Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = wood cement boards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3139 KiB  
Article
Alternative Materials for Interior Partitions in Construction
by Bruna Resende Fagundes Pereira, Carolina Rezende Pinto Narciso, Gustavo Henrique Nalon, Juliana Farinassi Mendes, Lívia Elisabeth Vasconcellos de Siqueira Brandão Vaz, Raphael Nogueira Rezende and Rafael Farinassi Mendes
Sustainability 2025, 17(14), 6341; https://doi.org/10.3390/su17146341 - 10 Jul 2025
Viewed by 457
Abstract
The significant waste generated by construction has increased interest in sustainable solutions, including prefabricated interior partition panels. Although different types of alternative panels have been proposed, their performance as interior partitions remains underexplored in systematic comparative studies. To narrow this knowledge gap, this [...] Read more.
The significant waste generated by construction has increased interest in sustainable solutions, including prefabricated interior partition panels. Although different types of alternative panels have been proposed, their performance as interior partitions remains underexplored in systematic comparative studies. To narrow this knowledge gap, this paper presents a comprehensive evaluation and classification of drywall, OSB (Oriented Strand Board), cement–wood, and honeycomb panels, regarding physical, mechanical, microstructural, thermal, acoustic, and combustibility characteristics, in addition to conducting a cost evaluation. The results indicated that the OSB panels exhibited superior results for interior partition applications, showing notable advantages in physical strength, mechanical performance, and thermal insulation, while offering acoustic properties comparable to those of drywall panels. Nevertheless, OSB panels showed lower fire resistance and were associated with the highest cost among the materials analyzed in the present research. Drywall panels, on the other hand, provided the most favorable fire resistance but exhibited the least effective thermal insulation. The findings also indicated that both wood–cement and honeycomb panels require further improvements in their manufacturing processes to meet performance standards suitable for interior partition. Full article
Show Figures

Figure 1

24 pages, 4051 KiB  
Article
Low-Carbon Bio-Concretes with Wood, Bamboo, and Rice Husk Aggregates: Life Cycle Assessment for Sustainable Wall Systems
by Arthur Ferreira de Araujo, Lucas Rosse Caldas, Nicole Pagan Hasparyk and Romildo Dias Toledo Filho
Sustainability 2025, 17(5), 2176; https://doi.org/10.3390/su17052176 - 3 Mar 2025
Cited by 1 | Viewed by 1902
Abstract
This study evaluates the carbon footprint of three bio-concrete families—wood (WBC), bamboo (BBC), and rice husk (RHBC)—and their application in wall components (as blocks and as boards). A cradle-to-grave, carbon-focused Life Cycle Assessment (LCA) was used to compare these bio-concretes to conventional masonry [...] Read more.
This study evaluates the carbon footprint of three bio-concrete families—wood (WBC), bamboo (BBC), and rice husk (RHBC)—and their application in wall components (as blocks and as boards). A cradle-to-grave, carbon-focused Life Cycle Assessment (LCA) was used to compare these bio-concretes to conventional masonry and industrialized light-framing solutions. Each bio-concrete family incorporated biomass volumetric fractions of 40%, 45%, and 50%, using a ternary cementitious matrix of cement, rice husk ash, and fly ash (0.45:0.25:0.30). Sensitivity analyses examined the impacts of transport distances and the parameters affecting biogenic carbon storage, such as carbon retention periods in the built environment. The carbon footprint results demonstrated a significantly low or negative balance of emissions: WBC ranged from −109 to 31 kgCO2-eq./m3, BBC from −113 to 28 kgCO2-eq./m3, and RHBC from 57 to 165 kgCO2-eq./m3. The findings emphasized the importance of ensuring bio-concrete durability to maximize biogenic carbon storage and highlighted the environmental advantages of bio-concrete wall systems compared to conventional solutions. For instance, BBC boards replacing fiber cement boards in light-framing systems achieved a 62 kgCO2-eq./m2 reduction, primarily due to the production (A1–A3) and replacement (B4) stages. This research outlines the emission profiles of innovative materials with the potential to mitigate global warming through circular construction, offering a sustainable portfolio for designers, builders, and AECO professionals seeking non-conventional solutions aligned with circular economy principles. Full article
Show Figures

