Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = wing-in-ground-effect UAV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 9332 KiB  
Article
Design and Validation of a New Tilting Rotor VTOL Drone: Structural Optimization, Flight Dynamics, and PID Control
by Haixia Gong, Wei He, Shuping Hou, Ming Chen, Ziang Yang, Qin Si and Deming Zhao
Sensors 2025, 25(11), 3537; https://doi.org/10.3390/s25113537 - 4 Jun 2025
Viewed by 1027
Abstract
This study addresses the gap in the experimental validation of the tilt-rotor vertical take-off and landing (VTOL) UAVs by developing a novel prototype that integrates fixed-wing and multi-rotor advantages. A dynamic model based on the “X” quadrotor configuration was established, and Euler parameters [...] Read more.
This study addresses the gap in the experimental validation of the tilt-rotor vertical take-off and landing (VTOL) UAVs by developing a novel prototype that integrates fixed-wing and multi-rotor advantages. A dynamic model based on the “X” quadrotor configuration was established, and Euler parameters were employed to derive the attitude transformation matrix. Structural optimization using hybrid meshing and inertia release methods revealed a maximum deformation of 57.1 mm (2.82% of half-wingspan) and stress concentrations below material limits (379.21 MPa on fasteners). The landing gear was optimized using the unified objective method, and the stress was reduced by 32.63 MPa compared to the pre-optimization stress. Vibration analysis identified hazardous frequencies (11–12 Hz) to avoid resonance. Stable motor speed tracking (±5 RPM) and rolling attitude control (less than 10% error) are achieved using a dual-serial PID control system based on the DSP28377D master. Experimental validation in low-altitude flights confirmed the prototype’s feasibility, though ground effects impacted pitch/yaw performance. This work provides critical experimental data for future tilt-rotor UAV development. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 5186 KiB  
Review
Unmanned Aerial Vehicle Technology for Glaciology Research in the Third Pole
by Chuanxi Zhao, Shengyu Kang, Yihan Fan, Yongjie Wang, Zhen He, Zhaoqi Tan, Yifei Gao, Tianzhao Zhang, Yifei He and Yu Fan
Drones 2025, 9(4), 254; https://doi.org/10.3390/drones9040254 - 27 Mar 2025
Viewed by 776
Abstract
The Third Pole region contains vast glaciers, and changes in these glaciers profoundly affect the lives and development of billions of people. Therefore, accurate glacier monitoring in this region is of great scientific and practical significance. Unmanned Aerial Vehicles (UAVs) provide high-resolution observation [...] Read more.
The Third Pole region contains vast glaciers, and changes in these glaciers profoundly affect the lives and development of billions of people. Therefore, accurate glacier monitoring in this region is of great scientific and practical significance. Unmanned Aerial Vehicles (UAVs) provide high-resolution observation capabilities and flexible deployment options, effectively overcoming certain limitations associated with traditional in situ and satellite remote sensing observations. Thus, UAV technology is increasingly gaining traction and application in the glaciology community. This review systematically analyzed studies involving UAV technology in Third Pole glaciology research and determined that relevant studies have been performed for a decade (2014–2024). Notably, after 2020, the number of relevant manuscripts has increased significantly. Research activities are biased toward the use of rotary-wing UAVs (63%) and ground control point (GCP) correction methods (67%). Additionally, there is strong emphasis on analyzing glacier surface elevation, surface velocity, and landform evolution. These activities are primarily concentrated in the Himalayan region, with relatively less research being conducted in the western and central areas. UAV technology has significantly contributed to glaciology research in the Third Pole region and holds great potential to enhance the monitoring capabilities in future studies. Full article
(This article belongs to the Special Issue Drones in Hydrological Research and Management)
Show Figures

