Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = winter tolerance index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2835 KiB  
Article
Rhizosphere Growth-Promoting Bacteria Enhance Oat Growth by Improving Microbial Stability and Soil Organic Matter in the Saline Soil of the Qaidam Basin
by Xin Jin, Xinyue Liu, Jie Wang, Jianping Chang, Caixia Li and Guangxin Lu
Plants 2025, 14(13), 1926; https://doi.org/10.3390/plants14131926 - 23 Jun 2025
Cited by 1 | Viewed by 500
Abstract
The Qinghai–Tibet Plateau, a critical ecological barrier and major livestock region, faces deteriorating grasslands and rising forage demand under its harsh alpine climate. Oat (Avena sativa L.), valued for its cold tolerance, rapid biomass accumulation, and ability to thrive in nutrient-poor soils, [...] Read more.
The Qinghai–Tibet Plateau, a critical ecological barrier and major livestock region, faces deteriorating grasslands and rising forage demand under its harsh alpine climate. Oat (Avena sativa L.), valued for its cold tolerance, rapid biomass accumulation, and ability to thrive in nutrient-poor soils, can expand winter feed reserves and partly alleviate grazing pressure on native rangelands. However, genetic improvement alone has not been sufficient to address the environmental challenges. This issue is particularly severe in the Qaidam Basin, where soil salinization, characterized by high pH, poor soil structure, and low nutrient availability, significantly limits crop performance. Rhizosphere growth-promoting bacteria (PGPR) are environmentally friendly biofertilizers known to enhance crop growth, yield, and soil quality, but their application in the saline soil of the Qaidam Basin remains limited. We evaluated two PGPR application rates (B1 = 75 kg hm−2 and B2 = 150 kg hm−2) on ‘Qingtian No. 1’ oat, assessing plant growth, soil physicochemical properties, and rhizosphere microbial communities. The results indicated that both treatments significantly increased oat productivity, raised the comprehensive growth index, augmented soil organic matter, and lowered soil pH; B1 chiefly enhanced above-ground biomass and fungal community stability, whereas B2 more strongly promoted root development and bacterial community stability. Structural equation modeling showed that PGPR exerted direct effects on the comprehensive growth index and indirect effects through soil and microbial pathways, with soil properties contributing slightly more than microbial factors. Notably, rhizosphere organic matter, fungal β-diversity, and overall microbial community stability emerged as positive key drivers of the comprehensive growth index. These findings provide a theoretical basis for optimizing PGPR dosage in alpine forage systems and support the sustainable deployment of microbial fertilizers under saline soil conditions in the Qaidam Basin. Full article
Show Figures

Figure 1

17 pages, 1982 KiB  
Article
The Adaptability of Different Wheat Varieties to Deep Sowing in Henan Province of China
by Cheng Yang, Rongkun Wang, Cheng Tian, Deqi Zhang, Hongjian Cheng, Xiangdong Li, Baoting Fang, Haiyang Jin, Hang Song, Baoming Tian, Fang Wei and Ge Yan
Agronomy 2025, 15(6), 1466; https://doi.org/10.3390/agronomy15061466 - 16 Jun 2025
Viewed by 411
Abstract
Appropriate deep sowing holds significant potential in enhancing wheat production, particularly in dry and low-rainfall regions. Henan Province is a major winter wheat-producing area in China; evaluating the adaptability of wheat varieties to deep sowing through scientific methods is crucial to improve wheat [...] Read more.
Appropriate deep sowing holds significant potential in enhancing wheat production, particularly in dry and low-rainfall regions. Henan Province is a major winter wheat-producing area in China; evaluating the adaptability of wheat varieties to deep sowing through scientific methods is crucial to improve wheat production. This study investigates 26 wheat cultivars in Henan. By assessing key traits of seeds and seedlings at various sowing depths, we analyzed the effects of sowing depth on seed germination and seedlings. A comprehensive index for deep sowing tolerance was established using principal component analysis (PCA) and the membership function method, followed by the classification of the varieties according to their tolerance to deep sowing. The results indicated that, with increased sowing depth, seedling emergence time, coleoptile length, and coleoptile internode length increased, while seedling emergence rate, seedling height, leaf area, and shoot dry weight per unit area decreased. Based on PCA and membership function values, the 26 wheat varieties were classified into three categories: deep sowing tolerant, moderately tolerant, and intolerant, comprising 3, 19, and 4 varieties. This study provides valuable insights for optimizing wheat variety selection and improving sowing practices in Henan Province, offering both theoretical and practical contributions to local wheat production. Full article
Show Figures

