Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = water dynamics in confined media

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8805 KiB  
Article
Study on Numerical Simulation of Reactive-Transport of Groundwater Pollutants Caused by Acid Leaching of Uranium: A Case Study in Bayan-Uul Area, Northern China
by Haibo Li, Zhonghua Tang and Dongjin Xiang
Water 2024, 16(3), 500; https://doi.org/10.3390/w16030500 - 4 Feb 2024
Cited by 4 | Viewed by 1858
Abstract
Acid in situ leaching (ISL) is a common approach to the recovery of uranium in the subsurface. In acid ISL, there are numerous of chemical reactions among the injected sulfuric acid, groundwater, and porous media containing ore layers. A substantial amount of radioactive [...] Read more.
Acid in situ leaching (ISL) is a common approach to the recovery of uranium in the subsurface. In acid ISL, there are numerous of chemical reactions among the injected sulfuric acid, groundwater, and porous media containing ore layers. A substantial amount of radioactive elements including U, Ra, Rn, as well as conventional elements like K, Na, and Ca, and trace elements such as As, Cd, and Pb, are released into the groundwater. Thus, in acid ISL, understanding the transport and reactions of these substances and managing pollution control is crucial. In this study, a three-dimensional reactive transport modeling (RTM) using TOUGHREACT was built to investigate the dynamic reactive migration process of UO22+, H+, and SO42− at a typical uranium mine of Bayan-Uul. The model considering the partial penetration through wellbore in confined aquifer and complex chemical reactions among main minerals like uranium, K-feldspar, calcite, dolomite, anhydrite, gypsum, iron minerals, clay minerals, and other secondary minerals. The results show that after mining for one year, from the injection well to the extraction well, the spatial distribution of uranium volume fraction does not consistently increase or decrease, but it decreases initially and then increases. After mining for one year, the concentration front of UO22+ is about 20 m outside the mining area, the high concentration zone is mainly inside the mining area. The concentration front of H+ is no more than 50 m. SO42− is the index with the highest concentration among the three indexes, the concentration front of SO42− is no more than 100 m. The concentration breakthrough curve of the observation well 10 m from the mining area indicates that the concentrations of the three indicators began to significantly rise approximately after mining 0.05 years, reached the maximum value after mining 0.08 to 0.1 years, and then stabilized. The parameter sensitivity of absolute permeability and specific surface area of minerals shows that the concentration of H+ and SO42− is positively correlated with absolute permeability. The concentration of H+ is negatively correlated with the specific surface area of calcite, anhydrite, K-feldspar, gypsum, hematite, and dolomite. The concentration of SO42− is positively correlated with the specific surface area of K-feldspar and Hematite, and negatively correlated with the specific surface area of calcite, anhydrite, gypsum, and dolomite. The influence analysis of pumping ratio and non-uniform injection ratio shows that the non-uniform injection scheme has a more significant impact on pollution control. The water table, streamline, capture envelope, and the concentration breakthrough curve of five schemes with different pumping ratios and non-uniform injection ratio were obtained. The water table characteristics of five schemes shown that increase in the pumping ratio and the non-uniform injection ratio, the water table convex near the outer injection well is weakened and the groundwater depression cone near the pumping well is strengthened. This characteristic of water table exerts a notable retarding influence on the migration of pollutants from the mining area to the outside. For the scheme with a pumping ratio is 0 (the total pumping flow rate is equal to the total injection flow rate) and a non-uniform injection ratio is 0 (the flow rate of inner injection well Q1,Q2,Q3 is equal to the flow rate of outer injection well Q4,Q5,Q6), the streamline characteristics shown that a segment of the streamline of is diverging from inner region to the outer region. For other schemes, the streamline exhibits a convergent feature. It is indicated that by increasing the pumping ratio and non-uniform injection ratio, a closure flow field can be established, confining the groundwater pollutants resulting from mining within the capture envelope. Hence, the best scheme for preventing pollution migration is the scheme with a pumping ratio is 0 (the total pumping flow rate is equal to the total injection flow rate) and a non-uniform injection ratio is 0.1 (the flow rate of inner injection well Q1,Q2,Q3 is 10% more than the flow rate of outer injection well Q4,Q5,Q6). In this scheme, the optimal stable concentration of UO22+, H+, and SO42− at the observation well obtained by RTM is lower than other schemes, and the values are 0.00316 mol/kg, 2.792 (pH), and 0.0952 mol/kg. The inner well injection rate is 194.09 m3/d, the outer well injection rate is 158.89 m3/d, and the pumping rate is 264.00 m3/d. Numerical simulation analysis suggests that a scheme with a larger non-uniform injection ratio is more conducive to the formation of a strong hydraulic capture zone, thereby controlling the migration of pollutants in the acid ISL. A reasonable suggestion is to adopt non-uniform injection mining mode in acid ISL. Full article
Show Figures

