Marine Heatwaves and Cold Spells Accompanied by Mesoscale Eddies Globally
Abstract
1. Introduction
2. Material and Methods
2.1. Sea Surface Temperature
2.2. Mesoscale Eddy Trajectory Data
2.3. Definition of MHWs/MCSs
2.4. Definition of an MHW/MCS Accompanied by an Eddy
2.5. Relocating MHWs/MCSs Relative to Eddies
3. Results
3.1. Global Distribution of MHWs, MCSs, and Their Association with Eddies
3.1.1. MHWs and AEs
3.1.2. MCSs and CEs
3.2. Global Distribution of Matched MHWs and MCSs
3.3. Comparison of Matched and Unmatched MHWs/MCSs
3.4. MHW/MCS Locations Relative to Eddies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MHW | Marine Heatwave |
MCS | Marine Cold Spell |
SLA | Sea Level Anomaly |
SST | Sea Surface Temperature |
SSTA | Sea Surface Temperature Anomaly |
AE | Anticyclonic Eddy |
CE | Cyclonic Eddy |
C3S | Copernicus Climate Change Service |
KE | Kuroshio Extension |
GS | Gulf Stream |
HFC-E | Heat Flux Convergence by Oceanic Mesoscale Eddies |
References
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; De Bettignies, T.; Bennett, S.; Rousseaux, C.S. An Extreme Climatic Event Alters Marine Ecosystem Structure in a Global Biodiversity Hotspot. Nat. Clim. Change 2013, 3, 78–82. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine Heatwaves Threaten Global Biodiversity and the Provision of Ecosystem Services. Nat. Clim. Change 2019, 9, 306–312. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Darmaraki, S.; Benthuysen, J.A.; Filbee-Dexter, K.; Oliver, E.C.J. Marine Cold-Spells. Prog. Oceanogr. 2021, 198, 102684. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C.; Fu, Y. Global Marine Heatwaves and Cold-Spells in Present Climate to Future Projections. Earths Future 2022, 10, e2022EF002787. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A Hierarchical Approach to Defining Marine Heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Amaya, D.J.; Jacox, M.G.; Fewings, M.R.; Saba, V.S.; Stuecker, M.F.; Rykaczewski, R.R.; Ross, A.C.; Stock, C.A.; Capotondi, A.; Petrik, C.M.; et al. Marine Heatwaves Need Clear Definitions so Coastal Communities Can Adapt. Nature 2023, 616, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Beaugrand, G.; Edwards, M.; Brander, K.; Luczak, C.; Ibanez, F. Causes and Projections of Abrupt Climate-driven Ecosystem Shifts in the North Atlantic. Ecol. Lett. 2008, 11, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Scannell, H.A.; Pershing, A.J.; Alexander, M.A.; Thomas, A.C.; Mills, K.E. Frequency of Marine Heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 2016, 43, 2069–2076. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine Heatwaves under Global Warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Chiswell, S.M. Global Trends in Marine Heatwaves and Cold Spells: The Impacts of Fixed Versus Changing Baselines. J. Geophys. Res. Oceans 2022, 127, e2022JC018757. [Google Scholar] [CrossRef]
- Han, W.; Zhang, L.; Meehl, G.A.; Kido, S.; Tozuka, T.; Li, Y.; McPhaden, M.J.; Hu, A.; Cazenave, A.; Rosenbloom, N.; et al. Sea Level Extremes and Compounding Marine Heatwaves in Coastal Indonesia. Nat. Commun. 2022, 13, 6410. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Shan, H.; Liang, J.-H.; Dong, C. Assessment and Projections of Marine Heatwaves in the Northwest Pacific Based on CMIP6 Models. Remote Sens. 2023, 15, 2957. [Google Scholar] [CrossRef]
- Sun, D.; Li, F.; Jing, Z.; Hu, S.; Zhang, B. Frequent Marine Heatwaves Hidden below the Surface of the Global Ocean. Nat. Geosci. 2023, 16, 1099–1104. [Google Scholar] [CrossRef]