Figure 1

14 pages, 7939 KiB  
Article
The Use of Recycled Cement-Bonded Particle Board Waste in the Development of Lightweight Biocomposites
by Girts Bumanis, Pauls P. Argalis, Maris Sinka, Aleksandrs Korjakins and Diana Bajare
Materials 2024, 17(23), 5890; https://doi.org/10.3390/ma17235890 - 1 Dec 2024
Cited by 1 | Viewed by 1302
Abstract
Cement-bonded particle boards are gaining popularity globally due to their durability, strength, and, more importantly, environmental sustainability. The increasing demand for these materials has also created the necessity for the sustainable recycling of these materials. In this study, the potential to recycle wood-wool [...] Read more.
Cement-bonded particle boards are gaining popularity globally due to their durability, strength, and, more importantly, environmental sustainability. The increasing demand for these materials has also created the necessity for the sustainable recycling of these materials. In this study, the potential to recycle wood-wool cement board (WWCB) waste into new lightweight insulation biocomposite material was examined. The waste WWCBs were crushed and separated into a fine aggregate fraction, and WWCB production line residues were also collected and compared. The crushed WWCBs were used to produce biocomposites with various compaction ratios and different binder-to-aggregate ratios. To improve their thermal properties and reduce their density, hemp shives were used to partially replace the recycled WWCB aggregate. Their physical, mechanical (compressive and flexural strength), and thermal properties were evaluated, and the drying process of the biocomposites was characterized. The results showed that the density of the produced biocomposites ranged from 390 to 510 kg/m3. The reduction in density was limited due to the presence of cement particles in the aggregate. The incorporation of hemp shives allowed us to reduce the density below 200 kg/m3. The thermal conductivity of the biocomposites ranged from 0.054 to 0.084 W/(mK), placing the material within the effective range of natural biocomposites. This research has demonstrated that industrially produced WWCBs can be successfully recycled to produce sustainable lightweight cement-bonded insulation materials. Full article
(This article belongs to the Special Issue Recycling and Sustainability of Industrial Solid Waste)
Show Figures

Figure 1

26 pages, 8642 KiB  
Article
Study of the Effect of Cedar Sawdust Content on Physical and Mechanical Properties of Cement Boards
by Anas El Hamri, Yassine Mouhib, Atmane Ourmiche, Mohammed Chigr and Nour-Eddine El Mansouri
Molecules 2024, 29(18), 4399; https://doi.org/10.3390/molecules29184399 - 16 Sep 2024
Cited by 1 | Viewed by 2505
Abstract
The growing demand for sustainable building materials, amid escalating costs, has spurred interest in alternative solutions such as wood cement composites. This study explores the feasibility of producing wood cement boards (WCBs) using locally sourced cedar sawdust as a reinforcing agent. Boards with [...] Read more.
The growing demand for sustainable building materials, amid escalating costs, has spurred interest in alternative solutions such as wood cement composites. This study explores the feasibility of producing wood cement boards (WCBs) using locally sourced cedar sawdust as a reinforcing agent. Boards with a thickness of 10 mm and a target density of 1200 kg/m3 were manufactured under pressures ranging from 2 to 6 MPa for 24 h. Cedar sawdust, used as raw and untreated material, was incorporated into the mixture as a partial substitute for cement in varying proportions, ranging from 10% to 25% (by weight). The WCBs were cured for 28 days under ambient conditions. Physical properties including density, water absorption (WA), and thickness swelling (TS) were assessed, along with mechanical properties through flexural tests. The results showed that increasing cedar sawdust content decreased both density and mechanical performance while increasing WA and TS. Microstructural analysis (SEM and EDS) revealed significant porosity at higher sawdust contents, while lower contents had better matrix–reinforcement cohesion. Additionally, substantial levels of calcium and silicon were detected on the sawdust surface, indicating stabilized cement hydration products. These findings, supported by thermal (TGA and DSC) and FTIR analyses, clearly demonstrate that cement boards with 10% cedar sawdust exhibit favorable properties for non-structural applications, such as wall and partition cladding. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass III)
Show Figures

