology that is observed within the three members of the p53 protein,
and the fact that, unlike the not functional p53, p63 and p73 are found overexpressed in the
vast majority of cancers and their role in the malignant context has been questioned [14].
Whether p63 and p73 promote or not, human tumorigenesis and metastatic dissemination
may depend on the predominant isoforms that are expressed in a specific tissue. TA
isoforms have been demonstrated to transactivate distinct but overlapping subsets of
known p53-regulated genes that are involved in cell-cycle arrest and apoptosis, as well
as some other gene sets not regulated by p53. In contrast, the TAD truncated isoforms,
∆Np63 and ∆Np73 proteins, function as dominant-negative inhibitors of the p53 family,
so that, these isoforms may be most likely related with protooncogenic functions [15,16].
Those conclusions come from studies indicating that TAp73 mediates apoptosis as a result
of its nuclear accumulation following chemotherapy-induced DNA damage [17]. The
overexpression of ∆Np63 and ∆Np73, in contrast, inhibits the pro-apoptotic effect of Tap73
in human tumors.

2. p63 and p73 Interactions in the Head and Neck Squamous Cell Carcinoma
Model (HNSCC)

Head and neck squamous cell carcinoma (HNSCC) is the most common type (90%) of
head and neck cancers, a group of biologically similar malignancies that affects the oral
cavity (mouth), nasal cavity, pharynx, larynx, and paranasal sinuses. It arises from epithelial
cells that line the mucosal surfaces of the head and the neck [18]. HNSCC is the sixth most
common diagnosed cancer worldwide with 560,000 new cases and 300,000 deaths annually
reported [19,20]. Although cervical lymph nodes are the main metastatic sites, the risk of
dissemination is not so high and it depends on both the stage and location of the primary
tumor [21]. Nevertheless, head and neck cancers are aggressive in nature. Tobacco and
alcohol consumption are the main factors that are responsible for HNSCC apparition but
some studies also point their initiation from the human papillomavirus (HPV) infection.
Therapy is mainly based on surgery or radiotherapy at early stages whereas a combination
of surgery, radiotherapy, and chemotherapy is applied in advanced stages, resulting in
multiple toxic side effects [18].

HNSCC presents mutated p53, as it is in the majority of cancers, with mutations
that are found in more than half of HNSCC malignancies. Rather than being mutated,
p73 is overexpressed in a wide range of tumor types, including breast, lung, colon, and
stomach cancers, as well as epithelial cancers such as HNSCC, with TAp73 being the most
common isoform [22]. The P63 gene region (chromosome 3q27-28) is frequently amplified
in squamous cell carcinomas [23,24] and its consequent protein overexpression is seen
in up to 80% of HNSCCs. In these types of cancers, Np63 is the most prevalent isoform.
∆Np63α is the most predominant isoform in these kinds of malignancies [25,26]. As both
partners possess homologous ODs, they are susceptible to interact and form homo- and
hetero-oligomers (Figure 2). When p63 is expressed in cancer cells, homodimers between
two ∆Np63α molecules (the most common expressed isoform) will be formed and will
repress some apoptotic promoters as Puma and Noxa, promoting survival. In contrast,
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when p63 is absent, TAp73 is the most usual isoform which will form dimers as well, but
this time promoting the expression of apoptotic genes.
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Figure 2. Different oligomerization of ∆Np63α and TAp73 depending on p63 presence or absence.
When ∆Np63α is present in cancer cells, survival will be induced. In contrast, when p63 is not
present, homodimers of TAp73 will be formed and will promote pro-apoptotic gene expression
(Puma and Noxa for instance). In HNSCC, both ∆Np63α and TAp73 are expressed but TID of
∆Np63α is capable of inhibiting pro-apoptotic function of the TA isoform, thus promoting survival
and cancer progression.