- Song, Q.; Yao, Y.; Wang, C. Response of Future Summer Marine Heatwaves in the South China Sea to Enhanced Western Pacific Subtropical High. Geophys. Res. Lett. 2023, 50, e2023GL103667. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y.; Yang, Y.; Yang, J.; Ji, J.; Dong, C. Marine Heatwaves/Cold-Spells Associated With Mixed Layer Depth Variation Globally. Geophys. Res. Lett. 2024, 51, e2024GL112325. [Google Scholar] [CrossRef]
- Brown, C.J.; Mellin, C.; Edgar, G.J.; Campbell, M.D.; Stuart-Smith, R.D. Direct and Indirect Effects of Heatwaves on a Coral Reef Fishery. Glob. Change Biol. 2021, 27, 1214–1225. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Bethel, B.J.; Dong, C.; Zhao, H.; Yao, Y.; Yu, Y. Marine Heatwave Events near Weizhou Island, Beibu Gulf in 2020 and Their Possible Relations to Coral Bleaching. Sci. Total Environ. 2022, 823, 153414. [Google Scholar] [CrossRef] [PubMed]
- Le Nohaïc, M.; Ross, C.L.; Cornwall, C.E.; Comeau, S.; Lowe, R.; McCulloch, M.T.; Schoepf, V. Marine Heatwave Causes Unprecedented Regional Mass Bleaching of Thermally Resistant Corals in Northwestern Australia. Sci. Rep. 2017, 7, 14999. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.R.; Gonçalves Neto, A.H.; Vieira, E.A.; Longo, G.O. The Severe 2020 Coral Bleaching Event in the Tropical Atlantic Linked to Marine Heatwaves. Commun. Earth Environ. 2025, 6, 208. [Google Scholar] [CrossRef]
- Donovan, M.K.; Burkepile, D.E.; Kratochwill, C.; Shlesinger, T.; Sully, S.; Oliver, T.A.; Hodgson, G.; Freiwald, J.; Van Woesik, R. Local Conditions Magnify Coral Loss after Marine Heatwaves. Science 2021, 372, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Bainbridge, S.J. Temperature and Light Patterns at Four Reefs along the Great Barrier Reef during the 2015–2016 Austral Summer: Understanding Patterns of Observed Coral Bleaching. J. Oper. Oceanogr. 2017, 10, 16–29. [Google Scholar] [CrossRef]
- Welch, H.; Savoca, M.S.; Brodie, S.; Jacox, M.G.; Muhling, B.A.; Clay, T.A.; Cimino, M.A.; Benson, S.R.; Block, B.A.; Conners, M.G.; et al. Impacts of Marine Heatwaves on Top Predator Distributions Are Variable but Predictable. Nat. Commun. 2023, 14, 5188. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.; Aubin, M.; Burrows, M.T.; Filbee-Dexter, K.; Hobday, A.J.; Holbrook, N.J.; King, N.G.; Moore, P.J.; Sen Gupta, A.; Thomsen, M.; et al. Global Impacts of Marine Heatwaves on Coastal Foundation Species. Nat. Commun. 2024, 15, 5052. [Google Scholar] [CrossRef] [PubMed]
- Brander, K. Impacts of Climate Change on Fisheries. J. Mar. Syst. 2010, 79, 389–402. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Frölicher, T.L. Marine Heatwaves Exacerbate Climate Change Impacts for Fisheries in the Northeast Pacific. Sci. Rep. 2020, 10, 6678. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Caputi, N.; Chandrapavan, A.; Chen, M.; Hart, A.; Kangas, M. Multi-Year Marine Cold-Spells off the West Coast of Australia and Effects on Fisheries. J. Mar. Syst. 2021, 214, 103473. [Google Scholar] [CrossRef]
- Marshak, A.R.; Link, J.S. Responses of Fisheries Ecosystems to Marine Heatwaves and Other Extreme Events. PLoS ONE 2024, 19, e0315224. [Google Scholar] [CrossRef] [PubMed]
- Tozuka, T.; Oettli, P. Asymmetric Cloud-Shortwave Radiation-Sea Surface Temperature Feedback of Ningaloo Niño/Niña. Geophys. Res. Lett. 2018, 45, 9870–9879. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Benthuysen, J.A.; Darmaraki, S.; Donat, M.G.; Hobday, A.J.; Holbrook, N.J.; Schlegel, R.W.; Sen Gupta, A. Marine Heatwaves. Annu. Rev. Mar. Sci. 2021, 13, 313–342. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, J.-J.; Xu, H.; Ma, J.; Deng, J.; Zhang, L.; Bi, D.; Chen, X. Robust Regional Differences in Marine Heatwaves between Transient and Stabilization Responses at 1.5 °C Global Warming. Weather Clim. Extrem. 2021, 32, 100316. [Google Scholar] [CrossRef]