Figure 1

31 pages, 4789 KiB  
Article
Assessing the Technical–Economic Feasibility of Low-Altitude Unmanned Airships: Methodology and Comparative Case Studies
by Carlo E. D. Riboldi and Luca Fanchini
Aerospace 2025, 12(3), 244; https://doi.org/10.3390/aerospace12030244 - 16 Mar 2025
Viewed by 919
Abstract
The current growing interest in lighter-than-air platforms (LTA) has been fueled by the significant development of some enabling technologies, in particular electric motors and on-board electronics. The localization of multiple thrust forces in the layout of the airship, as well as the ability [...] Read more.
The current growing interest in lighter-than-air platforms (LTA) has been fueled by the significant development of some enabling technologies, in particular electric motors and on-board electronics. The localization of multiple thrust forces in the layout of the airship, as well as the ability to manage them through automatic control, promises to mitigate the controllability issues connatural to this type of flying craft. Employed on unmanned missions and close to the ground, LTA vehicles now appear to be a technically viable alternative to other unmanned aerial vehicles (UAVs) or low-flying manned machines and are similarly capable of effectively achieving the corresponding mission goals. A key step in establishing the credibility of LTA vehicles as industrial solutions for an end user is an assessment of the economic effort required for producing and operating them. This study presents an analytic approach for evaluating these costs, based on the data available at a preliminary design level for an airship. Three missions currently flown by other types of flying machines were considered, and for each mission the sizing and preliminary design of a LTA platform capable of providing the same mission performance was carried out. Correspondingly, a newly introduced method for the estimation of the cost of a LTA platform was applied. Also, an estimation of the costs currently sustained by operators for each mission was obtained from the available data and with the support of relevant companies, who currently do not fly LTA platforms but operate with more standard flying machines (in particular, multicopter or fixed-wing UAVs or manned helicopters). Finally, the costs corresponding to both currently flying non-LTA vehicles and suitably designed LTA solutions were compared, yielding indications of the emerging economic trade-offs. Full article
Show Figures

Figure 1

71 pages, 7585 KiB  
Systematic Review
Unmanned Aerial Geophysical Remote Sensing: A Systematic Review
by Farzaneh Dadrass Javan, Farhad Samadzadegan, Ahmad Toosi and Mark van der Meijde
Remote Sens. 2025, 17(1), 110; https://doi.org/10.3390/rs17010110 - 31 Dec 2024
Cited by 9 | Viewed by 11180
Abstract
Geophysical surveys, a means of analyzing the Earth and its environments, have traditionally relied on ground-based methodologies. However, up-to-date approaches encompass remote sensing (RS) techniques, employing both spaceborne and airborne platforms. The emergence of Unmanned Aerial Vehicles (UAVs) has notably catalyzed interest in [...] Read more.
Geophysical surveys, a means of analyzing the Earth and its environments, have traditionally relied on ground-based methodologies. However, up-to-date approaches encompass remote sensing (RS) techniques, employing both spaceborne and airborne platforms. The emergence of Unmanned Aerial Vehicles (UAVs) has notably catalyzed interest in UAV-borne geophysical RS. The objective of this study is to comprehensively review the state-of-the-art UAV-based geophysical methods, encompassing magnetometry, gravimetry, gamma-ray spectrometry/radiometry, electromagnetic (EM) surveys, ground penetrating radar (GPR), traditional UAV RS methods (i.e., photogrammetry and LiDARgrammetry), and integrated approaches. Each method is scrutinized concerning essential aspects such as sensors, platforms, challenges, applications, etc. Drawing upon an extensive systematic review of over 435 scholarly works, our analysis reveals the versatility of these systems, which ranges from geophysical development to applications over various geoscientific domains. Among the UAV platforms, rotary-wing multirotors were the most used (64%), followed by fixed-wing UAVs (27%). Unmanned helicopters and airships comprise the remaining 9%. In terms of sensors and methods, imaging-based methods and magnetometry were the most prevalent, which accounted for 35% and 27% of the research, respectively. Other methods had a more balanced representation (6–11%). From an application perspective, the primary use of UAVs in geoscience included soil mapping (19.6%), landslide/subsidence mapping (17.2%), and near-surface object detection (13.5%). The reviewed studies consistently highlight the advantages of UAV RS in geophysical surveys. UAV geophysical RS effectively balances the benefits of ground-based and traditional RS methods regarding cost, resolution, accuracy, and other factors. Integrating multiple sensors on a single platform and fusion of multi-source data enhance efficiency in geoscientific analysis. However, implementing geophysical methods on UAVs poses challenges, prompting ongoing research and development efforts worldwide to find optimal solutions from both hardware and software perspectives. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of Geophysical Surveys Based on UAV)
Show Figures