Figure 1

19 pages, 4605 KiB  
Article
Magnetized Saline Water Modulates Soil Salinization and Enhances Forage Productivity: Genotype-Specific Responses of Lotus corniculatus L.
by Aurelio Pedroza-Sandoval, Luis Ángel González-Espíndola, María del Rosario Jacobo-Salcedo, Isaac Gramillo-Ávila and José Antonio Miranda-Rojas
Horticulturae 2025, 11(4), 428; https://doi.org/10.3390/horticulturae11040428 - 17 Apr 2025
Viewed by 391
Abstract
Irrigation water salinity poses escalating threats to agricultural sustainability in degraded agroecosystems. This study has investigated the effects of magnetized versus non-magnetized saline water on the soil physicochemical properties and forage productivity of three Lotus corniculatus L. genotypes (salt-sensitive ecotype 232098, moderately salt-tolerant [...] Read more.
Irrigation water salinity poses escalating threats to agricultural sustainability in degraded agroecosystems. This study has investigated the effects of magnetized versus non-magnetized saline water on the soil physicochemical properties and forage productivity of three Lotus corniculatus L. genotypes (salt-sensitive ecotype 232098, moderately salt-tolerant San Gabriel, and salt-tolerant Estanzuela Ganador) in arid northern Mexico. A split-plot randomized block design with three replicates assigned saline water treatments (magnetized [MWT] vs. non-magnetized [NMWT]) to main plots and genotypes to subplots. After one year of irrigation, MWT significantly attenuated soil salinization, evidenced by 23% lower electrical conductivity (5.8 vs. 7.2 dS·m⁻1), a 26% reduced sodium adsorption ratio (6.2 vs. 8.4), and a 41% decreased sodium concentration (20.7 vs. 35.4 meq·L⁻1) compared to NMWT (p < 0.05). Although agronomic traits (stem dimensions, leaf area index, and rhizome proliferation) exhibited salt sensitivity from the third season onward, fresh biomass yield remained unaffected by water treatment. Genotypic differences dominated productivity. Estanzuela Ganador achieved superior biomass in both seasons (288.9 g/rhizome in fall; 184.2 g in winter), outperforming San Gabriel by 15.8% and ecotype 232098 by 56.8% (p < 0.05). These findings demonstrate that magnetized saline water irrigation effectively mitigates soil salinity progression, while genotype selection critically determines forage productivity under arid conditions. Estanzuela Ganador emerges as the optimal cultivar for saline irrigation systems in water-scarce regions. Full article
(This article belongs to the Special Issue Optimized Irrigation and Water Management in Horticultural Production)
Show Figures

Figure 1

13 pages, 884 KiB  
Article
Thermal Tolerance of Crassostrea (Magallana) ariakensis to Nuclear Plant Warm Water Discharges
by Lei Li, Longyu Liu, Cong Yan, Liang Wang, Yuanlv Ye, Lu Chen, Xiong Zou, Haijing Zhang, Mengni Zeng and Mei Jiang
Biology 2025, 14(3), 311; https://doi.org/10.3390/biology14030311 - 19 Mar 2025
Viewed by 455
Abstract
Nuclear power plants utilize great quantities of seawater to cool down, resulting in substantial warm water discharges that may affect nearby fisheries and marine ecosystems. This study focused on Crassostrea (Magallana) ariakensis, a commercially farmed oyster species along the southern [...] Read more.
Nuclear power plants utilize great quantities of seawater to cool down, resulting in substantial warm water discharges that may affect nearby fisheries and marine ecosystems. This study focused on Crassostrea (Magallana) ariakensis, a commercially farmed oyster species along the southern coast of China. To evaluate the thermal impacts of warm water discharges from nuclear power plants, indoor simulations replicated seasonal water temperature conditions near coastal facilities (26 °C in spring and autumn, 16 °C in winter, and 30 °C in summer). We conducted thermal tolerance static and dynamic experiments, along with a 51-day long-term experiment on suitable growth under different acclimation temperatures. The thermal effects of warm water discharges on C. ariakensis were systematically assessed through survival, growth, digestibility, and nutritional quality. The results showed that the discomfort temperature range of C. ariakensis was (48.6 ± 1.2)~(58.9 ± 3.0) °C, the critical thermal maxima (CTM) value range of C. ariakensis was (51.6 ± 1.4)~(61.2 ± 2.2) °C, and the incipient lethal temperature (ILT50) of C. ariakensis was 45.61 °C, 53.71 °C, and 55.90 °C, respectively; all these values increased gradually with the rise of acclimation temperature. After the 51-day long-term experiment on suitable growth, the temperature increase of 1 °C, 2 °C and 4 °C did not affect the soft tissue wet weight, condition index, moisture content, and fat content of C. ariakensis, but the amylase activity in digestive gland tissue decreased in different temperature experimental groups. The experimental results show that the influence of temperature rise on the growth and physiological metabolism of C. ariakensis is limited. However, based on the normal habitat temperature in summer, the long-term effects of temperature rise caused by warm water discharges need to be paid attention to. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