In the case where both populations coexist, heterodimers between ∆Np63α and TAp73
can be formed and are crucial for tumor maintenance. There is a balance that is established
between both isoforms that can be destabilized if one of the isoforms surpasses the other.
Depending on whether the isoform is more frequent, this disturbance of balance might
result in improved survival or apoptotic characteristics. Physical interactions between
p63 and p73 have been shown to be significantly stronger than homodimers, which is
interesting. The main isoform in the HNSCC environment is ∆Np63, which results in
Tap73-Np63 heterodimers. The TID of the dominant protein inhibits the TA isoform’s
transcriptional activity, resulting in a survival phenotype.

The above-described studies emphasize the fact that HNSCC is a good model to
better understand the involvement of p63 and p73 in cancer, thanks to its inactive p53.
Several teams have used it to assess the implications of p63 (∆Np63α) and p73 (TAp73β)
in the cancer metastatic dissemination, in particular through the regulation of miRNA
networks [27–29].

3. p53 Protein Family in Primary Tumors and Metastatic Dissemination

Mutated p53 itself has been shown to drive invasion by promoting [30], sometimes
through integrin recycling. Indeed, the Vousden and Muller teams demonstrated that
mutants p53 can induce a loss of directionality of migration, promote invasion, and interfere
with the metastatic behavior [30,31]. The functions of p63 and p73 in the cancer context
have been deeply studied [8,27,32,33]. Regarding p73, several knockdown (KD) in vivo
experiments were done to evaluate the role of both TAp73 and ∆Np73 isoforms. An
increased susceptibility to spontaneous tumor formation was observed in a TAp73 KD
model of lung adenocarcinoma [34,35]. In contrast, the overexpression of ∆Np73 inhibited
spontaneous senescence and permitted primary fibroblast transformation in cooperation
with Ras protein [34,35]. This overexpression has also been shown to induce fibrosarcomas
in vivo. These data give evidence of the role of TAp73 in tumor suppression, whereas
∆Np73 acts as a tumor promoter.
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It has been reported that the p63 protein is associated with metastasis regulation.
The TAp63 isoform was described as a metastasis suppressor by decreasing cell motility
and invasion [36], and the ∆Np63 isoform has been described as a pro-metastatic protein
through the regulation of the brachyury gene, an essential gene for limb development which
is also involved in EMT in several tumor cell lines (stomach, ovary, prostate, and several
others). Indeed, ∆Np63 was described as a promoter of cell proliferation, migration, and
invasion [37,38]. Finally, recent contradictory studies describe the ∆Np63 isoform as a key
player in EMT; on one hand as a pro-EMT effector in keratinocytes and on the other hand
as an anti-EMT effector in breast cells, both activities in a TGFβ-dependent manner [39,40].
The Melino teams demonstrated that p63 might inhibit metastasis by its ability to interact
with p53 [41], and specifically in prostate cancer through the regulation of miR-205; this
miR being essential for the inhibitory effects of p63 on markers of the EMT [42]. Flores
also demonstrated that the Tap63 isoform was suppressing metastasis through both the
regulation of Dicer and miRNAs 130b [36]. Another team demonstrated that ∆Np63 was
contributing to the inhibition of HER2-induced metastasis [43].

Despite the disagreement encountered in the literature, all this evidence makes p63 a
new and interesting player in the metastasis phenomenon.

p53 Protein Family and microRNA-Regulated Metastasis

Numerous studies have now demonstrated that miRNAs can play key roles in both
oncogene and tumor suppressor pathways. An emerging consensus is that miRNAs are
particularly prominent within regulatory circuits controlling transcription factor functions,
as it happens in the p53 protein family. Although we are only beginning to uncover
their complexity, such circuits may be particularly important within the regulation of
metastasis [27,32,44–46].

