Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = water-saving and drought-resistant rice (WDR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3530 KiB  
Article
Using Marker-Assisted Selection to Develop a Drought-Tolerant Rice Line with Enhanced Resistance to Blast and Brown Planthopper
by Ao Li, Peiwen Zhu, Deyan Kong, Lei Wang, Anning Zhang, Yi Liu, Xinqiao Yu, Lijun Luo and Feiming Wang
Agronomy 2024, 14(11), 2566; https://doi.org/10.3390/agronomy14112566 - 1 Nov 2024
Cited by 3 | Viewed by 2098
Abstract
Rice is a major global staple crop, but rising temperatures and freshwater shortages have made drought one of the most severe abiotic stresses affecting agriculture. Additionally, rice blast disease and brown planthopper infestations significantly impact yields. Therefore, developing water-saving, drought-resistant, high-yielding, and disease-resistant [...] Read more.
Rice is a major global staple crop, but rising temperatures and freshwater shortages have made drought one of the most severe abiotic stresses affecting agriculture. Additionally, rice blast disease and brown planthopper infestations significantly impact yields. Therefore, developing water-saving, drought-resistant, high-yielding, and disease-resistant rice varieties is critical for sustainable rice production. The new water-saving and drought-resistant (WDR) rice ‘Huhan 1516’, bred using marker-assisted selection (MAS) and marker-assisted backcrossing (MABC) techniques, addresses these challenges. This variety is highly adaptable to drought-prone and water-scarce regions such as the Yangtze and Huai River basins. With its high yield, drought tolerance, and broad-spectrum resistance to rice blast (conferred by the Pi2 gene) and brown planthopper (BPH), ‘Huhan 1516’ is suitable for various farming systems and environments. Field trials show that this variety outperforms control varieties by 2.2% in yield and exhibits moderate resistance to both rice blast and brown planthopper. ‘Huhan 1516’ has been recognized as a new water-saving and drought-resistant rice variety by the state, and as a released cultivar, it has great potential for market promotion and application. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

11 pages, 4131 KiB  
Article
Molecular Marker-Assisted Selection of a New Water-Saving and Drought-Resistant Rice (WDR) Restoration Line, Hanhui 8200, for Enhanced Resistance to Rice Blast
by Guolan Liu, Peiwen Zhu, Yi Liu, Deyan Kong, Jiahong Wang, Lijun Luo and Xinqiao Yu
Agronomy 2024, 14(7), 1504; https://doi.org/10.3390/agronomy14071504 - 11 Jul 2024
Cited by 1 | Viewed by 1547
Abstract
Through backcrossing and marker-assisted selection, gene Pi9 for resistance to rice blast was introduced into the water-saving and drought-resistant rice variety, Hanhui 3. The genetic background identity between Hanhui 8200 and Hanhui 3 was 91.4%. The drought resistance and drought avoidance abilities of [...] Read more.
Through backcrossing and marker-assisted selection, gene Pi9 for resistance to rice blast was introduced into the water-saving and drought-resistant rice variety, Hanhui 3. The genetic background identity between Hanhui 8200 and Hanhui 3 was 91.4%. The drought resistance and drought avoidance abilities of Hanhui 8200 were equivalent to those of Hanhui 3. The resistance to rice blast was improved from grade 7 to grade 1. The rice quality of Hanhui 8200 meets the Ministry of Agriculture’s grade 3 rice standards. The two-line and three-line hybrids formulated with Hanhui 8200 have high yield potential. Among them, the three-line hybrid Hanyou 8200 (Approval No.: Evaluated Rice 20210073), formulated with Huhan 7A, passed the Hubei Provincial approval in 2021, and the two-line hybrid Hanyouliangyou 8200 (Approval No.: Nationally Validated Rice 20210448), formulated with Huhan 82S, passed the national variety approval in 2021. Both hybrids demonstrated strong resistance to rice blast, moderate resistance to bacterial leaf blight, strong drought resistance, high quality, and high yield. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

