Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = wastewater virology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4711 KiB  
Article
RNA-Seq Virus Fraction in Lake Baikal and Treated Wastewaters
by Sergey Potapov, Anna Gorshkova, Andrey Krasnopeev, Galina Podlesnaya, Irina Tikhonova, Maria Suslova, Dmitry Kwon, Maxim Patrushev, Valentin Drucker and Olga Belykh
Int. J. Mol. Sci. 2023, 24(15), 12049; https://doi.org/10.3390/ijms241512049 - 27 Jul 2023
Cited by 8 | Viewed by 2205
Abstract
In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. [...] Read more.
In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake. In this context, the identification and monitoring of allochthonous microorganisms entering the lake play an important role. Using high-throughput sequencing methods, we found that dsDNA-containing viruses of the class Caudoviricetes were the most abundant in all samples, while Leviviricetes (ssRNA(+) viruses) dominated the treated water samples. RNA viruses of the families Nodaviridae, Tombusviridae, Dicitroviridae, Picobirnaviridae, Botourmiaviridae, Marnaviridae, Solemoviridae, and Endornavirida were found in the pelagic zone of three lake basins. Complete or nearly complete genomes of RNA viruses belonging to such families as Dicistroviridae, Marnaviridae, Blumeviridae, Virgaviridae, Solspiviridae, Nodaviridae, and Fiersviridae and the unassigned genus Chimpavirus, as well as unclassified picorna-like viruses, were identified. In general, the data of sanitary/microbiological and genetic analyses showed that WWTPs inadequately purify the discharged water, but, at the same time, we did not observe viruses pathogenic to humans in the pelagic zone of the lake. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

12 pages, 2122 KiB  
Article
Wastewater-Based Epidemiology to Describe the Evolution of SARS-CoV-2 in the South-East of Spain, and Application of Phylogenetic Analysis and a Machine Learning Approach
by Jose A. Férez, Enric Cuevas-Ferrando, María Ayala-San Nicolás, Pedro J. Simón Andreu, Román López, Pilar Truchado, Gloria Sánchez and Ana Allende
Viruses 2023, 15(7), 1499; https://doi.org/10.3390/v15071499 - 3 Jul 2023
Cited by 2 | Viewed by 2356
Abstract
The COVID-19 pandemic has posed a significant global threat, leading to several initiatives for its control and management. One such initiative involves wastewater-based epidemiology, which has gained attention for its potential to provide early warning of virus outbreaks and real-time information on its [...] Read more.
The COVID-19 pandemic has posed a significant global threat, leading to several initiatives for its control and management. One such initiative involves wastewater-based epidemiology, which has gained attention for its potential to provide early warning of virus outbreaks and real-time information on its spread. In this study, wastewater samples from two wastewater treatment plants (WWTPs) located in the southeast of Spain (region of Murcia), namely Murcia, and Cartagena, were analyzed using RT-qPCR and high-throughput sequencing techniques to describe the evolution of SARS-CoV-2 in the South-East of Spain. Additionally, phylogenetic analysis and machine learning approaches were applied to develop a pre-screening tool for the identification of differences among the variant composition of different wastewater samples. The results confirmed that the levels of SARS-CoV-2 in these wastewater samples changed concerning the number of SARS-CoV-2 cases detected in the population, and variant occurrences were in line with clinical reported data. The sequence analyses helped to describe how the different SARS-CoV-2 variants have been replaced over time. Additionally, the phylogenetic analysis showed that samples obtained at close sampling times exhibited a higher similarity than those obtained more distantly in time. A second analysis using a machine learning approach based on the mutations found in the SARS-CoV-2 spike protein was also conducted. Hierarchical clustering (HC) was used as an efficient unsupervised approach for data analysis. Results indicated that samples obtained in October 2022 in Murcia and Cartagena were significantly different, which corresponded well with the different virus variants circulating in the two locations. The proposed methods in this study are adequate for comparing consensus sequence types of the SARS-CoV-2 sequences as a preliminary evaluation of potential changes in the variants that are circulating in a given population at a specific time point. Full article
(This article belongs to the Special Issue State-of-the-Art SARS-CoV-2 Research in Spain)
Show Figures

Figure 1

46 pages, 736 KiB  
Review
One Health Approach to Tackle Microbial Contamination on Poultries—A Systematic Review
by Bianca Gomes, Marta Dias, Renata Cervantes, Pedro Pena, Joana Santos, Marta Vasconcelos Pinto and Carla Viegas
Toxics 2023, 11(4), 374; https://doi.org/10.3390/toxics11040374 - 14 Apr 2023
Cited by 8 | Viewed by 3627
Abstract
This study reports the search of available data published regarding microbial occupational exposure assessment in poultries, following the PRISMA methodology. Air collection through filtration was the most frequently used. The most commonly used passive sampling method was material collection such as dust, cages, [...] Read more.
This study reports the search of available data published regarding microbial occupational exposure assessment in poultries, following the PRISMA methodology. Air collection through filtration was the most frequently used. The most commonly used passive sampling method was material collection such as dust, cages, soils, sediment, and wastewater. Regarding assays applied, the majority of studies comprised culture-based methods, but molecular tools were also frequently used. Screening for antimicrobial susceptibility was performed only for bacteria; cytotoxicity, virological and serological assays were also performed. Most of the selected studies focused on bacteria, although fungi, endotoxins, and β-glucans were also assessed. The only study concerning fungi and mycotoxins reported the carcinogenic mycotoxin AFB1. This study gives a comprehensive overview of microbial contamination in the poultry industry, emphasizing this setting as a potential reservoir of microbial pathogens threatening human, animal, and environmental health. Additionally, this research helps to provide a sampling and analysis protocol proposal to evaluate the microbiological contamination in these facilities. Few articles were found reporting fungal contamination in poultry farms worldwide. In addition, information concerning fungal resistance profile and mycotoxin contamination remain scarce. Overall, a One Health approach should be incorporated in exposure assessments and the knowledge gaps identified in this paper should be addressed in further research. Full article
(This article belongs to the Special Issue Risk Assessment of Occupational Exposures for Better Health)
Show Figures