Graphical abstract

15 pages, 4116 KiB  
Article
Performance of Eco-Friendly Zero-Cement Particle Board under Harsh Environment
by Arman Hatami Shirkouh, Farshad Meftahi, Ahmed Soliman, Stéphane Godbout and Joahnn Palacios
Appl. Sci. 2024, 14(7), 3118; https://doi.org/10.3390/app14073118 - 8 Apr 2024
Cited by 3 | Viewed by 2265
Abstract
The increasing scarcity of virgin natural resources and the need for sustainable waste management in densely populated urban areas have heightened the importance of developing new recycling technologies. One promising approach involves recycling agricultural waste in construction applications and transforming it into secondary [...] Read more.
The increasing scarcity of virgin natural resources and the need for sustainable waste management in densely populated urban areas have heightened the importance of developing new recycling technologies. One promising approach involves recycling agricultural waste in construction applications and transforming it into secondary products. This is anticipated to reduce the demand for new resources and lower the environmental impact, aligning with industrial ecology principles. Combined with a low carbon emission binder (i.e., alkali-activated), utilizing agro-waste to produce zero-cement particle boards is a promising method for green construction. Traditionally, particle boards are engineered from wood or agricultural waste products that are pressed and bonded with a binder, such as cement or synthetic resins. However, alternative binders replace cement in zero-cement particle boards to address environmental concerns, such as the carbon dioxide emissions associated with cement production. This study investigated the effects of accelerated aging on the performance of alkali-activated agro-waste particle boards. Accelerated aging conditions simulate natural aging phenomena. Repeated wetting–drying and freezing–thawing cycles increased water absorption and thickness swelling and reduced flexural strength. The thermal performance of the alkali-activated particle boards did not exhibit significant changes. Hence, it was confirmed that agro-waste has a high potential for utilization in producing particle boards provided that the working environment is carefully selected to optimize performance. Full article
(This article belongs to the Special Issue Alkali-Activated Materials: Advances and Novel Applications)
Show Figures

Figure 1

16 pages, 7997 KiB  
Article
Composite Beams Made of Waste Wood-Particle Boards, Fastened to Solid Timber Frame by Dowel-Type Fasteners
by Meta Kržan, Tomaž Pazlar and Boštjan Ber
Materials 2023, 16(6), 2426; https://doi.org/10.3390/ma16062426 - 18 Mar 2023
Cited by 2 | Viewed by 2449
Abstract
To increase the sustainability of prefabricated timber buildings and constructions, composite timber beams with “box” cross-sections were developed in collaboration with an industry partner. They were constructed from a solid timber frame and from webs made of residual waste wood-particle boards from prefabricated [...] Read more.
To increase the sustainability of prefabricated timber buildings and constructions, composite timber beams with “box” cross-sections were developed in collaboration with an industry partner. They were constructed from a solid timber frame and from webs made of residual waste wood-particle boards from prefabricated timber buildings production. The developed beams’ design concepts presented in this paper were governed by architectural features of prefabricated timber buildings, geometrical limitations, available production technology, and structural demand related to various possible applications. The paper presents the results of experimental bending tests of six variations of the developed composite timber beams constructed by mechanical fasteners only. The developed design concept of composite timber beams without adhesives is beneficial compared to glued beams in terms of design for deconstruction and lower VOC emissions. The tests were conducted to study the influence of the following parameters on the beams’ mechanical behavior: (i) web material (oriented strand boards (OSBs) vs. cement-particle boards); (ii) the influence of beam timber frame design (flanges and web stiffeners vs. flanges, web stiffeners, and compressive diagonals), and (iii) the influence of stiffener–flange joint design. Besides the beams’ load-bearing capacities, their linear and non-linear stiffness characteristics were the main research interest. While adding compressive timber diagonals did not prove to significantly increase the stiffness of the beams in the case of cement-particle board webs, it increased their load-bearing capacity by enabling the failure of flanges instead of prior webs and stiffener–flange joints failure. For beams with OSB webs, failure of the bottom flange was achieved already with the “basic” timber frame design, but timber diagonals proved beneficial to increase the stiffness characteristics. Finally, mechanical characteristics of the developed beams needed in structural design for their application are provided together with further development guidelines. Full article
Show Figures