- Gregory, C.H.; Artana, C.; Lama, S.; León-FonFay, D.; Sala, J.; Xiao, F.; Xu, T.; Capotondi, A.; Martinez-Villalobos, C.; Holbrook, N.J. Global Marine Heatwaves Under Different Flavors of ENSO. Geophys. Res. Lett. 2024, 51, e2024GL110399. [Google Scholar] [CrossRef]
- Choi, H.-Y.; Park, M.-S.; Kim, H.-S.; Lee, S. Marine Heatwave Events Strengthen the Intensity of Tropical Cyclones. Commun. Earth Environ. 2024, 5, 69. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, B.; Shan, H. Predictability Assessment of Marine Heatwaves in the Northeast Pacific Based on SEAS5. Weather Clim. Extrem. 2025, 48, 100773. [Google Scholar] [CrossRef]
- Zhang, N.; Lan, J.; Sun, W.; Dong, C. Contrasting Impacts of Two Types of El Niño on Interannual Variations of Marine Heatwaves in the South China Sea. J. Geophys. Res. Oceans 2025, 130, e2024JC021991. [Google Scholar] [CrossRef]
- Carnat, G.; Brabant, F.; Dumont, I.; Vancoppenolle, M.; Ackley, S.F.; Fritsen, C.; Delille, B.; Tison, J.-L. Influence of Short-Term Synoptic Events and Snow Depth on DMS, DMSP, and DMSO Dynamics in Antarctic Spring Sea Ice. Elem. Sci. Anthr. 2016, 4, 000135. [Google Scholar] [CrossRef]
- Rhines, P.B. Mesoscale Eddies. In Encyclopedia of Ocean Sciences; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1717–1730. ISBN 978-0-12-227430-5. [Google Scholar]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; De Szoeke, R.A. Global Observations of Large Oceanic Eddies. Geophys. Res. Lett. 2007, 34, 2007GL030812. [Google Scholar] [CrossRef]
- Dong, C.; You, Z.; Dong, J.; Ji, J.; Sun, W.; Xu, G.; Lu, X.; Xie, H.; Teng, F.; Liu, Y.; et al. Oceanic Mesoscale Eddies. Ocean-Land-Atmosphere Res. 2025, 4, 0081. [Google Scholar] [CrossRef]
- Hausmann, U.; Czaja, A. The Observed Signature of Mesoscale Eddies in Sea Surface Temperature and the Associated Heat Transport. Deep Sea Res. Part Oceanogr. Res. Pap. 2012, 70, 60–72. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic Mass Transport by Mesoscale Eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global Heat and Salt Transports by Eddy Movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, C.L.; Cessi, P.; McClean, J.L.; Maltrud, M.E. Vertical Heat Transport in Eddying Ocean Models. Geophys. Res. Lett. 2008, 35, 2008GL036138. [Google Scholar] [CrossRef]
- Bashmachnikov, I.L.; Raj, R.P.; Golubkin, P.; Kozlov, I.E. Heat Transport by Mesoscale Eddies in the Norwegian and Greenland Seas. J. Geophys. Res. Oceans 2023, 128, e2022JC018987. [Google Scholar] [CrossRef]
- Dong, D.; Brandt, P.; Chang, P.; Schütte, F.; Yang, X.; Yan, J.; Zeng, J. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports. J. Geophys. Res. Oceans 2017, 122, 9795–9813. [Google Scholar] [CrossRef]
- Yang, G.; Yu, W.; Yuan, Y.; Zhao, X.; Wang, F.; Chen, G.; Liu, L.; Duan, Y. Characteristics, Vertical Structures, and Heat/Salt Transports of Mesoscale Eddies in the Southeastern Tropical I Ndian O Cean. J. Geophys. Res. Oceans 2015, 120, 6733–6750. [Google Scholar] [CrossRef]
- Sun, W.; Dong, C.; Wang, R.; Liu, Y.; Yu, K. Vertical Structure Anomalies of Oceanic Eddies in the Kuroshio Extension Region: 3-D EDDY IN THE KUROSHIO EXTENSION REGION. J. Geophys. Res. Oceans 2017, 122, 1476–1496. [Google Scholar] [CrossRef]
- Stanley, Z.; Bachman, S.D.; Grooms, I. Vertical Structure of Ocean Mesoscale Eddies with Implications for Parameterizations of Tracer Transport. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002151. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, C.; Dong, J.; Zhang, H.; Yang, J. Submesoscale Processes-Induced Vertical Heat Transport Modulated by Oceanic Mesoscale Eddies. Deep Sea Res. Part II Top. Stud. Oceanogr. 2022, 202, 105138. [Google Scholar] [CrossRef]