19 pages, 3576 KiB  
Article
Integrative Trait Analysis for Enhancing Heat Stress Resilience in Tomato (Solanum lycopersicum L.): A Focus on Root, Physiological, and Yield Adaptations
by Sharukh Pasha Mohammed, Jo-Yi Yen, Yun-Che Hsu, Hsiu-Yi Chou, Sritharan Natarajan and Assaf Eybishitz
Plants 2025, 14(4), 533; https://doi.org/10.3390/plants14040533 - 10 Feb 2025
Viewed by 1569
Abstract
Tomato (Solanum lycopersicum L.) is an economically important crop worldwide, particularly in tropical and subtropical regions. However, production is significantly and increasingly affected by the impacts of climate change, including heat and drought stress and emerging pests and diseases. This study specifically [...] Read more.
Tomato (Solanum lycopersicum L.) is an economically important crop worldwide, particularly in tropical and subtropical regions. However, production is significantly and increasingly affected by the impacts of climate change, including heat and drought stress and emerging pests and diseases. This study specifically evaluated the effects of heat stress on root and shoot morphology, photosynthesis, and yield traits in five tomato genotypes, to identify the characteristics that differentiate heat tolerance from susceptibility. Heat stress experiments were conducted in a polyhouse, one during the summer under high temperatures, with a non-stress trial during the winter under conducive natural conditions. Significant reductions in yield, root traits and photosynthesis were observed across all genotypes under heat stress. However, the genotype MG785-1 maintained a relatively higher yield (298.01 ± 25.1 g), a 37.7% reduction compared to non-stress conditions, while CLN4786F1 showed resilience with a 32.3% decrease compared to its non-stress harvest index. Root dry weight (5.91 ± 0.53 g in MG785-1) and root shoot ratio (0.19 ± 0.01 in MG785-1) were identified as key traits for heat tolerance. Physiological traits, such as photosynthetic rate (11.71 ± 1.61 µmol CO2 m−2 s−1 in MG785-1), were critical for maintaining growth under heat stress. In contrast, the heat-sensitive genotype CLN3961D exhibited a significant decline in yield and physiological performance. Root dry weight and root to shoot ratio were key indicators for heat tolerance, while the photosynthetic rate was critical for maintaining plant growth under stress. These findings underscore the importance of integrated root and physiological traits, providing valuable insights for breeding climate-resilient tomato varieties. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

27 pages, 4722 KiB  
Article
Evaluation of Kabuli Chickpea Genotypes for Tropical Adaptation in Northern Australia
by Megha Subedi, Mani Naiker, Ryan du Preez, Dante L. Adorada and Surya Bhattarai
Agriculture 2024, 14(10), 1851; https://doi.org/10.3390/agriculture14101851 - 21 Oct 2024
Viewed by 1532
Abstract
Chickpea is one of the economically important legume crops adapted for winter season production in tropical climates. This study evaluated the physiological, morphological, and biochemical traits of eight Kabuli chickpea genotypes in an Australian tropical environment. The result revealed significant differences between genotypes [...] Read more.
Chickpea is one of the economically important legume crops adapted for winter season production in tropical climates. This study evaluated the physiological, morphological, and biochemical traits of eight Kabuli chickpea genotypes in an Australian tropical environment. The result revealed significant differences between genotypes for seed emergence, plant height, primary shoots, leaf number, leaf area index, gas-exchange parameters, seed yield, carbon discrimination (Δ13C), and natural abundance for nitrogen fixation. Among the tested genotypes, AVTCPK#6 and AVTCPK#19 exhibited late flowering (60–66 days) and late maturity (105–107 days), and had higher leaf photosynthetic rate (Asat) (28.4–31.2 µmol m−2 s−1), lower stomatal conductance (gsw) (516–756 mmol m−2 s−1), were associated with reduced transpiration rate (T) (12.3–14.5 mmol m−2 s−1), offered greater intrinsic water-use efficiency (iWUE) (2.1–2.3 µmol m−2 s−1/mmol m−2 s−1), and contributed a higher seed yield (626–746 g/m2) compared to other genotypes. However, a larger seed test weight (>60 g/100 seed) was observed for AVTCPK#24, AVTCPK#8, and AVTCPK#3. Similarly, a high proportion (45%) of larger seeds (>10–11 mm) was recorded for AVTCPK#24. Furthermore, a higher %Ndfa in AVTCPK#6 (71%) followed by AVTCPK#19 (63%) indicated greater symbiotic nitrogen fixation in high-yielding genotypes. Positive correlation was observed between %Ndfa and seed protein, as well as between seed yield and plant height, primary shoots, leaf count, leaf area index, leaf photosynthesis, stomatal conductance, transpiration rate at pod filling stage, biomass, and harvest index. An inverse correlation between (Δ13C) and iWUE, particularly in AVTCPK#6 and AVTCPK#19, indicates greater heat and drought tolerance, required for high-yielding Kabuli chickpea production in northern Australia. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