Figure 1

26 pages, 5291 KiB  
Article
Conceptual Design of a Novel Autonomous Water Sampling Wing-in-Ground-Effect (WIGE) UAV and Trajectory Tracking Performance Optimization for Obstacle Avoidance
by Yüksel Eraslan
Drones 2024, 8(12), 780; https://doi.org/10.3390/drones8120780 - 21 Dec 2024
Viewed by 1087
Abstract
As a fundamental part of water management, water sampling treatments have recently been integrated into unmanned aerial vehicle (UAV) technologies and offer eco-friendly, cost-effective, and time-saving solutions while reducing the necessity for qualified staff. However, the majority of applications have been conducted with [...] Read more.
As a fundamental part of water management, water sampling treatments have recently been integrated into unmanned aerial vehicle (UAV) technologies and offer eco-friendly, cost-effective, and time-saving solutions while reducing the necessity for qualified staff. However, the majority of applications have been conducted with rotary-wing configurations, which lack range and sampling capacity (i.e., payload), leading scientists to search for alternative designs or special configurations to enable more comprehensive water assessments. Hence, in this paper, the conceptual design of a novel long-range and high-capacity WIGE UAV capable of autonomous water sampling is presented in detail. The design process included a vortex lattice solver for aerodynamic investigations, while analytical and empirical methods were used for weight and dimensional estimations. Since the mission involved operation inside maritime traffic, potential obstacle avoidance scenarios were discussed in terms of operational safety, and the aim was for autonomous trajectory tracking performance to be improved by means of a stochastic optimization algorithm. For this purpose, an artificial intelligence-integrated concurrent engineering approach was applied for autonomous control system design and flight altitude determination, simultaneously. During the optimization, the stability and control derivatives of the constituted longitudinal and lateral aircraft dynamic models were predicted via a trained artificial neural network (ANN). The optimization results exhibited an aerodynamic performance enhancement of 3.92%, and a remarkable improvement in trajectory tracking performance for both the fly-over and maneuver obstacle avoidance modes, by 89.9% and 19.66%, respectively. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

27 pages, 10812 KiB  
Article
Grid Matrix-Based Ground Risk Map Generation for Unmanned Aerial Vehicles in Urban Environments
by Yuanjun Zhu, Xuejun Zhang, Yan Li, Yang Liu and Jianxiang Ma
Drones 2024, 8(11), 678; https://doi.org/10.3390/drones8110678 - 17 Nov 2024
Cited by 2 | Viewed by 1238
Abstract
As a novel mode of urban air mobility (UAM), unmanned aerial vehicles (UAVs) pose a great amount of risk to ground people. Assessing ground risk and mitigation effects correctly is a focused issue. This paper proposes a grid-based risk matrix framework for assessing [...] Read more.
As a novel mode of urban air mobility (UAM), unmanned aerial vehicles (UAVs) pose a great amount of risk to ground people. Assessing ground risk and mitigation effects correctly is a focused issue. This paper proposes a grid-based risk matrix framework for assessing the ground risk associated with two types of UAVs, namely fixed-wing and quadrotor. The framework has a three-stage structure of “intrinsic risk assessment—mitigation effect—final map generation”. First, the intrinsic risk to ground populations caused by potential UAV crashes is quantified. Second, the mitigation effects are measured by establishing a mathematical model with a focus on the ground sheltering and parachute systems. Finally, a modular approach is presented for generating a ground risk map of UAVs, aiming to effectively characterize the effects of each influencing factor on the failure process of UAVs. The framework facilitates the modular analysis and quantification of the impact of diverse risk factors on UAV ground risk. It also provides a new perspective for analyzing ground risk mitigation measures, such as ground sheltering and UAV parachute systems. A case study experiment on a realistic urban environment in Shenzhen shows that the risk map generated by the presented framework can accurately characterize the distribution of ground risk posed by various UAVs. Full article
(This article belongs to the Topic Civil and Public Domain Applications of Unmanned Aviation)
Show Figures