Some evidence has shown how p53 regulates the metastatic dissemination through
miRNAs. One example of it is the direct transactivation of miR-34 family expression. miR-
34 is a family of oncosuppressor miRNAs that is usually downregulated in several tumors
such as neuroblastoma, lung, or pancreatic cancers [47]. The ectopic expression of miR-34
inhibits proliferation, EMT, migration, invasion, and metastasis both in vitro and in vivo
through interference with cell cycle arrest, apoptosis, and cell senescence pathways [48].
Moreover, p53 controls EMT by the regulation of other miRNAs; induced expression of
miR15a/16-1 suppresses lung metastatic colonization in a xenograft model [49]. MicroRNA-
145 is also upregulated by p53 to modulate EMT and stemness properties in prostate
cancer cells; the suppression of migration, invasion, EMT, and cancer stem markers are
observed when miR-145 is expressed. The loss of p53 may promote bone metastasis at least
partially through repressing miR-145 [50]. Additionally, p53 miRNA-dependent regulation
can be bidirectional. Several studies demonstrated that miRNAs can also regulate p53
expression, adding even more complexity to the regulatory systems that drive the metastatic
dissemination (Figure 3) [51].

Unlike p53, the contribution of miRNAs to p63 and p73 functions is not so clearly
defined but, similar to p53, they may be potentially involved within the metastatic dissemi-
nation process. Recent studies have now begun to shed light on the critical downstream
transcriptional target genes (including microRNAs) and functions of p63 [52–54]. One
study showed that miR-193a-5p is transcriptionally repressed by p63 and activated by p73
in a squamous cell carcinoma model [32]. A p63/p73 crosstalk in which miR-193-5p is
involved may explain chemoresistance to treatment. After treatment with cisplatin, p63 is
degraded whereas p73 is activated. This promotes the expression of miR-193-5p, which in
turn represses pro-apoptotic protein p73, making cancer cells resistant to the treatment. In
that way, the inhibition of miR-193-5p could be considered as a therapeutic option in order
to increase the p73-dependent chemosensitivity [8,32]. Recently, Flores’s team observed
that the oscillatory expression of ∆Np63 was crucial for metastatic dissemination in breast
cancer. Moreover, they demonstrated that this regulation was under the supervision of
miRNAs [55]. Very interestingly for the present review, they established a connection
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with the TGFβ pathway observing a TGFβ-regulated miRNA network acted as upstream
regulators of this oscillatory expression of ∆Np63 during cancer progression.
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4. The TGFβ Pathway

The TGF pathway is one well-known pathway that has been linked to metastatic
spread. TGFs are a class of structurally related polypeptide growth factors that regulate a
wide range of cellular activities such as cell proliferation, lineage determination, differenti-
ation, motility, adhesion, and cell death, making them important players in development,
homeostasis, wound repair, and cancer. TGF, activins and inhibins, bone morphogenetic
proteins (BMPs), and Müllerian inhibiting substance (MIS) are all members of this fam-
ily (Figure 4) [56]. TGFβ factors are active as dimers that are stabilized by hydrophobic
interactions; notably by disulfide bonds between cysteine residues [57].
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and Type II receptors. There are several Type I receptors; TGFβ receptor (TβRI), activin
receptor (ActR-IB), and two BMP receptors (BMPIR-IA and IB). The Type II receptor
subfamily includes TβR-II, BMPR-II, and AMHR, which selectively bind TGFβ, BMPs, and
MIS, respectively (Figure 4). Those receptors are composed of a cysteine-rich extracellular
domain allowing their ligands to bind, a transmembrane region, and a kinase domain,
where the serine/threonine domain is found. Type II receptors typically contain a short C-
terminal extension after the kinase domain which is absent in Type I receptors. In contrast,
Type I receptors contain a characteristic extension GSGSG sequence, termed the GS domain.
The activation of Type I receptors relies on the phosphorylation of its GS domain by the
Type II receptors, generating a complex that phosphorylates and recruits downstream
pathway effectors.

In the case of TGFβ, three different isoforms, TGFβ1, TGFβ2, and TGFβ3, exhibit
similar properties. TGFβ initiates signaling by binding to the Type II receptor which will
permit the phosphorylation and recruitment of the Type I receptor, forming a heteromeric
complex of Type I and II receptors. The signal will then propagate through phosphorylation
of the SMAD proteins.