18 pages, 7633 KiB  
Article
Dendrochronological Analysis of Pinus pinea in Central Chile and South Spain for Sustainable Forest Management
by Verónica Loewe-Muñoz, Antonio M. Cachinero-Vivar, Jesús Julio Camarero, Rodrigo Del Río, Claudia Delard and Rafael M. Navarro-Cerrillo
Biology 2024, 13(8), 628; https://doi.org/10.3390/biology13080628 - 17 Aug 2024
Cited by 1 | Viewed by 1478
Abstract
Pinus pinea is an important Mediterranean species due to its adaptability and tolerance to aridity and its high-quality pine nuts. Different forest types located in Mediterranean native and non-native environments provide the opportunity to perform comparative studies on the species’ response to climate [...] Read more.
Pinus pinea is an important Mediterranean species due to its adaptability and tolerance to aridity and its high-quality pine nuts. Different forest types located in Mediterranean native and non-native environments provide the opportunity to perform comparative studies on the species’ response to climate change. The aims of this study were to elucidate growth patterns of the species growing in native and exotic habitats and to analyze its response to climatic fluctuations, particularly drought, in both geographical contexts. Understanding stone pine (Pinus pinea) growth responses to climate variability in native and exotic habitats by comparing natural stands and plantations may provide useful information to plan adequate management under climate change. By doing so, we enhance the understanding of P. pinea’s adaptability and provide practical approaches to its sustainable management. In this study, we reconstructed and compared the stem radial growth of seven stone pine stands, two in southern Spain and five in central–southern Chile, growing under different climatic conditions. We quantified the relationships between growth variability and climate variables (total rainfall, mean temperature, and SPEI drought index). Growth was positively correlated with autumn rainfall in plantations and with autumn–winter rainfall in natural stands. Growth was also enhanced by high autumn-to-spring rainfall in the driest Chilean plantation, whereas in the wettest and coolest plantation, such correlation was found in winter and summer. A negative impact of summer temperature was found only in one of the five Chilean plantations and in a Spanish site. The correlation between SPEI and tree-ring width indices showed different patterns between and within countries. Overall, exotic plantations showed lower sensitivity to climate variability than native stands. Therefore, stone pine plantations may be useful to assist in mitigating climate change. Full article
(This article belongs to the Special Issue Dendrochronology in Arid and Semiarid Regions)
Show Figures

Figure 1

16 pages, 580 KiB  
Article
Effects of Heat Stress during Anthesis and Grain Filling Stages on Some Physiological and Agronomic Traits in Diverse Wheat Genotypes
by Milan Mirosavljević, Sanja Mikić, Vesna Župunski, Lamis Abdelhakim, Dragana Trkulja, Rong Zhou, Ankica Kondić Špika and Carl-Otto Ottosen
Plants 2024, 13(15), 2083; https://doi.org/10.3390/plants13152083 - 27 Jul 2024
Cited by 3 | Viewed by 2167
Abstract
Heat stress represents a significant environmental challenge that adversely impacts the growth, physiology, and productivity of wheat. In order to determine the response to high temperatures of the wheat varieties developed mostly in the Pannonian environmental zone, as well as varietal differences, we [...] Read more.
Heat stress represents a significant environmental challenge that adversely impacts the growth, physiology, and productivity of wheat. In order to determine the response to high temperatures of the wheat varieties developed mostly in the Pannonian environmental zone, as well as varietal differences, we subjected seven varieties from Serbia, one from Australia, and one from the UK to thermal stress during anthesis and mid-grain filling and combined stress during both of these periods. The changes in chlorophyll fluorescence and index, leaf temperature, and main agronomic traits of nine winter wheat varieties were investigated under high temperatures. Heat stress negatively affected leaf temperature, chlorophyll fluorescence, and the chlorophyll index during different growth stages. Compared to the control, stress at anthesis, mid-grain filling, and combined stress resulted in yield reductions of 32%, 46%, and 59%, respectively. Single treatment at anthesis had a more severe effect on the number of grains per plant, causing a 38% reduction compared to the control. Moreover, single treatment during mid-grain filling resulted in the greatest decline in grain weight, with a 29% reduction compared to the control. There was a significant varietal variation in heat tolerance, highlighting Avangarda and NS 40s as the most tolerant varieties that should be included in regular breeding programs as valuable sources of heat tolerance. Understanding the genetic and physiological mechanisms of heat tolerance in these promising varieties should be the primary focus of future research and help develop targeted breeding strategies and agronomic practices to mitigate the adverse effects of heat stress on wheat production. Full article
(This article belongs to the Special Issue Research Trends in Plant Phenotyping)
Show Figures