Figure 1

17 pages, 1176 KiB  
Article
Water Molecular Dynamics in the Porous Structures of Ultrafiltration/Nanofiltration Asymmetric Cellulose Acetate–Silica Membranes
by João Cunha, Miguel P. da Silva, Maria J. Beira, Marta C. Corvo, Pedro L. Almeida, Pedro J. Sebastião, João L. Figueirinhas and Maria Norberta de Pinho
Membranes 2022, 12(11), 1122; https://doi.org/10.3390/membranes12111122 - 9 Nov 2022
Cited by 4 | Viewed by 1933
Abstract
This study presents the characterization of water dynamics in cellulose acetate–silica asymmetric membranes with very different pore structures that are associated with a wide range of selective transport properties of ultrafiltration (UF) and nanofiltration (NF). By combining 1H NMR spectroscopy, diffusometry and [...] Read more.
This study presents the characterization of water dynamics in cellulose acetate–silica asymmetric membranes with very different pore structures that are associated with a wide range of selective transport properties of ultrafiltration (UF) and nanofiltration (NF). By combining 1H NMR spectroscopy, diffusometry and relaxometry and considering that the spin–lattice relaxation rate of the studied systems is mainly determined by translational diffusion, individual rotations and rotations mediated by translational displacements, it was possible to assess the influence of the porous matrix’s confinement on the degree of water ordering and dynamics and to correlate this with UF/NF permeation characteristics. In fact, the less permeable membranes, CA/SiO2-22, characterized by smaller pores induce significant orientational order to the water molecules close to/interacting with the membrane matrix’s interface. Conversely, the model fitting analysis of the relaxometry results obtained for the more permeable sets of membranes, CA/SiO2-30 and CA/SiO2-34, did not evidence surface-induced orientational order, which might be explained by the reduced surface-to-volume ratio of the pores and consequent loss of sensitivity to the signal of surface-bound water. Comparing the findings with those of previous studies, it is clear that the fraction of more confined water molecules in the CA/SiO2-22-G20, CA/SiO2-30-G20 and CA/SiO2-34-G20 membranes of 0.83, 0.24 and 0.35, respectively, is in agreement with the obtained diffusion coefficients as well as with the pore sizes and hydraulic permeabilities of 3.5, 38 and 81 kg h1 m2 bar1, respectively, reported in the literature. It was also possible to conclude that the post-treatment of the membranes with Triton X-100 surfactants produced no significant structural changes but increased the hydrophobic character of the surface, leading to higher diffusion coefficients, especially for systems associated with average smaller pore dimensions. Altogether, these findings evidence the potential of combining complementary NMR techniques to indirectly study hydrated asymmetric porous media, assess the influence of drying post-treatments on hybrid CA/SiO2 membrane’ surface characteristics and discriminate between ultra- and nano-filtration membrane systems. Full article
(This article belongs to the Special Issue Advanced Membrane Technologies for Wastewater Treatment and Recycling)
Show Figures

Figure 1

18 pages, 5445 KiB  
Article
Tailoring the Selective Permeation Properties of Asymmetric Cellulose Acetate/Silica Hybrid Membranes and Characterisation of Water Dynamics in Hydrated Membranes by Deuterium Nuclear Magnetic Resonance
by Miguel P. da Silva, Maria J. Beira, Isabel D. Nogueira, Pedro J. Sebastião, João L. Figueirinhas and Maria Norberta de Pinho
Membranes 2022, 12(6), 559; https://doi.org/10.3390/membranes12060559 - 28 May 2022
Cited by 1 | Viewed by 2098
Abstract
In this work, the water order and dynamics in hydrated films of flat asymmetric cellulose acetate (CA)/silica, CA/SiO2, and hybrid membranes, covering a wide range of nanofiltration (NF) and ultrafiltration (UF) permeation properties, were characterised by deuterium nuclear magnetic resonance (DNMR) [...] Read more.
In this work, the water order and dynamics in hydrated films of flat asymmetric cellulose acetate (CA)/silica, CA/SiO2, and hybrid membranes, covering a wide range of nanofiltration (NF) and ultrafiltration (UF) permeation properties, were characterised by deuterium nuclear magnetic resonance (DNMR) relaxation. The range of NF/UF characteristics was attained by subjecting three CA/SiO2 membranes, prepared from casting solutions with different acetone/formamide ratios to drying post-treatments of solvent exchange and conditioning with surfactant mixtures. Post-treated and pristine CA/SiO2 membranes were characterised in terms of hydraulic permeability, selective permeation properties and molecular weight cut-off. These results were correlated with the DNMR relaxation findings. It was found that the post-treatment by solvent exchange caused membrane shrinkage that led to very different permeation characteristics and a significant enhancement of the DNMR relaxation observables. In contrast, conditioning with surfactant solutions exhibited a weaker effect over those properties. Scanning electron microscopy (SEM) images were obtained for the membranes post-treated with solvent exchange to confirm their asymmetric nature. This work provides an essential indication that DNMR relaxometry is a reliable tool to characterise the asymmetric porous structures of the NF/UF CA/SiO2 hybrid membranes. Full article
(This article belongs to the Special Issue Selected Papers from Euromembrane 2021)
Show Figures