Graphical abstract

9 pages, 579 KiB  
Protocol
Concentration and Quantification of SARS-CoV-2 RNA in Wastewater Using Polyethylene Glycol-Based Concentration and qRT-PCR
by Kata Farkas, Luke S. Hillary, Jamie Thorpe, David I. Walker, James A. Lowther, James E. McDonald, Shelagh K. Malham and Davey L. Jones
Methods Protoc. 2021, 4(1), 17; https://doi.org/10.3390/mps4010017 - 23 Feb 2021
Cited by 58 | Viewed by 9168 | Correction
Abstract
Wastewater-based epidemiology has become an important tool for the surveillance of SARS-CoV-2 outbreaks. However, the detection of viruses in sewage is challenging and to date there is no standard method available which has been validated for the sensitive detection of SARS-CoV-2. In this [...] Read more.
Wastewater-based epidemiology has become an important tool for the surveillance of SARS-CoV-2 outbreaks. However, the detection of viruses in sewage is challenging and to date there is no standard method available which has been validated for the sensitive detection of SARS-CoV-2. In this paper, we describe a simple concentration method based on polyethylene glycol (PEG) precipitation, followed by RNA extraction and a one-step quantitative reverse transcription PCR (qRT-PCR) for viral detection in wastewater. PEG-based concentration of viruses is a simple procedure which is not limited by the availability of expensive equipment and has reduced risk of disruption to consumable supply chains. The concentration and RNA extraction steps enable 900–1500× concentration of wastewater samples and sufficiently eliminates the majority of organic matter, which could inhibit the subsequent qRT-PCR assay. Due to the high variation in the physico-chemical properties of wastewater samples, we recommend the use of process control viruses to determine the efficiency of each step. This procedure enables the concentration and the extraction the DNA/RNA of different viruses and hence can be used for the surveillance of different viral targets for the comprehensive assessment of viral diseases in a community. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

28 pages, 1005 KiB  
Review
On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater
by Adrian Wartecki and Piotr Rzymski
Water 2020, 12(6), 1598; https://doi.org/10.3390/w12061598 - 4 Jun 2020
Cited by 42 | Viewed by 15152
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology [...] Read more.
The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it. Full article
(This article belongs to the Special Issue Coronaviruses and Water under the One Health Perspective)
Show Figures

Figure 1

10 pages, 1147 KiB  
Article
Quantitative Microbial Risk Assessment in Occupational Settings Applied to the Airborne Human Adenovirus Infection
by Annalaura Carducci, Gabriele Donzelli, Lorenzo Cioni and Marco Verani
Int. J. Environ. Res. Public Health 2016, 13(7), 733; https://doi.org/10.3390/ijerph13070733 - 20 Jul 2016
Cited by 59 | Viewed by 7498
Abstract
Quantitative Microbial Risk Assessment (QMRA) methodology, which has already been applied to drinking water and food safety, may also be applied to risk assessment and management at the workplace. The present study developed a preliminary QMRA model to assess microbial risk that is [...] Read more.
Quantitative Microbial Risk Assessment (QMRA) methodology, which has already been applied to drinking water and food safety, may also be applied to risk assessment and management at the workplace. The present study developed a preliminary QMRA model to assess microbial risk that is associated with inhaling bioaerosols that are contaminated with human adenovirus (HAdV). This model has been applied to air contamination data from different occupational settings, including wastewater systems, solid waste landfills, and toilets in healthcare settings and offices, with different exposure times. Virological monitoring showed the presence of HAdVs in all the evaluated settings, thus confirming that HAdV is widespread, but with different average concentrations of the virus. The QMRA results, based on these concentrations, showed that toilets had the highest probability of viral infection, followed by wastewater treatment plants and municipal solid waste landfills. Our QMRA approach in occupational settings is novel, and certain caveats should be considered. Nonetheless, we believe it is worthy of further discussions and investigations. Full article
(This article belongs to the Special Issue Occupational Safety and Related Impacts on Health and the Environment)
Show Figures

Figure 1

14 pages, 961 KiB  
Communication
Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce
by Annalaura Carducci, Elisa Caponi, Adriana Ciurli and Marco Verani
Int. J. Environ. Res. Public Health 2015, 12(7), 8214-8227; https://doi.org/10.3390/ijerph120708214 - 17 Jul 2015
Cited by 16 | Viewed by 5732
Abstract
Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, [...] Read more.
Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L) a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated. Full article
Show Figures

Figure 1

Back to TopTop