Figure 1

20 pages, 3297 KiB  
Article
Assessing the Air Pollution Tolerance Index of Urban Plantation: A Case Study Conducted along High-Traffic Roadways
by Zunaira Asif and Wen Ma
Atmosphere 2024, 15(6), 659; https://doi.org/10.3390/atmos15060659 - 30 May 2024
Cited by 4 | Viewed by 2038
Abstract
Road transport and traffic congestion significantly contribute to dust pollution, which negatively impacts the growth of roadside plants in urban areas. This study aims to quantify the air pollution tolerance index (APTI) and analyze the impacts of dust deposition on different plant species [...] Read more.
Road transport and traffic congestion significantly contribute to dust pollution, which negatively impacts the growth of roadside plants in urban areas. This study aims to quantify the air pollution tolerance index (APTI) and analyze the impacts of dust deposition on different plant species and trees planted along a busy urban roadside in Lahore, Pakistan by considering seasonal variations. The APTI of each species is determined based on inputs of various biochemical parameters (leaf extract pH, ascorbic acid content, relative water content, and total chlorophyll levels), including dust deposition. In this study, laboratory analysis techniques are employed to assess these factors in selected plant species such as Mangifera indica, Saraca asoca, Cassia fistula, and Syzygium cumini. A statistical analysis is conducted to understand the pairwise correlation between various parameters and the APTI at significant and non-significant levels. Additionally, uncertainties in the inputs and APTI are addressed through a probabilistic analysis using the Monte Carlo simulation method. This study unveils seasonal variations in key parameters among selected plant species. Almost all biochemical parameters exhibit higher averages during the rainy season, followed by the summer and winter. Conversely, dust deposition on plants follows an inverse trend, with values ranging from 0.19 to 4.8 g/cm2, peaking during winter, notably in Mangifera indica. APTI values, ranging from 9.39 to 14.75, indicate varying sensitivity levels across species, from sensitive (Syzygium cumini) to intermediate tolerance (Mangifera indica). Interestingly, plants display increased tolerance during regular traffic hours, reflecting a 0.9 to 5% difference between the APTI at peak and regular traffic hours. Moreover, a significant negative correlation (−0.86 at p < 0.05 level) between APTI values and dust deposition suggests a heightened sensitivity to pollutants during the winter. These insights into the relationship between dust pollution and plant susceptibility will help decision makers in the selection of resilient plants for urban areas and improve air quality. Full article
(This article belongs to the Special Issue Air Pollution in Asia)
Show Figures

Figure 1

20 pages, 5365 KiB  
Article
Deciphering Winter Sprouting Potential of Erianthus procerus Derived Sugarcane Hybrids under Subtropical Climates
by Mintu Ram Meena, K. Mohanraj, Ravinder Kumar, Raja Arun Kumar, Manohar Lal Chhabra, Neeraj Kulshreshtha, Gopalareddy Krishnappa, H. K. Mahadeva Swamy, A. Suganya, Perumal Govindaraj and Govind Hemaprabha
Plants 2024, 13(7), 1023; https://doi.org/10.3390/plants13071023 - 3 Apr 2024
Viewed by 1715
Abstract
Winter sprouting potential and red rot resistance are two key parameters for successful sugarcane breeding in the subtropics. However, the cultivated sugarcane hybrids had a narrow genetic base; hence, the present study was planned to evaluate the Erianthus procerus genome introgressed Saccharum hybrids [...] Read more.
Winter sprouting potential and red rot resistance are two key parameters for successful sugarcane breeding in the subtropics. However, the cultivated sugarcane hybrids had a narrow genetic base; hence, the present study was planned to evaluate the Erianthus procerus genome introgressed Saccharum hybrids for their ratooning potential under subtropical climates and red rot tolerance under tropical and subtropical climates. A set of 15 Erianthus procerus derived hybrids confirmed through the 5S rDNA marker, along with five check varieties, were evaluated for agro-morphological, quality, and physiological traits for two years (2018–2019 and 2019–2020) and winter sprouting potential for three years (2018–2019, 2019–2020, and 2020–2021). The experimental material was also tested against the most prevalent isolates of the red rot pathogen in tropical (Cf671 and Cf671 + Cf9401) and subtropical regions (Cf08 and Cf09). The E. procerus hybrid GU 12—19 had the highest winter sprouting potential, with a winter sprouting index (WSI) of 10.6, followed by GU 12—22 with a WSI of 8.5. The other top-performing hybrids were as follows: GU 12—21 and GU 12—29 with a WSI of 7.2 and 6.9, respectively. A set of nine E. procerus-derived hybrids, i.e., GU04 (28) EO—2, GU12—19, GU12—21, GU12—22, GU12—23, GU12—26, GU12—27, GU12—30, and GU12—31, were resistant to the most prevalent isolates of red rot in both tropical and subtropical conditions. The association analysis revealed significant correlations between the various traits, particularly the fibre content, with a maximum number of associations, which indicates its multifaceted impact on sugarcane characteristics. Principal component analysis (PCA) summarised the data, explaining 57.6% of the total variation for the measured traits and genotypes, providing valuable insights into the performance and characteristics of the Erianthus procerus derived hybrids under subtropical climates. The anthocyanin content of Erianthus procerus hybrids was better than the check varieties, ranging from 0.123 to 0.179 (2018–2019) and 0.111 to 0.172 (2019–2020); anthocyanin plays a vital role in mitigating cold injury, acting as an antioxidant in cool weather conditions, particularly in sugarcane. Seven hybrids recorded a more than 22% fibre threshold, indicating their industrial potential. These hybrids could serve as potential donors for cold tolerance and a high ratooning ability, along with red rot resistance, under subtropical climates. Full article
Show Figures