There are eight different SMAD proteins, classified in three groups: (1) the receptor-
regulated SMADs (R-SMAD), the co-mediator SMAD (Co-SMAD), and the inhibitory
SMAD (I-SMAD). R-SMADs (SMAD 1, 2, 3, 5c and 8) are directly phosphorylated and
activated by Type I receptor kinases and form heteromeric complexes with Co-SMAD
(SMAD4) for further translocation into the nucleus to regulate the transcription of target
genes (Figure 5). I-MADs, SMAD6 and SMAD7, negatively regulate TGFβ signaling
by competition with R-SMADs for receptor, Co-SMAD interaction or by targeting the
receptors for degradation [58]. Once translocated into the nucleus, SMAD complexes recruit
transcriptional coactivators, corepressors, and chromatin remodeling factors permitting the
activation or repression of hundreds of target genes at once [59].
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4.1. TGFβ Pathway in Cancer
4.1.1. TGFβ as a Tumor Suppressor

In normal conditions, TGFβ is a ubiquitously expressed cytokine that, in addition
to its role in cell development, differentiation, and survival regulation, also inhibits the
proliferation of epithelial, endothelial, and hematopoietic cell lineages [59]. Indeed, there is
evidence that shows the role of TGFβ as tumor protector. Transgenic mice overexpressing
TGFβ in their mammary glands showed cell hypo-proliferation, poor mammary duct
development, as well as no spontaneous breast tumor formation [60]. TGFβ maintains
tissue homeostasis and prevents incipient tumors from progressing by also regulating the
cellular microenvironment; as observed in mice with SMAD4-deleted T-cells which develop
gastrointestinal tumors with higher incidence [61]. Moreover, TGFβ production by tumor-
infiltrating lymphocytes strongly suppresses tumor growth in colon cancer through the
inhibition of the cytokine IL-6, implicated in chronic inflammation and carcinogenesis [62].

TGFβ-tumor protector effects have been explained through a reduction in c-Myc
levels [63] and the concomitant stimulation of some cyclin-dependent kinase inhibitors
(mainly p15INK4B and p21CIP1 involved in cell cycle [64]). Moreover, the SMAD-dependent
TGFβ pathway has also been implicated in tumor suppression by acting upstream of
the cyclin-dependent kinase inhibitors and c-Myc. Genetic lesions in key effectors of the
pathway have also been described: TGFβR2 mutations are found in 20–25% of colorectal
cancers [65] whereas mutations in SMAD2 and SMAD4 were also observed in colorectal
and pancreatic carcinomas [66,67]. Transgenic expression of a dominant negative TGFβR2
enhanced the incidence of mammary tumors after stimulation with 7,12-dimethylbenz-
[a]-anthracene carcinogen agent [68]. Similarly, the expression of TGFβR2 in colon or
breast carcinomas showed growth inhibition, suppression of anchorage independence, and
reduced tumor formation and metastasis in vivo [69] whereas dominant negative TGFβR2
abolished the ability of TGFβ to inhibit cell growth, to promote cell differentiation, and to
induce apoptosis [70].

4.1.2. TGFβ as a Tumor and Metastasis Promoter

Despite all the evidence showing its tumor suppressor role, resistance to TGFβ-
mediated cytostasis is a hallmark of neoplastic transformation. Cancer cells have the
capacity to avoid or to adulterate the suppressive influence of the TGFβ pathway, either
through the inactivation of principal components of the pathway (by mutation or other
mechanisms) or by downstream alterations that disable just the tumor-suppressive arm of
this pathway.