Figure 1

27 pages, 2922 KiB  
Review
Water and Ion Dynamics in Confined Media: A Multi-Scale Study of the Clay/Water Interface
by Patrice Porion, Ali Asaad, Thomas Dabat, Baptiste Dazas, Alfred Delville, Eric Ferrage, Fabien Hubert, Mónica Jiménez-Ruiz, Laurent J. Michot, Sébastien Savoye and Emmanuel Tertre
Colloids Interfaces 2021, 5(2), 34; https://doi.org/10.3390/colloids5020034 - 15 Jun 2021
Cited by 5 | Viewed by 4248
Abstract
This review details a large panel of experimental studies (Inelastic Neutron Scattering, Quasi-Elastic Neutron Scattering, Nuclear Magnetic Resonance relaxometry, Pulsed-Gradient Spin-Echo attenuation, Nuclear Magnetic Resonance Imaging, macroscopic diffusion experiments) used recently to probe, over a large distribution of characteristic times (from pico-second up [...] Read more.
This review details a large panel of experimental studies (Inelastic Neutron Scattering, Quasi-Elastic Neutron Scattering, Nuclear Magnetic Resonance relaxometry, Pulsed-Gradient Spin-Echo attenuation, Nuclear Magnetic Resonance Imaging, macroscopic diffusion experiments) used recently to probe, over a large distribution of characteristic times (from pico-second up to days), the dynamical properties of water molecules and neutralizing cations diffusing within clay/water interfacial media. The purpose of this review is not to describe these various experimental methods in detail but, rather, to investigate the specific dynamical information obtained by each of them concerning these clay/water interfacial media. In addition, this review also illustrates the various numerical methods (quantum Density Functional Theory, classical Molecular Dynamics, Brownian Dynamics, macroscopic differential equations) used to interpret these various experimental data by analyzing the corresponding multi-scale dynamical processes. The purpose of this multi-scale study is to perform a bottom-up analysis of the dynamical properties of confined ions and water molecules, by using complementary experimental and numerical studies covering a broad range of diffusion times (between pico-seconds up to days) and corresponding diffusion lengths (between Angstroms and centimeters). In the context of such a bottom-up approach, the numerical modeling of the dynamical properties of the diffusing probes is based on experimental or numerical investigations performed on a smaller scale, thus avoiding the use of empirical or fitted parameters. Full article
(This article belongs to the Special Issue Interfacial Dynamics)
Show Figures

Figure 1

16 pages, 5936 KiB  
Article
Phase Behaviour of Methane Hydrates in Confined Media
by Hao Bian, Lu Ai, Klaus Hellgardt, Geoffrey C. Maitland and Jerry Y. Y. Heng
Crystals 2021, 11(2), 201; https://doi.org/10.3390/cryst11020201 - 18 Feb 2021
Cited by 8 | Viewed by 3484
Abstract
In a study designed to investigate the melting behaviour of natural gas hydrates which are usually formed in porous mineral sediments rather than in bulk, hydrate phase equilibria for binary methane and water mixtures were studied using high-pressure differential scanning calorimetry in mesoporous [...] Read more.
In a study designed to investigate the melting behaviour of natural gas hydrates which are usually formed in porous mineral sediments rather than in bulk, hydrate phase equilibria for binary methane and water mixtures were studied using high-pressure differential scanning calorimetry in mesoporous and macroporous silica particles having controlled pore sizes ranging from 8.5 nm to 195.7 nm. A dynamic oscillating temperature method was used to form methane hydrates reproducibly and then determine their decomposition behaviour—melting points and enthalpies of melting. Significant decreases in dissociation temperature were observed as the pore size decreased (over 6 K for 8.5 nm pores). This behaviour is consistent with the Gibbs–Thomson equation, which was used to determine hydrate–water interfacial energies. The melting data up to 50 MPa indicated a strong, essentially logarithmic, dependence on pressure, which here has been ascribed to the pressure dependence of the interfacial energy in the confined media. An empirical modification of the Gibbs–Thomson equation is proposed to include this effect. Full article
(This article belongs to the Special Issue Membrane Technology for Solid Particles Production)
Show Figures