Figure 1

33 pages, 2075 KiB  
Review
What Is Fusarium Head Blight (FHB) Resistance and What Are Its Food Safety Risks in Wheat? Problems and Solutions—A Review
by Akos Mesterhazy
Toxins 2024, 16(1), 31; https://doi.org/10.3390/toxins16010031 - 8 Jan 2024
Cited by 22 | Viewed by 4570
Abstract
The term “Fusarium Head Blight” (FHB) resistance supposedly covers common resistances to different Fusarium spp. without any generally accepted evidence. For food safety, all should be considered with their toxins, except for deoxynivalenol (DON). Disease index (DI), scabby kernels (FDK), and DON steadily [...] Read more.
The term “Fusarium Head Blight” (FHB) resistance supposedly covers common resistances to different Fusarium spp. without any generally accepted evidence. For food safety, all should be considered with their toxins, except for deoxynivalenol (DON). Disease index (DI), scabby kernels (FDK), and DON steadily result from FHB, and even the genetic regulation of Fusarium spp. may differ; therefore, multitoxin contamination is common. The resistance types of FHB form a rather complex syndrome that has been the subject of debate for decades. It seems that resistance types are not independent variables but rather a series of components that follow disease and epidemic development; their genetic regulation may differ. Spraying inoculation (Type 1 resistance) includes the phase where spores land on palea and lemma and spread to the ovarium and also includes the spread-inhibiting resistance factor; therefore, it provides the overall resistance that is needed. A significant part of Type 1-resistant QTLs could, therefore, be Type 2, requiring the retesting of the QTLs; this is, at least, the case for the most effective ones. The updated resistance components are as follows: Component 1 is overall resistance, as discussed above; Component 2 includes spreading from the ovarium through the head, which is a part of Component 1; Component 3 includes factors from grain development to ripening (FDK); Component 4 includes factors influencing DON contamination, decrease, overproduction, and relative toxin resistance; and for Component 5, the tolerance has a low significance without new results. Independent QTLs with different functions can be identified for one or more traits. Resistance to different Fusarium spp. seems to be connected; it is species non-specific, but further research is necessary. Their toxin relations are unknown. DI, FDK, and DON should be checked as they serve as the basic data for the risk analysis of cultivars. A better understanding of the multitoxin risk is needed regarding resistance to the main Fusarium spp.; therefore, an updated testing methodology is suggested. This will provide more precise data for research, genetics, and variety registration. In winter and spring wheat, the existing resistance level is very high, close to Sumai 3, and provides much greater food safety combined with sophisticated fungicide preventive control and other practices in commercial production. Full article
(This article belongs to the Topic Emerging Food Safety Issues Associated with Mycotoxins)
Show Figures