Abundant amounts of TGFβ are usually present at tumor lesions, initially preventing
premalignant progression but eventually as a factor that cancer cells use to their own
advantage. TGFβ can be secreted by cancer cells themselves but also by the tumor stroma;
the presence of tumor-infiltrating cells coincide with TGFβ secretion [59]. This conversion
in the TGFβ function is known as the “TGFβ paradox” [71] and underlies the adverse
prognosis that is associated with tumor growth, epithelial to mesenchymal transition (EMT)
and invasion, evasion of immune surveillance, cancer cell dissemination and metastasis, as
well as chemoresistance development. It is interesting to note that, depending on the cell
type and the environment, the cellular response to TGF-beta might vary greatly. TGF-beta
can induce epithelial-mesenchymal transition and mediate fibroblast activation, responses
that are implicated in promoting carcinogenesis, and fibrotic diseases, whereas it can also
cause epithelial cells to undergo growth arrest and apoptosis, responses which are crucial for
suppressing carcinogenesis [59,72]. The molecular mechanisms whereby TGFβ promotes
the progression of late stage carcinomas as well as cancer cell invasion and metastasis
have not been fully elucidated. Collectively, recent findings establish a paradigm whereby
TGFβ potently inhibits tumor initiation and the development of early-stage carcinomas but
enthusiastically drives the metastatic progression of late-stage carcinomas [73].

TGFβ was shown to induce EMT in breast cancer, squamous carcinoma, ovarian
adenosarcoma, and melanoma. Mammary epithelial cells underwent EMT in the presence
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of TGβ after transformation by the Ras oncogene [74]. The cytoskeleton reorganization
that was mediated by TGFβ, mainly based in the downregulation of E-cadherin and β-
catenin, ended up in the spindle shape acquisition, the so-called mesenchymal phenotype
and increased motility and scattering potentials by cancer cells. A crosstalk of the TGFβ
pathway with MAPKK and Pi3K pathways were also reported to be important in the
acquisition of the EMT and invasive features [75]. High TGFβ expression within the tumor
microenvironment was also reported as important in the induction of MMP-2 and MMP-9
proteins in both tumor and endothelial cells, promoting invasion and angiogenesis.

TGFβ signaling was also shown to promote breast cancer metastasis in lung and
bones. Recent evidence showed that enforced TGFβ signaling inhibited mammary tumor
formation whereas it facilitated extravasation of Neu-induced cells to form lung metasta-
sis. Despite the tumor suppressive effects at the primary site, TGFβ enhanced metastasis
occurrence [76]. Furthermore, the apparition of the TGFβ-mediated lung metastasis was ex-
plained by the induction of angiopoietin-like 4 (ANGPTL4) via SMAD signaling. ANGPTL4
expression was responsible for enhancing the disruption of endothelial cell–cell junctions
and transendothelial passage for further retention in the lungs [77].

In the case of bone osteolytic metastasis, it has been proposed that TGFβ released from
bone matrix resorption stimulates tumor cells to produce PTHrP and IL-11, both promoting
tumor growth and exacerbating osteolysis [78]. PTHrP and IL-11 are osteolysis-promoter
factors that are released by cancer cells upon TGFβ stimulation through the crosstalk of the
TGFβ pathway with p38 MAP kinase pathway [79]. Breast cancer bone metastases show
active SMAD signaling, proven by the accumulation of phosphorylated SMAD2 in the
nucleus of tumor cells. The knockdown of SMAD3 in breast cancer cells in vivo resulted
in retarded growth of bone metastasis [80]. These data highlight the importance that both
dependent and independent roles that SMAD signaling plays in the pro-metastatic role
of TGFβ.

Moreover, the crucial involvement of the TGF-β/SMAD3 signaling pathway in YAP-
driven lung metastasis development in Osteosarcoma (OS) has recently been highlighted.
Overexpression of mutant versions of YAP able or not to interact with TEAD was used
to investigate the molecular processes by which YAP governs metastasis development.
RNA-sequencing analysis and gene set enrichment were used to find molecular signatures.
The proximity ligation assay (PLA), immunoprecipitation, and promoter/specific gene
assays were used to investigate the interactions between YAP and SMAD3. The role of
the TGF-pathway in the ability of YAP to induce metastatic development in vivo was
investigated using a TGF cascade inhibitor in a preclinical model of OS and in vitro on
the migration and invasion ability of OS cells [81]. As perfectly illustrated by the studies
that are described above [55], the TGFβ pathway is somehow connected to the p53 protein
family, either regulated by some of its members or the inverse, and the TGFβ pathway
might regulate the expression of the p53 family proteins. This highlights the potential role
of the p53 family-TGFβ axis during the metastatic process.