Figure 1

12 pages, 4998 KiB  
Article
Medium-Scale Fire Resistance Testing of Timber Structures with Composite Cement Fibre Materials
by Tomáš Žajdlík, Karel Šuhajda and David Průša
Buildings 2023, 13(2), 527; https://doi.org/10.3390/buildings13020527 - 15 Feb 2023
Cited by 4 | Viewed by 2472
Abstract
The combustibility of natural wood presents a negative impact for using this material in buildings. Timber elements can be cladded with boards made of non-combustible materials. This study represents a group of options for increasing the resistance of timber against the effects of [...] Read more.
The combustibility of natural wood presents a negative impact for using this material in buildings. Timber elements can be cladded with boards made of non-combustible materials. This study represents a group of options for increasing the resistance of timber against the effects of fire and the possibility of slowing down the effect of thermal degradation of wood. The aim of this study is focused on an experimental testing of structures with timber elements protected by cement fibre boards as a non-combustible fire retardant. Cement fibre boards are fibre-reinforced composite materials used for systems of dry constructions. These boards present the highest degree of fire reaction class (A1). The behaviour of the structure, loaded by the effects of fire, was monitored during the experiment. The specimen was tested with reduced dimensions. The temperature loading corresponded to the procedure according to the standards. The final fire resistant (FR) results were evaluated in accordance with the requirements for the selected limit states of FR. This was assessed based on the measured temperatures and the whole condition of the tested specimen. The specimen fulfilled the fire-separating function of the structure for the classification times. Full article
(This article belongs to the Special Issue Rehabilitation and Reconstruction of Buildings)
Show Figures

Figure 1

18 pages, 15494 KiB  
Article
Recycling of Cement–Wood Board Production Waste into a Low-Strength Cementitious Binder
by Pauls P. Argalis, Maris Sinka and Diana Bajare
Recycling 2022, 7(5), 76; https://doi.org/10.3390/recycling7050076 - 17 Oct 2022
Cited by 14 | Viewed by 4051
Abstract
Cement is a widely used building material, with more than 4.4 billion metric tons produced in 2021. Unfortunately, the excessive use of cement raises several environmental issues, one of which is the massive amounts of CO2e produced as a by-product. Using recycled [...] Read more.
Cement is a widely used building material, with more than 4.4 billion metric tons produced in 2021. Unfortunately, the excessive use of cement raises several environmental issues, one of which is the massive amounts of CO2e produced as a by-product. Using recycled materials in the concrete mix is widely employed to solve this problem. A method for minimizing the use of natural cement by substituting it with secondary cementitious material that consists of wood–cement board manufacturing waste has been studied in this paper. The cement in the waste stream was reactivated by a mechanical treatment method—the use of a planetary mill, allowing it to regain its cementitious properties and be used as a binder. Physical and mineralogical analysis of the binder material was performed using X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA) and Brunauer–Emmett–Teller analysis; granulometry and compressive strength tests were also carried out. The results show that the grinding process did not significantly change the mineralogical composition and the specific surface area; it did, however, affect the compressive strength of the samples prepared by using the reactivated binding material; also, the addition of plasticizer to the mix increased compressive strength by 2.5 times. Samples were cured in high-humidity conditions. The optimal water-to-binder (W/B) ratio was found to be 0.7 because of the wood particles that absorb water in their structure. Compressive strength increased as the grinding time increased. Full article
(This article belongs to the Special Issue Sustainable Materials from Waste and Renewable Sources)
Show Figures