Figure 1

17 pages, 22035 KiB  
Article
Effects of Low-Light Environments on the Growth and Physiological and Biochemical Parameters of Indocalamus and Seasonal Variations in Leaf Active Substance Contents
by Weiqian Yu, Mingyan Jiang, Qiling Yue, Yixiong Yang, Zhenghua Luo, Bingyang Lv, Rui He, Shihan Feng and Meng Yang
Plants 2023, 12(23), 3993; https://doi.org/10.3390/plants12233993 - 27 Nov 2023
Cited by 1 | Viewed by 1761
Abstract
Indocalamus, characterized by its expansive leaves, low height, strong reproductive capacity, and abundant bioactive compounds, has extensive utility in the realms of food processing, the manufacturing of packaging materials, and the advancement of novel pharmaceuticals. Two light environments, CK (100% full light) [...] Read more.
Indocalamus, characterized by its expansive leaves, low height, strong reproductive capacity, and abundant bioactive compounds, has extensive utility in the realms of food processing, the manufacturing of packaging materials, and the advancement of novel pharmaceuticals. Two light environments, CK (100% full light) and ST (50% full light), were established to explore the effects of low-light environments on the reproductive ability, morphological characteristics, photosynthetic properties, and leaf active substances of 14 Indocalamus species. The findings revealed that in comparison to the CK treatment, for 14 species of Indocalamus under the ST treatment, (1) the diameter, single leaf area, and leaf area index increased by 8.27%, 8.14%, and 17.88%, respectively; (2) the net photosynthetic rate decreased by 15.14%, and the total chlorophyll contents increased by 20.25%; and (3) the total flavonoid contents increased by 18.28% in autumn, the total polyphenol contents increased by 48.96% in spring, and the total polysaccharide contents increased by 31.44% and 30.81% in summer and winter, respectively. In summary, Indocalamus are adapted to survive in low-light environments; the growth and physiological indices differ significantly between the two light environments, and the low-light environment can effectively promote the growth and development of the leaves. Furthermore, the leaves are rich in flavonoids, polyphenols, polysaccharides, and active substances, which are affected by the light intensity and the season to varying degrees, and autumn and winter are the best times for harvesting the leaves. The leaves of I. hunanensis and I. lacunosus are richest in flavonoids and polyphenols, while the leaves of I. kunmingensis cv. fuminer are richest in polysaccharides. The main findings of this study demonstrate that Indocalamus has strong shade tolerance and tremendous leaf value, laying the foundation for broadening the application of their leaves and for their industrial development in understory composite planting systems. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

12 pages, 1334 KiB  
Article
Population Structure of Modern Winter Wheat Accessions from Central Asia
by Akerke Amalova, Kanat Yermekbayev, Simon Griffiths, Mark Owen Winfield, Alexey Morgounov, Saule Abugalieva and Yerlan Turuspekov
Plants 2023, 12(12), 2233; https://doi.org/10.3390/plants12122233 - 6 Jun 2023
Cited by 2 | Viewed by 1924
Abstract
Despite the importance of winter wheat in Central Asian countries, there are limited reports describing their diversity within this region. In this study, the population structures of 115 modern winter wheat cultivars from four Central Asian countries were compared to germplasms from six [...] Read more.
Despite the importance of winter wheat in Central Asian countries, there are limited reports describing their diversity within this region. In this study, the population structures of 115 modern winter wheat cultivars from four Central Asian countries were compared to germplasms from six other geographic origins using 10,746 polymorphic single-nucleotide polymorphism (SNP) markers. After applying the STRUCTURE package, we found that in terms of the most optimal K steps, samples from Kazakhstan and Kyrgyzstan were grouped together with samples from Russia, while samples from Tajikistan and Uzbekistan were grouped with samples from Afghanistan. The mean value of Nei’s genetic diversity index for the germplasm from four groups from Central Asia was 0.261, which is comparable to that of the six other groups studied: Europe, Australia, the USA, Afghanistan, Turkey, and Russia. The Principal Coordinate Analysis (PCoA) showed that samples from Kyrgyzstan, Tajikistan, and Uzbekistan were close to samples from Turkey, while Kazakh accessions were located near samples from Russia. The evaluation of 10,746 SNPs in Central Asian wheat suggested that 1006 markers had opposing allele frequencies. Further assessment of the physical positions of these 1006 SNPs in the Wheat Ensembl database indicated that most of these markers are constituents of genes associated with plant stress tolerance and adaptability. Therefore, the SNP markers identified can be effectively used in regional winter wheat breeding projects for facilitating plant adaptation and stress resistance. Full article
Show Figures