Figure 1

26 pages, 16717 KiB  
Article
Urban Groundwater Processes and Anthropogenic Interactions (Porto Region, NW Portugal)
by Maria José Afonso, Liliana Freitas, José Manuel Marques, Paula M. Carreira, Alcides J.S.C. Pereira, Fernando Rocha and Helder I. Chaminé
Water 2020, 12(10), 2797; https://doi.org/10.3390/w12102797 - 9 Oct 2020
Cited by 10 | Viewed by 4423
Abstract
Groundwater in fissured rocks is one of the most important reserves of available fresh water, and urbanization applies an extremely complex pressure which puts this natural resource at risk. Two-thirds of Portugal is composed of fissured aquifers. In this context, the Porto urban [...] Read more.
Groundwater in fissured rocks is one of the most important reserves of available fresh water, and urbanization applies an extremely complex pressure which puts this natural resource at risk. Two-thirds of Portugal is composed of fissured aquifers. In this context, the Porto urban region is the second biggest metropolitan area in mainland Portugal. In this study, a multidisciplinary approach was developed, using hydrogeological GIS-based mapping and modeling, combining hydrogeochemical, isotopic, and hydrodynamical data. In addition, an urban infiltration potential index (IPI-Urban) was outlined with the combination of several thematic layers. Hydrogeochemical signatures are mainly Cl-Na to Cl-SO4-Na, being dependent on the geographic proximity of this region to the ocean, and on anthropogenic and agricultural contamination processes, namely fertilizers, sewage, as well as animal and human wastes. Isotopic signatures characterize a meteoric origin for groundwater, with shallow flow paths and short residence times. Pumping tests revealed a semi- to confined system, with low long-term well capacities (<1 L/s), low transmissivities (<4 m2/day), and low storage coefficients (<10−2). The IPI-Urban index showed a low groundwater infiltration potential, which was enhanced by urban hydraulic and sanitation features. This study assessed the major hydrogeological processes and their dynamics, therefore, contributing to a better knowledge of sustainable urban groundwater systems in fractured media. Full article
Show Figures

Figure 1

29 pages, 1711 KiB  
Review
A Multi-Scale Study of Water Dynamics under Confinement, Exploiting Numerical Simulations in Relation to NMR Relaxometry, PGSE and NMR Micro-Imaging Experiments: An Application to the Clay/Water Interface
by Patrice Porion and Alfred Delville
Int. J. Mol. Sci. 2020, 21(13), 4697; https://doi.org/10.3390/ijms21134697 - 30 Jun 2020
Cited by 4 | Viewed by 3734
Abstract
Water mobility within the porous network of dense clay sediments was investigated over a broad dynamical range by using 2H nuclear magnetic resonance spectroscopy. Multi-quanta 2H NMR spectroscopy and relaxation measurements were first performed to identify the contributions of the various [...] Read more.
Water mobility within the porous network of dense clay sediments was investigated over a broad dynamical range by using 2H nuclear magnetic resonance spectroscopy. Multi-quanta 2H NMR spectroscopy and relaxation measurements were first performed to identify the contributions of the various relaxation mechanisms monitoring the time evolution of the nuclear magnetisation of the confined heavy water. Secondly, multi-quanta spin-locking NMR relaxation measurements were then performed over a broad frequency domain, probing the mobility of the confined water molecules on a time-scale varying between microseconds and milliseconds. Thirdly, 1H NMR pulsed-gradient spin-echo attenuation experiments were performed to quantify water mobility on a time-scale limited by the NMR transverse relaxation time of the confined NMR probe, typically a few milliseconds. Fourthly, the long living quantum state of the magnetisation of quadrupolar nuclei was exploited to probe a two-time correlation function at a time-scale reaching one second. Finally, magnetic resonance imaging measurements allow probing the same dynamical process on time-scales varying between seconds and several hours. In that context, multi-scale modelling is required to interpret these NMR measurements and extract information on the influences of the structural properties of the porous network on the apparent mobility of the diffusing water molecules. That dual experimental and numerical approach appears generalizable to a large variety of porous networks, including zeolites, micelles and synthetic or biological membranes. Full article
Show Figures