Figure 1

22 pages, 1677 KiB  
Review
Panel Products Made of Oil Palm Trunk: A Review of Potency, Environmental Aspect, and Comparison with Wood-Based Composites
by Arif Nuryawan, Jajang Sutiawan, Rahmawaty, Nanang Masruchin and Pavlo Bekhta
Polymers 2022, 14(9), 1758; https://doi.org/10.3390/polym14091758 - 26 Apr 2022
Cited by 22 | Viewed by 6983
Abstract
Oil palm plantations have expanded rapidly in Southeast Asia, particularly in Indonesia and Malaysia. A lot of products, including food and other edible products, oleo-chemicals, cosmetics, personal and household care, pharmaceutical products, and biodiesels are derived from palm oil, thus making them one [...] Read more.
Oil palm plantations have expanded rapidly in Southeast Asia, particularly in Indonesia and Malaysia. A lot of products, including food and other edible products, oleo-chemicals, cosmetics, personal and household care, pharmaceutical products, and biodiesels are derived from palm oil, thus making them one of the most economically important plants. After 25–30 years of age, the palms are felled and replaced due to declining oil production. Oil palm trunks (OPT) are considered significant waste products. The trunks remain on the plantation site for nutrient recycling or burning. This increases insect and fungi populations causing environmental problems for the new palm generation or air pollution due to the fire. Up till now, OPT has received less attention in research studies. Therefore, this review summarizes the utilization of OPT into products made of oil palm fibers mainly derived from OPT and its application as the substitution of wood panel products. Some research works have been carried out on oil palm fibers that are derived from OPT for exploiting their potential as raw material of composite panel products, which is the objective of this review. Areas of development are processed into various conventional composite panel products such as plywood and laminated board which are usually predominantly made of wood and bonded by synthetic resins, particleboard with binder, or binderless and cement board which is arranged with wood as a minor component. All of the products have been presented and described technically according to best knowledge of the authors and literature review. Full article
(This article belongs to the Special Issue Recent Developments in Eco-Friendly Wood-Based Composites II)
Show Figures

Graphical abstract

15 pages, 8049 KiB  
Communication
Initial Study of the Effect of Some PVD Coatings (“TiN/AlTiN” and “TiAlN/a-C:N”) on the Wear Resistance of Wood Drilling Tools
by Paweł Czarniak, Karol Szymanowski, Peter Panjan and Jarosław Górski
Forests 2022, 13(2), 286; https://doi.org/10.3390/f13020286 - 11 Feb 2022
Cited by 5 | Viewed by 2485
Abstract
The wear of drills when processing wood-based boards is an important problem in industrial practice. The main objective of the study was to experimentally check whether two types of PVD coatings (multilayer nanocomposite “TiN/AlTiN” and double-layer coatings “TiAlN/a-C:N”) increase the wear resistance of [...] Read more.
The wear of drills when processing wood-based boards is an important problem in industrial practice. The main objective of the study was to experimentally check whether two types of PVD coatings (multilayer nanocomposite “TiN/AlTiN” and double-layer coatings “TiAlN/a-C:N”) increase the wear resistance of the drill bits significantly (in terms of statistics). The typical two-blade drill bits intended for drilling in wood-based panels were used. During the experiments, the holes were drilled in samples made of commercial raw three-layer particleboard with the spindle speed of 4500 rpm, and the feed per revolution was 0.15 mm. The tool wear was monitored using a microscope. The advantage (greater resistance to wear) of both of the tested coatings (“TiN/AlTiN” and “TiAlN/a-C:N”) over raw cemented carbide was statistically significant in the initial period of machining (before 800 holes were drilled). Unfortunately, in the final period (when the number of holes drilled was over 800), only one coating (“TiN/AlTiN”) retained its advantage over raw cemented carbide. The effect of the second coating (“TiAlN/a-C:N”) turned out to be statistically insignificant. Full article
(This article belongs to the Special Issue Drilling Techniques of Solid Wood and Wood-Based Materials)
Show Figures

Figure 1

19 pages, 4126 KiB  
Article
Development of Structural Insulated Panels Made from Wood-Composite Boards and Natural Rubber Foam
by Nussalin Thongcharoen, Sureurg Khongtong, Suthon Srivaro, Supanit Wisadsatorn, Tanan Chub-uppakarn and Pannipa Chaowana
Polymers 2021, 13(15), 2497; https://doi.org/10.3390/polym13152497 - 28 Jul 2021
Cited by 12 | Viewed by 6652
Abstract
An experimental study was carried out to develop and examine the properties of a new type of structural insulated panel (SIP). SIP prototypes conducted from this research consisted of insulated foam manufactured from natural rubber filled with wood particles as the core layer [...] Read more.
An experimental study was carried out to develop and examine the properties of a new type of structural insulated panel (SIP). SIP prototypes conducted from this research consisted of insulated foam manufactured from natural rubber filled with wood particles as the core layer and three kinds of commercial wood-composite boards (plywood, cement particleboard, and fiber-cement board) as the surface layers. Polyurethane was used as an adhesive bond between the surface and the core layer. This preformed panel was placed into a clamping device and compressed until adhesive curing was achieved. The physical and mechanical properties of the SIP prototypes were consequently evaluated. The test results indicated that the types of surface layer materials played a significant effect on the SIP properties. The SIP covered with cement particleboard and fiber-cement board revealed high mechanical properties and high water resistance. The SIP prototype covered with plywood showed desirable properties (such as low density, high resistance of screw withdrawal, and low thermal transmittance). However, high water absorption and low fire resistance were drawbacks of the SIP covered with plywood. These properties should be improved. Full article
(This article belongs to the Special Issue Advances in Polymer Composites)
Show Figures