Figure 1

21 pages, 10520 KiB  
Article
The Design of Improved Series Hybrid Power System Based on Compound-Wing VTOL
by Siqi An, Guichao Cai, Xu Peng, Mingxiao Dai and Guolong Yang
Drones 2024, 8(11), 634; https://doi.org/10.3390/drones8110634 - 1 Nov 2024
Viewed by 2126
Abstract
Hybrid power systems are now widely utilized in a variety of vehicle platforms due to their efficacy in reducing pollution and enhancing energy utilization efficiency. Nevertheless, the existing vehicle hybrid systems are of a considerable size and weight, rendering them unsuitable for integration [...] Read more.
Hybrid power systems are now widely utilized in a variety of vehicle platforms due to their efficacy in reducing pollution and enhancing energy utilization efficiency. Nevertheless, the existing vehicle hybrid systems are of a considerable size and weight, rendering them unsuitable for integration into 25 kg compound-wing UAVs. This study presents a design solution for a compound-wing vertical takeoff and landing unmanned aerial vehicle (VTOL) equipped with an improved series hybrid power system. The system comprises a 48 V lithium polymer battery(Li-Po battery), a 60cc internal combustion engine (ICE), a converter, and a dedicated permanent magnet synchronous machine (PMSM) with four motors, which collectively facilitate dual-directional energy flow. The four motors serve as a load and lift assembly, providing the requisite lift during the take-off, landing, and hovering phases, and in the event of the ICE thrust insufficiency, as well as forward thrust during the level cruise phase by mounting the variable pitch propeller directly on the ICE. The entire hybrid power system of the UAV undergoes numerical modeling and experimental simulation to validate the feasibility of the complete hybrid power configuration. The validation is achieved by comparing and analyzing the results of the numerical simulations with ground tests. Moreover, the effectiveness of this hybrid power system is validated through the successful completion of flight test experiments. The hybrid power system has been demonstrated to significantly enhance the endurance of vertical flight for a compound-wing VTOL by more than 25 min, thereby establishing a solid foundation for future compound-wing VTOLs to enable multi-destination flights and multiple takeoffs and landings. Full article
Show Figures

Figure 1

25 pages, 11392 KiB  
Article
Lift–Drag Performance of a New Unmanned Aerial Vehicle in Different Media and Ground Effect
by Wenhua Wang, Lijian Wang, Kedong Zhang and Yi Huang
J. Mar. Sci. Eng. 2024, 12(7), 1052; https://doi.org/10.3390/jmse12071052 - 22 Jun 2024
Cited by 1 | Viewed by 1575
Abstract
Water–air trans-media unmanned vehicle is a kind of aircraft, which can freely fly in the air, sail in the water and pass through free surface. For trans-media aircrafts, the development process from air–surface to air–underwater and from submarine-launched drive to autonomous drive is [...] Read more.
Water–air trans-media unmanned vehicle is a kind of aircraft, which can freely fly in the air, sail in the water and pass through free surface. For trans-media aircrafts, the development process from air–surface to air–underwater and from submarine-launched drive to autonomous drive is investigated. By analyzing the characteristic of manta ray, flying fish and existing aircraft, this paper proposes a new water–air trans-media unmanned vehicle with flat dish-airfoil-shaped main body and telescopic NACA-type wing. Then the numerical method to calculate the lift and drag forces is established and validated by the results of classic NACA cases. On this basis, the flow field around the new vehicle is numerically simulated, and its lift–drag performances in different media (air and water) and ground effect are analyzed, comparing it with a model inspired by the Blackwing Unmanned Aerial Vehicle (UAV). The findings illustrate the superior performance of the new vehicle in terms of lift and drag forces, offering an innovative design framework for water–air trans-media UAV applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