Figure 1

17 pages, 3361 KiB  
Article
Studying Hydraulic Interconnections in Low-Permeability Media by Using Bacterial Communities as Natural Tracers
by Pietro Rizzo, Emma Petrella, Antonio Bucci, Emma Salvioli-Mariani, Alessandro Chelli, Anna Maria Sanangelantoni, Melinda Raimondo, Andrea Quagliarini and Fulvio Celico
Water 2020, 12(6), 1795; https://doi.org/10.3390/w12061795 - 23 Jun 2020
Cited by 9 | Viewed by 3199
Abstract
Knowledge about the processes governing subsurface microbial dynamics in and to groundwater represents an important tool for the development of robust, evidence-based policies and strategies to assess the potential impact of contamination sources and for the implementation of appropriate land use and management [...] Read more.
Knowledge about the processes governing subsurface microbial dynamics in and to groundwater represents an important tool for the development of robust, evidence-based policies and strategies to assess the potential impact of contamination sources and for the implementation of appropriate land use and management practices. In this research, we assessed the effectiveness of using microorganisms as natural tracers to analyze subsurface dynamics in a low-permeability system of northern Italy. Microbial communities were investigated through next-generation sequencing of 16S rRNA gene both to study hydraulic interconnections in clayey media and to verify the efficacy of outcropping clayey horizons in protecting groundwater against contamination. During the observation period, a rapid water percolation from the ground surface to the saturated medium was observed, and the mixing between lower-salinity fresh-infiltration waters and higher-salinity groundwater determined the formation of a halocline. This rapid percolation was a driver for the transport of microorganisms from the topsoil to the subsurface, as demonstrated by the presence of soil and rhizosphere bacteria in groundwater. Some of the species detected can carry out important processes such as denitrification or nitrate-reduction, whereas some others are known human pathogens (Legionella pneumophila and Legionella feeleii). These findings could be of utmost importance when studying the evolution of nitrate contamination over space and time in those areas where agricultural, industrial, and civil activities have significantly increased the levels of reactive nitrogen (N) in water bodies but, at the same time, could highlight that groundwater vulnerability of confined or semi-confined aquifers against contamination (both chemical and microbiological) could be higher than expected. Full article
Show Figures

Figure 1

14 pages, 4739 KiB  
Article
When Green Infrastructure Turns Grey: Plant Water Stress as a Consequence of Overdesign in a Tree Trench System
by Min-cheng Tu, Joshua S. Caplan, Sasha W. Eisenman and Bridget M. Wadzuk
Water 2020, 12(2), 573; https://doi.org/10.3390/w12020573 - 19 Feb 2020
Cited by 18 | Viewed by 4192
Abstract
Green infrastructure (GI) systems are often overdesigned. This may be a byproduct of static sizing (e.g., accounting for a design storm’s runoff volume but not exfiltration rates) or may be deliberate (e.g., buffering against performance loss through time). In tree trenches and other [...] Read more.
Green infrastructure (GI) systems are often overdesigned. This may be a byproduct of static sizing (e.g., accounting for a design storm’s runoff volume but not exfiltration rates) or may be deliberate (e.g., buffering against performance loss through time). In tree trenches and other GI systems that require stormwater to accumulate in an infiltration bed before it contacts the planting medium, overdesign could reduce plant water availability significantly. This study investigated the hydrological dynamics and water relations of an overdesigned tree trench system and identified factors contributing to, compounding, and mitigating the risk of plant stress. Water in the infiltration bed reached soil pits only once in three years, with that event occurring during a hydrant release. Moreover, minimal water was retained in soil pits during the event due to the hydraulic properties of the soil media. Through a growing season, one of the two tree types frequently experienced water stress, while the other did so only rarely. These contrasting responses can likely be attributed to roots being largely confined to the soil pits vs. reaching a deeper water source, respectively. Results of this study demonstrate that, in systems where soil pits are embedded in infiltration beds, overdesign can raise the storm size required for water to reach the soil media, reducing plant water availability between storms, and ultimately inducing physiological stress. Full article
(This article belongs to the Special Issue Advances of Low Impact Development Practices in Urban Watershed)
Show Figures

Figure 1

Back to TopTop