Graphical abstract

12 pages, 1514 KiB  
Article
Cement-Bonded Particleboards with Banana Pseudostem Waste: Physical Performance and Bio-Susceptibility
by Lina Nunes, Eleonora Cintura, João L. Parracha, Bruno Fernandes, Vitor Silva and Paulina Faria
Infrastructures 2021, 6(6), 86; https://doi.org/10.3390/infrastructures6060086 - 13 Jun 2021
Cited by 16 | Viewed by 8025
Abstract
This article evaluates the relevant properties of cement-bonded particleboards (CBPB) made with a portion of maritime pine (Pinus pinaster) particles replaced with an agricultural waste, banana pseudostem (Musa sp.). The industrial production of CBPB was simulated in the laboratory based [...] Read more.
This article evaluates the relevant properties of cement-bonded particleboards (CBPB) made with a portion of maritime pine (Pinus pinaster) particles replaced with an agricultural waste, banana pseudostem (Musa sp.). The industrial production of CBPB was simulated in the laboratory based on a reference composition defined by a manufacturing company. Test specimens were produced assuming 0%, 25%, 50% and 75% partial replacement of wood particles with banana pseudostem fibres. Some physical properties (bulk density, thermal conductivity, and dimensional stability) and the mould susceptibility of the different variables were assessed. Results show that the thermal conductivity of the boards increased with the banana fibre proportion and ranged between 0.233 W/(m.K) and 0.279 W/(m.K). The bulk density values generally increased with the banana fibre proportion and ranged between 1754–1995 kg/m3, being the highest value obtained for B50 (equal weight proportion of wood particles and banana fibres). Specimens with a higher percentage of banana fibres have reduced thickness resulting from swelling, ranging between 0.38% and 0.11% (for 0% and 75% of banana fibres, respectively). CBPBs with unsanded surfaces seem to be unsusceptible to mould development, whereas those with sanded surfaces, simulating wearing, show some bio-susceptibility. Mould development increases with the proportion of banana fibre. The results highlight the need for regular maintenance of the particleboards, thus avoiding surface wear over time and resulting in the exposure of the wood particles and/or banana fibres to the outside environment. Full article
(This article belongs to the Special Issue Durability and Degradability of Construction Materials)
Show Figures

Graphical abstract

13 pages, 3254 KiB  
Article
Steatite Powder Additives in Wood-Cement Drywall Particleboards
by Viet-Anh Vu, Alain Cloutier, Benoît Bissonnette, Pierre Blanchet and Christian Dagenais
Materials 2020, 13(21), 4813; https://doi.org/10.3390/ma13214813 - 29 Oct 2020
Cited by 7 | Viewed by 2708
Abstract
The objective of this study was to develop a new drywall wood-based particleboard as an alternative to gypsum board. Various development iterations have led to the use of wood particles, steatite powder and Portland cement. The resulting outcome shows that screw withdrawal resistance [...] Read more.
The objective of this study was to develop a new drywall wood-based particleboard as an alternative to gypsum board. Various development iterations have led to the use of wood particles, steatite powder and Portland cement. The resulting outcome shows that screw withdrawal resistance was improved by 37% and bending properties by 69% compared to gypsum board of a similar density (0.68–0.70). The raw surface of the boards is of good quality and comparable to the paper-faced surface of gypsum board. Furthermore, the reaction to fire was evaluated through bench-scale test with a cone calorimeter. The investigated particleboard did not reveal visual signs of combustion after 20 min when exposed to a radiant heat of 50 kW/m2, while burning of the overlay paper of gypsum board occurred at about 57 s, suggesting that wood-cement-steatite powder particleboard could be classified as a quasi non-combustible material. Full article
(This article belongs to the Special Issue Supplementary Cementitious Materials in Concrete)
Show Figures