- Brannigan, L. Intense Submesoscale Upwelling in Anticyclonic Eddies. Geophys. Res. Lett. 2016, 43, 3360–3369. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chen, H.-Y.; Jan, S.; Lin, Y.-H.; Kuo, T.-H.; Hung, J.-J. Biologically Active Warm-Core Anticyclonic Eddies in the Marginal Seas of the Western Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 2015, 106, 68–84. [Google Scholar] [CrossRef]
- Mizobata, K.; Saitoh, S.I.; Shiomoto, A.; Miyamura, T.; Shiga, N.; Imai, K.; Toratani, M.; Kajiwara, Y.; Sasaoka, K. Bering Sea Cyclonic and Anticyclonic Eddies Observed during Summer 2000 and 2001. Prog. Oceanogr. 2002, 55, 65–75. [Google Scholar] [CrossRef]
- Ni, Q.; Zhai, X.; Jiang, X.; Chen, D. Abundant Cold Anticyclonic Eddies and Warm Cyclonic Eddies in the Global Ocean. J. Phys. Oceanogr. 2021, 51, 2793–2806. [Google Scholar] [CrossRef]
- Barton, E.D.; Arístegui, J.; Tett, P.; Cantón, M.; García-Braun, J.; Hernández-León, S.; Nykjaer, L.; Almeida, C.; Almunia, J.; Ballesteros, S.; et al. The Transition Zone of the Canary Current Upwelling Region. Prog. Oceanogr. 1998, 41, 455–504. [Google Scholar] [CrossRef]
- Vukovich, F.M.; Maul, G.A. Cyclonic Eddies in the Eastern Gulf of Mexico. J. Phys. Oceanogr. 1985, 15, 105–117. [Google Scholar] [CrossRef]
- Li, J.; Roughan, M.; Hemming, M. Interactions between Cold Cyclonic Eddies and a Western Boundary Current Modulate Marine Heatwaves. Commun. Earth Environ. 2023, 4, 380. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; Feng, M.; Hobday, A.J. Vertical Structures of Marine Heatwaves. Nat. Commun. 2023, 14, 6483. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhan, W.; Feng, M.; Gong, Y.; Cai, S.; Zhan, H. Common Occurrences of Subsurface Heatwaves and Cold Spells in Ocean Eddies. Nature 2024, 634, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Beech, N.; Rackow, T.; Semmler, T.; Danilov, S.; Wang, Q.; Jung, T. Long-Term Evolution of Ocean Eddy Activity in a Warming World. Nat. Clim. Change 2022, 12, 910–917. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, J.; Hu, Y. Climatic Interactions between Cold Surges in the South China Sea and North Pacific Extratropical Cyclones. Meteorol. Appl. 2024, 31, e2182. [Google Scholar] [CrossRef]
- Melnichenko, O.; Amores, A.; Maximenko, N.; Hacker, P.; Potemra, J. Signature of Mesoscale Eddies in Satellite Sea Surface Salinity Data: SSS SIGNATURE OF MESOSCALE EDDIES. J. Geophys. Res. Oceans 2017, 122, 1416–1424. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, L.; Chen, G. Characterization of Sea Surface Temperature and Air-Sea Heat Flux Anomalies Associated With Mesoscale Eddies in the South China Sea. J. Geophys. Res. Oceans 2020, 125, e2019JC015470. [Google Scholar] [CrossRef]
- Lv, M.; Wang, F.; Li, Y.; Zhang, Z.; Zhu, Y. Structure of Sea Surface Temperature Anomaly Induced by Mesoscale Eddies in the North Pacific Ocean. J. Geophys. Res. Oceans 2022, 127, e2021JC017581. [Google Scholar] [CrossRef]
- Schaeffer, A.; Sen Gupta, A.; Roughan, M. Seasonal Stratification and Complex Local Dynamics Control the Sub-Surface Structure of Marine Heatwaves in Eastern Australian Coastal Waters. Commun. Earth Environ. 2023, 4, 304. [Google Scholar] [CrossRef]
- Bian, C.; Jing, Z.; Wang, H.; Wu, L.; Chen, Z.; Gan, B.; Yang, H. Oceanic Mesoscale Eddies as Crucial Drivers of Global Marine Heatwaves. Nat. Commun. 2023, 14, 2970. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, A.S.J.; Leichter, J.J.; Washburn, L.; Kui, L.; Edmunds, P.J.; Burgess, S.C. Hidden Heatwaves and Severe Coral Bleaching Linked to Mesoscale Eddies and Thermocline Dynamics. Nat. Commun. 2023, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Li, C.; Sun, W.; Ji, J.; Zhu, Y. Historical Marine Cold Spells in the South China Sea: Characteristics and Trends. Remote Sens. 2024, 16, 1171. [Google Scholar] [CrossRef]