10 pages, 1735 KiB  
Article
Ecological and Economic Benefits of Greenhouse Gas Emission Reduction Strategies in Rice Production: A Case Study of the Southern Rice Propagation Base in Hainan Province
by Xianxian Zhang, Junguo Bi, Weikang Wang, Donglai Sun, Huifeng Sun, Qingyu Bi, Cong Wang, Jining Zhang, Sheng Zhou and Lijun Luo
Agronomy 2024, 14(1), 222; https://doi.org/10.3390/agronomy14010222 - 20 Jan 2024
Cited by 1 | Viewed by 2531
Abstract
Developing tailored emission reduction strategies and estimating their potential is crucial for achieving low-carbon rice production in a specific region, as well as for advancing China’s dual carbon goals in the agricultural sector. By utilizing water-saving and drought-resistant rice (WDR) with enhanced water [...] Read more.
Developing tailored emission reduction strategies and estimating their potential is crucial for achieving low-carbon rice production in a specific region, as well as for advancing China’s dual carbon goals in the agricultural sector. By utilizing water-saving and drought-resistant rice (WDR) with enhanced water and nitrogen utilization efficiency, the mitigation strategies were constructed for rice production systems, and their potential for emission reduction was estimated in the southern rice propagation base of Hainan Province. This study revealed that the implementation of a reduction strategy, which involves dry direct seeding and dry cultivation, combined with a 53% reduction in nitrogen fertilizer, can effectively synergize the mitigation of methane (CH4) and nitrous oxide (N2O) emissions from rice paddies. Compared with traditional flooded rice cultivation, this integrated approach exhibits an impressive potential for reducing net greenhouse gas (GHG) emissions by 97% while simultaneously doubling economic benefits. Moreover, when combined with plastic film mulching, the strategy not only sustains rice yields but also achieves a remarkable emission reduction of 92%, leading to a fourfold increase in economic benefits. Our study provides a comprehensive low-carbon sustainable development strategy for rice production in the southern rice propagation base of Hainan Province and offers valuable insights for researching GHG emissions in other regions or crops. These emission reduction pathways and the assessment method could contribute to the realization of low-carbon agriculture. Full article
Show Figures

Figure 1

16 pages, 5768 KiB  
Article
Biochar Coating as a Cost-Effective Delivery Approach to Promoting Seed Quality, Rice Germination, and Seedling Establishment
by Kangkang Zhang, Xiaomeng Han, Yanfeng Fu, Yu Zhou, Zaid Khan, Junguo Bi, Liyong Hu and Lijun Luo
Plants 2023, 12(22), 3896; https://doi.org/10.3390/plants12223896 - 18 Nov 2023
Cited by 11 | Viewed by 3083
Abstract
The application of high-quality seeds ensures successful crop establishment, healthy growth, and improved production in both quantity and quality. Recently, biochar-based seed coating has been recognized as a new, effective, and environmentally friendly method to enhance seed quality, seedling uniformity, and nutrient availability. [...] Read more.
The application of high-quality seeds ensures successful crop establishment, healthy growth, and improved production in both quantity and quality. Recently, biochar-based seed coating has been recognized as a new, effective, and environmentally friendly method to enhance seed quality, seedling uniformity, and nutrient availability. To study the impact of biochar coating on the surface mechanical properties of coated seeds, rice emergence and growth, and related physical and physiological metabolic events, laboratory experiments were performed on two water-saving and drought-resistance rice (WDR) varieties (Huhan1512 and Hanyou73) using biochar formulations with varying contents (20%–60%). The results showed that the appropriate concentration of biochar significantly improved emergence traits and seedling performance of the two rice varieties, compared to the uncoated treatment, and that the optimal percentage of biochar coating was 30% (BC30). On average, across both varieties, BC30 enhanced emergence rate (9.5%), emergence index (42.9%), shoot length (19.5%), root length (23.7%), shoot dry weight (25.1%), and root dry weight (49.8%). The improved germination characteristics and vigorous seedling growth induced by biochar coating were strongly associated with higher water uptake by seeds, increased α-amylase activity and respiration rate, and enhanced accumulation of soluble sugar and soluble protein. Moreover, the evaluation results of mechanical properties related to seed coating quality found that increasing the proportion of biochar in the coating blend decreased the integrity and compressive strength of the coated seeds and reduced the time required for coating disintegration. In conclusion, biochar coating is a cost-effective strategy for enhancing crop seed quality and seedling establishment. Full article
Show Figures