11 pages, 5604 KiB  
Article
Open-Path Laser Absorption Sensor for Mobile Measurements of Atmospheric Ammonia
by Soran Shadman, Thomas W. Miller and Azer P. Yalin
Sensors 2023, 23(14), 6498; https://doi.org/10.3390/s23146498 - 18 Jul 2023
Cited by 5 | Viewed by 1957
Abstract
Anthropogenic emissions of ammonia to the atmosphere, particularly those from agricultural sources, can be damaging to the environment and human health and can drive a need for sensor technologies that can be used to detect and quantify the emissions. Mobile sensing approaches that [...] Read more.
Anthropogenic emissions of ammonia to the atmosphere, particularly those from agricultural sources, can be damaging to the environment and human health and can drive a need for sensor technologies that can be used to detect and quantify the emissions. Mobile sensing approaches that can be deployed on ground-based or aerial vehicles can provide scalable solutions for high throughput measurements but require relatively compact and low-power sensor systems. This contribution presents an ammonia sensor based on wavelength modulation spectroscopy (WMS) integrated with a Herriott multi-pass cell and a quantum cascade laser (QCL) at 10.33 µm oriented to mobile use. An open-path configuration is used to mitigate sticky-gas effects and achieve high time-response. The final sensor package is relatively small (~20 L), lightweight (~3.5 kg), battery-powered (<30 W) and operates autonomously. Details of the WMS setup and analysis method are presented along with laboratory tests showing sensor accuracy (<~2%) and precision (~4 ppb in 1 s). Initial field deployments on both ground vehicles and a fixed-wing unmanned aerial vehicle (UAV) are also presented. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

22 pages, 19025 KiB  
Article
Flow Structure around a Multicopter Drone: A Computational Fluid Dynamics Analysis for Sensor Placement Considerations
by Mauro Ghirardelli, Stephan T. Kral, Nicolas Carlo Müller, Richard Hann, Etienne Cheynet and Joachim Reuder
Drones 2023, 7(7), 467; https://doi.org/10.3390/drones7070467 - 13 Jul 2023
Cited by 12 | Viewed by 6321
Abstract
This study presents a computational fluid dynamics (CFD) based approach to determine the optimal positioning for an atmospheric turbulence sensor on a rotary-wing uncrewed aerial vehicle (UAV) with X8 configuration. The vertical (zBF) and horizontal (xBF [...] Read more.
This study presents a computational fluid dynamics (CFD) based approach to determine the optimal positioning for an atmospheric turbulence sensor on a rotary-wing uncrewed aerial vehicle (UAV) with X8 configuration. The vertical (zBF) and horizontal (xBF) distances of the sensor to the UAV center to reduce the effect of the propeller-induced flow are investigated by CFD simulations based on the kϵ turbulence model and the actuator disc theory. To ensure a realistic geometric design of the simulations, the tilt angles of a test UAV in flight were measured by flying the drone along a fixed pattern at different constant ground speeds. Based on those measurement results, a corresponding geometry domain was generated for the CFD simulations. Specific emphasis was given to the mesh construction followed by a sensitivity study on the mesh resolution to find a compromise between acceptable simulation accuracy and available computational resources. The final CFD simulations (twelve in total) were performed for four inflow conditions (2.5 m s−1, 5 m s−1, 7.5 m s−1 and 10 m s−1) and three payload configurations (15 kg, 20 kg and 25 kg) of the UAV. The results depend on the inflows and show that the most efficient way to reduce the influence of the propeller-induced flow is mounting the sensor upwind, pointing along the incoming flow direction at xBF varying between 0.46 and 1.66 D, and under the mean plane of the rotors at zBF between 0.01 and 0.7 D. Finally, results are then applied to the possible real-case scenario of a Foxtech D130 carrying a CSAT3B ultrasonic anemometer, that aims to sample wind with mean flows higher than 5 m s−1. The authors propose xBF=1.7 m and zBF=20 cm below the mean rotor plane as a feasible compromise between propeller-induced flow reduction and safety. These results will be used to improve the design of a novel drone-based atmospheric turbulence measurement system, which aims to combine accurate wind and turbulence measurements by a research-grade ultrasonic anemometer with the high mobility and flexibility of UAVs as sensor carriers. Full article
(This article belongs to the Special Issue Weather Impacts on Uncrewed Aircraft)
Show Figures