Figure 1

13 pages, 1701 KiB  
Article
Enhanced Resistance to Fire of the Bark-Based Panels Bonded with Clay
by Eugenia Mariana Tudor, Christoph Scheriau, Marius Catalin Barbu, Roman Réh, Ľuboš Krišťák and Thomas Schnabel
Appl. Sci. 2020, 10(16), 5594; https://doi.org/10.3390/app10165594 - 12 Aug 2020
Cited by 30 | Viewed by 4605
Abstract
The aim of this study was to investigate the flammability of ecologically friendly, 100% natural larch and poplar bark-based panels bonded with clay. The clay acted as a fire retardant, and it improved the fire resistance of the boards by 12–15% for the [...] Read more.
The aim of this study was to investigate the flammability of ecologically friendly, 100% natural larch and poplar bark-based panels bonded with clay. The clay acted as a fire retardant, and it improved the fire resistance of the boards by 12–15% for the surface and 27–39% for the edge of the testing specimens. The thermal conductivity was also analyzed. Although the panels had a density ranging from 600 to 900 kg/m3, thermal conductivity for the panel with a density of 600 kg/m3 was excellent, and it was comparable to lightweight insulation panels with much lower densities. Besides that, the advantage of the bark clay boards, as an insulation material, is mostly in an accumulative capacity similar to wood cement boards, and it can significantly improve the climatic stability of indoor spaces that have low ventilation rates. Bark boards with clay, similar to wood cement composites (wood wool cement composites and wood particle cement composites), have low mechanical properties and elasticity. Therefore, there their use is limited to non-structural paneling applications. These ecologically friendly, 100% natural and recyclable composites can be mostly used with respect to their thermal insulation, acoustics and fire resistance properties. Full article
Show Figures

Figure 1

12 pages, 3966 KiB  
Article
Properties of Cement-Bonded Particleboards Made from Canary Islands Palm (Phoenix canariensis Ch.) Trunks and Different Amounts of Potato Starch
by Manuel Ferrandez-Villena, Clara Eugenia Ferrandez-Garcia, Teresa Garcia-Ortuño, Antonio Ferrandez-Garcia and Maria Teresa Ferrandez-Garcia
Forests 2020, 11(5), 560; https://doi.org/10.3390/f11050560 - 15 May 2020
Cited by 11 | Viewed by 2851
Abstract
Wood-cement panels are becoming increasingly widely used as prefabricated building materials. In order to increase the use of renewable resources as materials for industrial applications, the use of alternative plant fibres has been gaining interest. Additionally, it is assumed that new or better [...] Read more.
Wood-cement panels are becoming increasingly widely used as prefabricated building materials. In order to increase the use of renewable resources as materials for industrial applications, the use of alternative plant fibres has been gaining interest. Additionally, it is assumed that new or better board properties can be achieved due to the different chemical and mechanical properties of such alternative sources of fibres. In south-eastern Spain, the Canary Islands palm (Phoenix canariensis) is widely used in urban landscaping. Plantations attacked by red palm weevils generate abundant plant waste that must be shredded and taken to authorised landfills. This paper discusses the use of particles of Canary Islands palm for manufacturing fibre panels containing 20% cement in relation to the weight of the particles, using different proportions of starch as a plasticiser. A pressure of 2.6 MPa and a temperature of 100 °C were used in their production. Density, thickness swelling, water absorption, internal bonding strength, modulus of rupture (MOR), modulus of elasticity (MOE), and thermal conductivity were studied. The mechanical tests showed that the MOR and MOE values increased with longer setting times, meaning that the palm particles were able to tolerate the alkalinity of the cement. The board with 5% starch had a MOR of 15.76 N·mm−2 and a MOE of 1.872 N·mm−2 after 28 days. The boards with thicknesses of 6.7 mm had a mean thermal conductivity of 0.054 W·m−1·K−1. These boards achieved good mechanical properties and could be used for general use and as a thermal insulation material in building construction. Full article
(This article belongs to the Special Issue Performance of Wood and Wood-Based Materials)
Show Figures

Figure 1

Back to TopTop