Figure 1

22 pages, 3527 KiB  
Article
Transcriptomic Analysis of Yunwu Tribute Tea Leaves under Cold Stress
by Ying Wang, Cheng Wan, Leijia Li, Zhun Xiang, Jihong Wang, Yan Li and Degang Zhao
Curr. Issues Mol. Biol. 2023, 45(1), 699-720; https://doi.org/10.3390/cimb45010047 - 13 Jan 2023
Cited by 9 | Viewed by 2406
Abstract
Background: Cold stress usually occurs in winter and is one of the most significant environmental factors restricting the growth of the tea plant as well as its geographical distribution. Objective: It is necessary to identify the physiological and molecular mechanisms of plants under [...] Read more.
Background: Cold stress usually occurs in winter and is one of the most significant environmental factors restricting the growth of the tea plant as well as its geographical distribution. Objective: It is necessary to identify the physiological and molecular mechanisms of plants under cold stress so that cold-tolerant crop varieties can be cultivated to limit production losses. At the same time, this would allow the crop planting area to be expanded, hence improving the economic benefits. Methods: In this study, the transcriptome data of Yunwu Tribute Tea under cold conditions were obtained using the Illumina HiSeq platform. By analyzing changes in transcriptome data associated with the antioxidant enzyme system, plant hormone signal transduction, proline and tyrosine metabolism pathways, and transcription factors, the molecular mechanisms involved in Yunwu Tribute Tea under cold stress were investigated. Results: In this study, Illumina HiSeq technology was applied to investigate the cold-tolerance mechanism. For this purpose, cDNA libraries were obtained from two groups of samples, namely the cold-treated group (DW) and the control group (CK). A total of 185,973 unigenes were produced from 511,987 assembled transcripts; among these, 16,020 differentially expressed genes (DEGs) (corrected p-value < 0.01, |log2(fold change)| >3), including 9606 up-regulated and 6414 down-regulated genes, were obtained. Moreover, the antioxidant enzyme system, plant hormone signal transduction, proline and tyrosine metabolism pathways, and transcription factors were analyzed; based on these results, a series of candidate genes related to cold stress were screened out and discussed. The physiological indexes related to the low-temperature response were tested, along with five DEGs which were validated by quantitative real-time PCR. Conclusions: Differential gene expression analysis has confirmed that substantial cold-responsive genes are related to the antioxidant enzyme system, plant hormone signal transduction, proline metabolism pathway, tyrosine metabolism pathway, and transcription factors. Full article
(This article belongs to the Special Issue Stress and Signal Transduction in Plants)
Show Figures

Figure 1

14 pages, 320 KiB  
Article
Response of Winter Wheat (Triticum aestivum L.) to Selected Biostimulants under Drought Conditions
by Dominika Radzikowska-Kujawska, Paula John, Tomasz Piechota, Marcin Nowicki and Przemysław Łukasz Kowalczewski
Agriculture 2023, 13(1), 121; https://doi.org/10.3390/agriculture13010121 - 31 Dec 2022
Cited by 12 | Viewed by 3093
Abstract
To prevent the staggering degradation of the environment, restrictions in the use of plant protection products and fertilizers are being strengthened every year. Therefore, methods for improving plant tolerance to unfavorable environmental conditions are sought to positively affect both plants and the natural [...] Read more.
To prevent the staggering degradation of the environment, restrictions in the use of plant protection products and fertilizers are being strengthened every year. Therefore, methods for improving plant tolerance to unfavorable environmental conditions are sought to positively affect both plants and the natural environment. Here, we evaluated and compared the efficacy of four commercial biostimulants on the tolerance of winter wheat to drought stress. The effects of the following biological agents: Bacillus sp., soil bacterial strains, free amino acids, and humic substances on winter wheat were assessed in a pot experiment under full hydration soil moisture and under drought. Among the studied biostimulants, the two based on bacterial strains had the strongest beneficial effects on improving the tolerance of wheat plants to drought. In plants treated with either of these two, the highest level of CO2 assimilation was recorded under drought. Moreover, in the same plants, the decrease in transpiration value due to drought was the smallest. The highest stomatal conductance under drought was also noted in these same plants. The results of chlorophyll fluorescence also indicate the smallest damage to the photosynthetic apparatus in the plants on which these bacterial biostimulants were used. Under drought, the lowest initial fluorescence values were noted for these bacterial preparations, as were the highest values of maximum fluorescence. On the other hand, a parameter indicating stress was reduced due to drought in all plants, except for those treated with one of these preparations. Another parameter showing the efficiency of the use of light photons in the photosynthesis process increased only in plants treated with one of these preparations, whereas for other plants it decreased due to drought, with the smallest decrease observed in plants treated with the other preparations. The most effective work of the photosynthetic apparatus in such treated plants was observed by the fastest transport of electrons through photosystems under drought. Additionally, under drought, the highest grain yield was obtained in plants treated with one of these bacterial preparations. The drought stress resistance index indicated that among all tested formulations, plants treated with either of these bacterial preparations scored the best. The use of these two biostimulants is recommended for comparative efficacy studies in the field, to help combat the drought-related yield losses of wheat. Full article
Back to TopTop