Figure 1

26 pages, 34756 KiB  
Article
RETRACTED: Ground Risk Estimation of Unmanned Aerial Vehicles Based on Probability Approximation for Impact Positions with Multi-Uncertainties
by Yang Liu, Yuanjun Zhu, Zhi Wang, Xuejun Zhang and Yan Li
Electronics 2023, 12(4), 829; https://doi.org/10.3390/electronics12040829 - 6 Feb 2023
Cited by 4 | Viewed by 2422 | Retraction
Abstract
In this paper, a methodology to assess ground risk with multi-uncertainties is introduced, which is associated with a major unmanned aerial vehicle (UAV) in-flight incident. In the assessment model, random factors are taken into account including uncertainty in the drag force, uncertainty in [...] Read more.
In this paper, a methodology to assess ground risk with multi-uncertainties is introduced, which is associated with a major unmanned aerial vehicle (UAV) in-flight incident. In the assessment model, random factors are taken into account including uncertainty in the drag force, uncertainty in the UAV velocity, and the random effects of local wind. The probability distribution of impact positions is first estimated by using a second-order drag model with probabilistic assumptions regarding the least well-known parameters. Then, an approach for modeling and estimating the ground risks is presented, in which the ground casualties are set as the safety index. In the multifactor risk estimation model, ground casualty areas covered by the UAVs’ debris are determined. Correspondingly, the probability of fatal injuries to people is derived by addressing the protection effects, impact energy, and energy threshold a person can sustain. Further, four kinds of sheltering effects are defined. Finally, the affected area on the ground is partitioned into six zones, taking into consideration the density and distribution of the local population. Case studies are conducted for fixed-wing and rotary-wing UAVs. Risk levels on the ground are obtained and compared with the widely accepted target safety level of manned aircrafts. Full article
Show Figures

Figure 1

27 pages, 3739 KiB  
Article
Visual Navigation Algorithm for Night Landing of Fixed-Wing Unmanned Aerial Vehicle
by Zhaoyang Wang, Dan Zhao and Yunfeng Cao
Aerospace 2022, 9(10), 615; https://doi.org/10.3390/aerospace9100615 - 17 Oct 2022
Cited by 15 | Viewed by 3444
Abstract
In the recent years, visual navigation has been considered an effective mechanism for achieving an autonomous landing of Unmanned Aerial Vehicles (UAVs). Nevertheless, with the limitations of visual cameras, the effectiveness of visual algorithms is significantly limited by lighting conditions. Therefore, a novel [...] Read more.
In the recent years, visual navigation has been considered an effective mechanism for achieving an autonomous landing of Unmanned Aerial Vehicles (UAVs). Nevertheless, with the limitations of visual cameras, the effectiveness of visual algorithms is significantly limited by lighting conditions. Therefore, a novel vision-based autonomous landing navigation scheme is proposed for night-time autonomous landing of fixed-wing UAV. Firstly, due to the difficulty of detecting the runway caused by the low-light image, a strategy of visible and infrared image fusion is adopted. The objective functions of the fused and visible image, and the fused and infrared image, are established. Then, the fusion problem is transformed into the optimal situation of the objective function, and the optimal solution is realized by gradient descent schemes to obtain the fused image. Secondly, to improve the performance of detecting the runway from the enhanced image, a runway detection algorithm based on an improved Faster region-based convolutional neural network (Faster R-CNN) is proposed. The runway ground-truth box of the dataset is statistically analyzed, and the size and number of anchors in line with the runway detection background are redesigned based on the analysis results. Finally, a relative attitude and position estimation method for the UAV with respect to the landing runway is proposed. New coordinate reference systems are established, six landing parameters, such as three attitude and three positions, are further calculated by Orthogonal Iteration (OI). Simulation results reveal that the proposed algorithm can achieve 1.85% improvement of AP on runway detection, and the reprojection error of rotation and translation for pose estimation are 0.675 and 0.581%, respectively. Full article
(This article belongs to the Special Issue Vision-Based UAV Navigation)
Show Figures