Figure 1

16 pages, 997 KiB  
Review
Improvement of Salinity Tolerance in Water-Saving and Drought-Resistance Rice (WDR)
by Yi Liu, Feiming Wang, Anning Zhang, Zhihao Chen, Xingxing Luo, Deyan Kong, Fenyun Zhang, Xinqiao Yu, Guolan Liu and Lijun Luo
Int. J. Mol. Sci. 2023, 24(6), 5444; https://doi.org/10.3390/ijms24065444 - 13 Mar 2023
Cited by 12 | Viewed by 4425
Abstract
Rice is one of the most economically important staple food crops in the world. Soil salinization and drought seriously restrict sustainable rice production. Drought aggravates the degree of soil salinization, and, at the same time, increased soil salinity also inhibits water absorption, resulting [...] Read more.
Rice is one of the most economically important staple food crops in the world. Soil salinization and drought seriously restrict sustainable rice production. Drought aggravates the degree of soil salinization, and, at the same time, increased soil salinity also inhibits water absorption, resulting in physiological drought stress. Salt tolerance in rice is a complex quantitative trait controlled by multiple genes. This review presents and discusses the recent research developments on salt stress impact on rice growth, rice salt tolerance mechanisms, the identification and selection of salt-tolerant rice resources, and strategies to improve rice salt tolerance. In recent years, the increased cultivation of water-saving and drought-resistance rice (WDR) has shown great application potential in alleviating the water resource crisis and ensuring food and ecological security. Here, we present an innovative germplasm selection strategy of salt-tolerant WDR, using a population that is developed by recurrent selection based on dominant genic male sterility. We aim to provide a reference for efficient genetic improvement and germplasm innovation of complex traits (drought and salt tolerance) that can be translated into breeding all economically important cereal crops. Full article
Show Figures

Figure 1

16 pages, 2633 KiB  
Article
Physiological Adaptation Mechanisms to Drought and Rewatering in Water-Saving and Drought-Resistant Rice
by Lele Wang, Xuenan Zhang, Yehong She, Chao Hu, Quan Wang, Liquan Wu, Cuicui You, Jian Ke and Haibing He
Int. J. Mol. Sci. 2022, 23(22), 14043; https://doi.org/10.3390/ijms232214043 - 14 Nov 2022
Cited by 15 | Viewed by 2932
Abstract
Water-saving and drought-resistant rice (WDR) has high a yield potential in drought. However, the photosynthetic adaptation mechanisms of WDR to drought and rehydration have yet to be conclusively determined. Hanyou 73 (HY73, WDR) and Huanghuazhan (HHZ, drought-sensitive cultivar) rice cultivars were subjected to [...] Read more.
Water-saving and drought-resistant rice (WDR) has high a yield potential in drought. However, the photosynthetic adaptation mechanisms of WDR to drought and rehydration have yet to be conclusively determined. Hanyou 73 (HY73, WDR) and Huanghuazhan (HHZ, drought-sensitive cultivar) rice cultivars were subjected to drought stress and rewatering when the soil water potential was −180 KPa in the booting stage. The leaf physiological characteristics were dynamically determined at 0 KPa, −30 KPa, −70 KPa, −180 KPa, the first, the fifth, and the tenth day after rewatering. It was found that the maximum net photosynthetic rate (Amax) and light saturation point were decreased under drought conditions in both cultivars. The change in dark respiration rate (Rd) in HY73 was not significant, but was markedly different in HHZ. After rewatering, the photosynthetic parameters of HY73 completely returned to the initial state, while the indices in HHZ did not recover. The antioxidant enzyme activities and osmoregulatory substance levels increased with worsening drought conditions and decreased with rewatering duration. HY73 had higher peroxidase (POD) activity as well as proline levels, and lower catalase (CAT) activity, ascorbate peroxidase (APX) activity, malondialdehyde (MDA) level, and soluble protein (SP) content during all of the assessment periods compared with HHZ. In addition, Amax was markedly negatively correlated with superoxide dismutase (SOD), POD, CAT, and SP in HY73 (p < 0.001), while in HHZ, it was negatively correlated with SOD, CAT, APX, MDA, Pro, and SP, and positively correlated with Rd (p < 0.001). These results suggest that WDR has a more simplified adaptation mechanism to protect photosynthetic apparatus from damage in drought and rehydration compared with drought-sensitive cultivars. The high POD activity and great SP content would be considered as important physiological bases to maintain high photosynthetic production potential in WDR. Full article
(This article belongs to the Special Issue Assimilate Production and Allocation in Plants under Abiotic Stress)
Show Figures