5. Role of p53 Protein Family in TGFβ Pathway and Metastasis

Several teams have already investigated the potential interplay between the p53
protein family and the TGFβ pathway in the control of the metastatic process. The Yong Yi
team demonstrated that TGFβ1 was promoting migration and metastatic dissemination
through the induction of Tap63α lysosomal degradation in a pancreatic cancer model [82].
Even more recently, the noncanonical TGFβ signaling has been observed to promote breast
cancer metastasis through the FBXO3-mediated degradation of ∆Np63α [83].

TGFβ1 has been shown to be activated indirectly by p73. Indeed, the Huang team
observed that lncRNA TP73-AS1 axis was repressing the miR-539 expression, promoting
MMP-8 expression, and activating TGFβ1 signaling to induce M2 macrophage polarization
in hepatocellular carcinoma [43]. On the other hand, other teams demonstrated an opposite
effect in pancreatic ductal adenocarcinoma. The Tomasini team showed that Tap73 loss led
to the activation of TGFβ signaling through a SMAD-independent pathway, stimulating
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the EMT process [84]. Tap73alpha was observed in gastric cancer to bind to the promoters
of Bax and Puma and mediate TGFβ-induced apoptosis [85].

In coherence with this finding and the knowledge regarding the different p73 isoforms,
Coppes et al. observed that ∆Np73 enhances promoter activity of TGFβ-induced genes
and stimulates the expression of TGFβ signaling targets [86].

The TGFβ pathway can obviously control p53 family protein members, but recipro-
cally the TGFβ pathway can be modulated by the p53 family. For instance, p53 miRNA-
dependent mechanisms are strongly involved in the metastatic dissemination through
their interaction with the TGFβ pathway. From one hand, p53 induces the oncosuppressor
miR-127 whereas the presence of TGFβ decreases its expression through the upregulation
of the miR-127-inhibitory c-Jun. A feedback regulation is established between miR-127
and the TGFβ/c-Jun cascade in hepatocellular carcinoma involving a crosstalk between
the oncogene c-Jun and tumor suppressor p53. Low levels of miR-127 correlate with
high MMP13 expression and higher invasion potential [87]. Moreover, ∆Np63α has been
shown to control the TGFβ pro-metastatic potential through the regulation of several
microRNAs [27].

Collectively, these findings define a link between p53, miRNA expression, and epithe-
lial plasticity that can be potentially used by cancer cells at any step of metastatic tumor
progression [88].

Moreover, other evidence describes a binding between p63 and mutant p53 to regulate
the TGFβ-induced metastasis. The TGFβ switch towards metastatic phenotypes can be
acquired by the combined action of two common oncogenic lesions, Ras and p53-mutation.
Mutant-p53 and SMADs form complexes which intercept p63 to form a ternary complex in
which p63 would be responsible for TGFβmalignant effects being unleashed. In this case,
the inactivation of p63 transforms normal cells into malignant tumors rescuing metastatic
ability [89].

6. Conclusions

The p53 protein family is unanimously associated with the metastatic dissemination in
various cancers, but depending on the cells involved, on the isoforms and on the context, it
can be associated with an inhibitory role or an inducing role [27,41,55]. MicroRNAs appear
to be frequently involved at various levels in this regulatory process [32,45], sometimes
upstream and sometimes downstream of the p63 and/or p73 proteins [27,55]. The numer-
ous different isoforms for p63 and p73 that are associated with the TGFβ implication in
this process adds even more complexity because of its well-known dual effect, and this
is probably one of the reasons why we observe so many discrepancies in the literature
regarding the pro- or anti-metastatic effect of p63 and p73. Indeed, similar to the roles of
the miRNAs, the role of the TGFβ pathway is sometimes upstream [90] and sometimes
downstream of p63 or p73 [27].

A better understanding of the epigenetic regulation of the p53 protein family transcrip-
tion might be one of the key comprehensions, in particular the chromatin and the enhancers
regulation that are highly cell- and context-dependent, such as the metastasis-dependent
p53 family-miRNA-TGFβ axis.
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