Figure 1

17 pages, 9361 KiB  
Article
Application of Fixed-Wing UAV-Based Photogrammetry Data for Snow Depth Mapping in Alpine Conditions
by Matej Masný, Karol Weis and Marek Biskupič
Drones 2021, 5(4), 114; https://doi.org/10.3390/drones5040114 - 11 Oct 2021
Cited by 8 | Viewed by 3799
Abstract
UAV-based photogrammetry has many applications today. Measuring of snow depth using Structure-from-Motion (SfM) techniques is one of them. Determining the depth of snow is very important for a wide range of scientific research activities. In the alpine environment, this information is crucial, especially [...] Read more.
UAV-based photogrammetry has many applications today. Measuring of snow depth using Structure-from-Motion (SfM) techniques is one of them. Determining the depth of snow is very important for a wide range of scientific research activities. In the alpine environment, this information is crucial, especially in the sphere of risk management (snow avalanches). The main aim of this study is to test the applicability of fixed-wing UAV with RTK technology in real alpine conditions to determine snow depth. The territory in West Tatras as a part of Tatra Mountains (Western Carpathians) in the northern part of Slovakia was analyzed. The study area covers more than 1.2 km2 with an elevation of almost 900 m and it is characterized by frequent occurrence of snow avalanches. It was found that the use of different filtering modes (at the level point cloud generation) had no distinct (statistically significant) effect on the result. On the other hand, the significant influence of vegetation characteristics was confirmed. Determination of snow depth based on seasonal digital surface model subtraction can be affected by the process of vegetation compression. The results also point on the importance of RTK methods when mapping areas where it is not possible to place ground control points. Full article
(This article belongs to the Special Issue Advances in Civil Applications of Unmanned Aircraft Systems)
Show Figures

Figure 1

15 pages, 2331 KiB  
Article
Low-Cost Beamforming Concept for the Control of Radiation Patterns of Antenna Arrays Installed onto UAVs
by Leonardo C. dos Santos, Edson R. Schlosser and Marcos V. T. Heckler
Sensors 2021, 21(13), 4265; https://doi.org/10.3390/s21134265 - 22 Jun 2021
Cited by 3 | Viewed by 3622
Abstract
This paper presents a low-cost architecture that allows for beamforming with antenna arrays installed onto unmanned aerial vehicles (UAVs). Beam switching is proposed to improve the antenna gain towards the ground station with two three-element arrays installed below the wings of the UAV. [...] Read more.
This paper presents a low-cost architecture that allows for beamforming with antenna arrays installed onto unmanned aerial vehicles (UAVs). Beam switching is proposed to improve the antenna gain towards the ground station with two three-element arrays installed below the wings of the UAV. The electromagnetic modeling of the complete structure (UAV and integrated antennas) was performed with commercial electromagnetic simulator Ansys HFSS. The radiation patterns were synthesized with particle swarm optimization (PSO). By employing lumped surface-mount device (SMD) components and switches, the design of the feeder to deliver proper excitation coefficients to the antennas is presented, and its performance was assessed by simulations. The proposed approach is demonstrated to be very effective with low-cost production. Full article
(This article belongs to the Special Issue RF Sensors: Design, Optimization and Applications)
Show Figures

Figure 1

19 pages, 5642 KiB  
Article
Quasi-3D Aerodynamic Analysis Method for Blended-Wing-Body UAV Configurations
by Pericles Panagiotou, Thomas Dimopoulos, Stylianos Dimitriou and Kyros Yakinthos
Aerospace 2021, 8(1), 13; https://doi.org/10.3390/aerospace8010013 - 6 Jan 2021
Cited by 11 | Viewed by 6125
Abstract
The current study presents a low-fidelity, quasi-3D aerodynamic analysis method for Blended-Wing-Body (BWB) Unmanned Aerial Vehicle (UAV) configurations. A tactical BWB UAV experimental prototype is used as a reference platform. The method utilizes 2D panel method analyses and theoretical aerodynamic calculations to rapidly [...] Read more.
The current study presents a low-fidelity, quasi-3D aerodynamic analysis method for Blended-Wing-Body (BWB) Unmanned Aerial Vehicle (UAV) configurations. A tactical BWB UAV experimental prototype is used as a reference platform. The method utilizes 2D panel method analyses and theoretical aerodynamic calculations to rapidly compute lift and pitching moment coefficients. The philosophy and the underlying theoretical and semi-empirical equations of the proposed method are extensively described. Corrections related to control surfaces deflection and ground effect are also suggested, so that the BWB pitching stability and trimming calculations can be supported. The method is validated against low-fidelity 3D aerodynamic analysis methods and high-fidelity, Computational Fluid Dynamics (CFD) results for various BWB configurations. The validation procedures show that the proposed method is considerably more accurate than existing low-fidelity ones, can provide predictions for both lift and pitching moment coefficients and requires far less computational resources and time when compared to CFD modeling. Hence, it can serve as a valuable aerodynamics and stability analysis tool for BWB UAV configurations. Full article
Show Figures

Figure 1

Back to TopTop