Figure 1

10 pages, 775 KiB  
Article
Molecular Breeding of Water-Saving and Drought-Resistant Rice for Blast and Bacterial Blight Resistance
by Anning Zhang, Yi Liu, Feiming Wang, Deyan Kong, Junguo Bi, Fenyun Zhang, Xingxing Luo, Jiahong Wang, Guolan Liu, Lijun Luo and Xinqiao Yu
Plants 2022, 11(19), 2641; https://doi.org/10.3390/plants11192641 - 8 Oct 2022
Cited by 7 | Viewed by 2569
Abstract
Rice production is often affected by biotic and abiotic stressors. The breeding of resistant cultivars is a cost-cutting and environmentally friendly strategy to maintain a sustainable high production level. An elite water-saving and drought-resistant rice (WDR), Hanhui3, is susceptible to blast and bacterial [...] Read more.
Rice production is often affected by biotic and abiotic stressors. The breeding of resistant cultivars is a cost-cutting and environmentally friendly strategy to maintain a sustainable high production level. An elite water-saving and drought-resistant rice (WDR), Hanhui3, is susceptible to blast and bacterial blight (BB). This study was conducted to introgress three resistance genes (Pi2, xa5, and Xa23) for blast and BB into Hanhui3, using marker-assisted selection (MAS) for the foreground selection and a whole-genome single-nucleotide polymorphism (SNP) array for the background selection. As revealed by the whole-genome SNP array, the recurrent parent genome (RPG) recovery of the improved NIL was 94.2%. The resistance levels to blast and BB of the improved NIL and its derived hybrids were higher than that of the controls. In addition, the improved NIL and its derived hybrids retained the desired agronomic traits from Hanhui3, such as yield. The improved NIL could be useful to enhance resistance against biotic stressors and produce stable grain yields in Oryza sativa subspecies indica rice breeding programs. Full article
(This article belongs to the Special Issue Opportunities and Challenges in Plant Germplasm)
Show Figures

