Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = wellbore collision

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8876 KB  
Article
Efficient Design of Three-Dimensional Well Trajectories with Formation Constraints and Optimization
by Xueying Wang, Jie Zheng, Jianmin Wang, Yibing Yu, Xi Wang and Feifei Zhang
Processes 2025, 13(4), 1215; https://doi.org/10.3390/pr13041215 - 17 Apr 2025
Viewed by 678
Abstract
Current methods for designing three-dimensional trajectories rarely account for complex formation constraints, focusing primarily on geometric relationships. However, trajectory adjustments are often necessary during drilling operations. These field adjustments typically lack systematic optimization, resulting in suboptimal trajectories. This study introduces a novel trajectory [...] Read more.
Current methods for designing three-dimensional trajectories rarely account for complex formation constraints, focusing primarily on geometric relationships. However, trajectory adjustments are often necessary during drilling operations. These field adjustments typically lack systematic optimization, resulting in suboptimal trajectories. This study introduces a novel trajectory optimization framework that integrates formation fitness for curve construction and proactive anti-collision trajectory adjustment (PACTA). The framework begins by incorporating PACTA and optimizing the initial trajectory to minimize total measured depth (TMD) using a genetic algorithm. Subsequently, a second optimization phase identifies curve sections passing through formations with low build-up fitness, automatically splitting them into combinations of curves and straight lines. Dynamic trajectory equations are then constructed based on these adjustments, and the final trajectory is optimized accordingly. Case studies demonstrate that the proposed method effectively adjusts curve positions in the presence of multiple formations with low build-up fitness while avoiding wellbore collisions. The approach achieves an average 10% reduction in total drilling time when minimizing TMD and an average 19.7% reduction in drillstring torque when torque minimization is prioritized. This new trajectory design method is expected to significantly reduce well construction costs. Full article
(This article belongs to the Special Issue Advanced Research on Marine and Deep Oil & Gas Development)
Show Figures

Figure 1

21 pages, 6603 KB  
Article
Research on the Influence of Deep-Water Drilling Risers on Drillstring Motion Trajectory and Vibration Characteristics
by Weiguo Hai, Yingming He and Qilong Xue
Machines 2024, 12(2), 112; https://doi.org/10.3390/machines12020112 - 7 Feb 2024
Cited by 7 | Viewed by 1900
Abstract
The swing of the riser in deep-water drilling can significantly impact the drill string. In this study, we establish a riser model that considers the combined disturbance of periodic dynamic wind and wave loads. By coupling it with the drill string model, we [...] Read more.
The swing of the riser in deep-water drilling can significantly impact the drill string. In this study, we establish a riser model that considers the combined disturbance of periodic dynamic wind and wave loads. By coupling it with the drill string model, we develop a dynamic model for deep-water drilling systems. Through analyzing multiple sets of different drilling parameters, we examine displacements and impact forces at various positions along the drill string system. Specifically, our focus lies on velocity, acceleration, and rotational speed information of BHA. We investigate how WOB and rotational speed influence motion trajectory and vibration characteristics of the drill string within the dynamic model of deep-water drilling systems. Simulation results reveal slight differences in whirling trajectories between inside the riser and below mud line for the drill string. Rotational speed has a greater impact on the drill string compared to WOB; higher rotational speeds lead to increased collision forces between the drill string system and both riser and wellbore. Our findings identify specific combinations of WOB and rotational speed parameters that can stabilize drilling operations within dynamic models for deep-water drilling systems. These research results provide valuable insights for adjusting WOB and rotational speed parameters in deep-water drilling. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

24 pages, 9915 KB  
Article
Analysis of the Influence of Downhole Drill String Vibration on Wellbore Stability
by Yonggang Shan, Qilong Xue, Jin Wang, Yafeng Li and Chong Wang
Machines 2023, 11(7), 762; https://doi.org/10.3390/machines11070762 - 22 Jul 2023
Cited by 14 | Viewed by 3257
Abstract
Most studies related to aspects of wellbore stability, such as wellbore breakage, block dropping, and wellbore expansion, revolve around the physicochemical interaction between drilling fluid and surrounding rock, but relevant studies show that drill string vibration during drilling also has a crucial and [...] Read more.
Most studies related to aspects of wellbore stability, such as wellbore breakage, block dropping, and wellbore expansion, revolve around the physicochemical interaction between drilling fluid and surrounding rock, but relevant studies show that drill string vibration during drilling also has a crucial and even decisive influence on wellbore stability. In order to thoroughly explore the influence mechanism of drill string vibration on wellbore stability, our research group established a finite element flexible simulation model of drill string dynamics and used a storage downhole vibration measurement device to collect downhole real drilling vibration data to verify the correctness of the simulation model. Then, based on the critical conditions of wellbore breakage, a wellbore stability evaluation method was established, and the wellbore stability under different drilling parameters and drilling tool combination conditions was evaluated and analyzed. The research results play an important role in revealing the influence mechanism of drill string vibration on wellbore stability and can provide theoretical guidance for engineering problems such as wellbore instability risk assessment. Full article
(This article belongs to the Topic Energy Equipment and Condition Monitoring)
Show Figures

Figure 1

11 pages, 1962 KB  
Article
A Theoretical Model of Residual Magnetic Field around a Pre-Magnetized Casing String
by Yucai Shi, Dongyue Jia, Zhichuan Guan, Yuqiang Xu, Weixing Yang and Duanrui Zhang
Energies 2020, 13(16), 4226; https://doi.org/10.3390/en13164226 - 15 Aug 2020
Cited by 1 | Viewed by 2133
Abstract
In the field of petroleum drilling engineering, passive magnetic ranging technology is generally used for specialized drilling operations such as connecting relief wells, preventing wellbore collisions, guiding parallel horizontal wells, etc. Although pre-magnetized casing strings have been used to improve the detection distance [...] Read more.
In the field of petroleum drilling engineering, passive magnetic ranging technology is generally used for specialized drilling operations such as connecting relief wells, preventing wellbore collisions, guiding parallel horizontal wells, etc. Although pre-magnetized casing strings have been used to improve the detection distance and accuracy, the theoretical mechanism is not well understood. Based on the equivalent current model of a permanent magnet, a theoretical magnetic field model around the pre-magnetized casing string was established by using the vector potential method and vector superposition principle and validated by the COMSOL Multiphysics software. Our results show that connecting pre-magnetized individual casings with homogeneous magnetic poles can enlarge the magnetic induction intensity around the total casing string. Furthermore, the magnitude close to the casing coupling is significantly larger than that close to the middle of the individual casing. Connecting pre-magnetized individual casings with heterogeneous magnetic poles results in a low magnetic induction intensity around the total casing string. In order to improve the detection distance and accuracy of the magnetic ranging, the pre-magnetized individual casings should be connected with homogeneous magnetic poles. The results of this study can provide guidelines for the development of passive magnetic ranging technology. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Graphical abstract

Back to TopTop