Figure 1

18 pages, 2025 KiB  
Article
Germination and Growth Performance of Water-Saving and Drought-Resistant Rice Enhanced by Seed Treatment with Wood Vinegar and Biochar under Dry Direct-Seeded System
by Kangkang Zhang, Zaid Khan, Jiahuan Liu, Tao Luo, Kunmiao Zhu, Liyong Hu, Junguo Bi and Lijun Luo
Agronomy 2022, 12(5), 1223; https://doi.org/10.3390/agronomy12051223 - 19 May 2022
Cited by 26 | Viewed by 5086
Abstract
Dry direct-seeded rice (dry-DSR) is an efficient, resource-saving and environmentally friendly cropping system. The employment of water-saving and drought-resistant rice (WDR) for dry direct-seeding can better meet the needs of dry-direct seeding systems. However, the decline in seedling emergence rate and poor seedling [...] Read more.
Dry direct-seeded rice (dry-DSR) is an efficient, resource-saving and environmentally friendly cropping system. The employment of water-saving and drought-resistant rice (WDR) for dry direct-seeding can better meet the needs of dry-direct seeding systems. However, the decline in seedling emergence rate and poor seedling growth are the main bottlenecks under current direct-seeded rice production. Seed treatment is a sustainable and effective technique to overcome these issues. Therefore, growth chamber and field experiments were conducted to assess the impact of poplar wood vinegar (WV) priming and rice straw biochar (BC) coating on emergence, establishment, growth, physio-biochemical events, and ultimate yield. We treated the seeds of WDR viz., Hanyou 73 with WV, BC, and co-treatment WV + BC. The results showed that seed priming with 1:50 WV concentration and coating with 20% BC content was the optimal ratio for promoting germination and seedling growth. The field evaluation indicated that individual WV and BC markedly promoted the final emergence by 58% and 31%, respectively, while co-treatment WV + BC increased by 67%. Likewise, WV and BC significantly enhanced total seedling biomass by 26% and 10%, respectively, and the respective enhancement of WV + BC was 31%. For ultimate yield, WV and BC produced 12% and 19% higher grain yield, respectively, whereas WV + BC yielded 20%. The above results revealed that WV and WV + BC were the most effective treatment. Our findings may provide new avenues for advancing pre-sowing seed treatments facilitating the stand establishment and grain yield of dry direct-seeded rice. Full article
(This article belongs to the Special Issue Effective Methods for Improving Seed Germination and Seed Quality)
Show Figures

Figure 1

16 pages, 2090 KiB  
Article
Effects of Soil Moisture Content on Germination and Physiological Characteristics of Rice Seeds with Different Specific Gravity
by Danping Hou, Junguo Bi, Li Ma, Kangkang Zhang, Dongyi Li, Muhammad Ishaq Asif Rehmani, Jinsong Tan, Qingyu Bi, Yuan Wei, Guolan Liu, Xinqiao Yu and Lijun Luo
Agronomy 2022, 12(2), 500; https://doi.org/10.3390/agronomy12020500 - 17 Feb 2022
Cited by 15 | Viewed by 9562
Abstract
Soil relative water content and seed plumpness have been shown to be the key factors affecting seed germination and seedling growth of rice under direct drought cropping. It remains to be determined whether seed germination and seedling growth of water-saving and drought-resistant rice [...] Read more.
Soil relative water content and seed plumpness have been shown to be the key factors affecting seed germination and seedling growth of rice under direct drought cropping. It remains to be determined whether seed germination and seedling growth of water-saving and drought-resistant rice (WDR) and conventional rice with the same proportion of rice seed have the same response to soil moisture changes. The purpose of this study was to investigate the seed germination and physiological characteristics of the rice cultivars Guangliangyou 1813 (GLY-1813,indica hybrid rice) and Hanyou 73 ((HY-73), WDR) with four different specific gravities (T1, T2, T3, and T4; the rice seeds were divided into four specific gravity levels by weight using saline water, the representative specific gravities were <1.0, 1.0–1.1, 1.1–1.2 and >1.2 kg m−3, respectively), at five soil moisture content gradients (soil relative water contents of 10–20%, 20–40%, 40–60%, 60–80%, and 80–100%), under dry direct seeding conditions. The results showed that GLY-1813 had a higher germination potential, germination and seedling emergence rates, greater root dry weight, seedling dry weight, root oxidation activity, and chlorophyll content, and lower malondialdehyde (MDA) content when the soil relative water content was 20–40% or 40–60%. Cultivar HY-73 had the highest germination rate and seedling physiological activity at 20–40% relative water content; its growth vigor was better than that of GLY-1813 at the same soil moisture level. In conclusion, the soil relative water content for seed germination of HY-73 was 20–40%, which was less than that of GLY-1813. When soil relative water content was sufficient for seed germination and growth, the higher the plumpness of the rice seed, the easier it was to resist the negative effects of an adverse growth environment. Full article
Show Figures

Figure 1

Back to TopTop