- Cao, M.; Mao, K.; Yan, Y.; Shi, J.; Wang, H.; Xu, T.; Fang, S.; Yuan, Z. A New Global Gridded Sea Surface Temperature Data Product Based on Multisource Data. Earth Syst. Sci. Data 2021, 13, 2111–2134. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, F.; Zhu, J.; Chen, X. Observed Frequent Occurrences of Marine Heatwaves in Most Ocean Regions during the Last Two Decades. Adv. Atmospheric Sci. 2022, 39, 1579–1587. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, S.; Yang, J.; Gao, X.; Ji, J.; Dong, C. Artificial Intelligence Forecasting of Marine Heatwaves in the South China Sea Using a Combined U-Net and ConvLSTM System. Remote Sens. 2023, 15, 4068. [Google Scholar] [CrossRef]
- Sun, W.; Yin, L.; Pei, Y.; Shen, C.; Yang, Y.; Ji, J.; Yang, J.; Dong, C. Marine Heatwaves in the Western North Pacific Region: Historical Characteristics and Future Projections. Deep Sea Res. Part Oceanogr. Res. Pap. 2023, 200, 104161. [Google Scholar] [CrossRef]
- Sun, W.; Yang, Y.; Wang, Y.; Yang, J.; Ji, J.; Dong, C. Characterization and Future Projection of Marine Heatwaves under Climate Change in the South China Sea. Ocean Model. 2024, 188, 102322. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, W.; Bao, S.; Xie, M.; Jiang, L.; Ji, J.; Yu, Y.; Dong, C. Global Variability and Future Projections of Marine Heatwave Onset and Decline Rates. Remote Sens. 2025, 17, 1362. [Google Scholar] [CrossRef]
- Mason, E.; Pascual, A.; McWilliams, J.C. A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking. J. Atmos. Ocean. Technol. 2014, 31, 1181–1188. [Google Scholar] [CrossRef]
- Pegliasco, C.; Delepoulle, A.; Mason, E.; Morrow, R.; Faugère, Y.; Dibarboure, G. META3.1exp: A New Global Mesoscale Eddy Trajectory Atlas Derived from Altimetry. Earth Syst. Sci. Data 2022, 14, 1087–1107. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Liu, Y.; Ma, L.; Wang, H.; Ren, K.; Chen, S. Parametric Model for Eddies-Induced Sound Speed Anomaly in Five Active Mesoscale Eddy Regions. J. Geophys. Res. Oceans 2022, 127, e2022JC018408. [Google Scholar] [CrossRef]
- Rocha, C.B.; Simoes-Sousa, I.T. Compact Mesoscale Eddies in the South Brazil Bight. Remote Sens. 2022, 14, 5781. [Google Scholar] [CrossRef]
- Erickson, Z.K.; Fields, E.; Johnson, L.; Thompson, A.F.; Dove, L.A.; D’Asaro, E.; Siegel, D.A. Eddy Tracking From In Situ and Satellite Observations. J. Geophys. Res. Oceans 2023, 128, e2023JC019701. [Google Scholar] [CrossRef]
- Ioannou, A.; Guez, L.; Laxenaire, R.; Speich, S. Global Assessment of Mesoscale Eddies with TOEddies: Comparison Between Multiple Datasets and Colocation with In Situ Measurements. Remote Sens. 2024, 16, 4336. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Claar, D.C.; Hobday, A.J.; McInnes, K.L.; Oliver, E.C.J.; Gupta, A.S.; Widlansky, M.J.; Zhang, X. ENSO-Driven Ocean Extremes and Their Ecosystem Impacts. In Geophysical Monograph Series; McPhaden, M.J., Santoso, A., Cai, W., Eds.; Wiley: Oxford, UK, 2020; pp. 409–428. ISBN 978-1-119-54812-6. [Google Scholar]
- Capotondi, A.; Newman, M.; Xu, T.; Di Lorenzo, E. An Optimal Precursor of Northeast Pacific Marine Heatwaves and Central Pacific El Niño Events. Geophys. Res. Lett. 2022, 49, e2021GL097350. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Dong, C.; Luo, J.-J. The Forecast Skills and Predictability Sources of Marine Heatwaves in the NUIST-CFS1.0 Hindcasts. Adv. Atmos. Sci. 2024, 41, 1589–1600. [Google Scholar] [CrossRef]
- Chapman, C.C.; Monselesan, D.P.; Risbey, J.S.; Feng, M.; Sloyan, B.M. A Large-Scale View of Marine Heatwaves Revealed by Archetype Analysis. Nat. Commun. 2022, 13, 7843. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Liu, K.; Wang, H.; Chen, X. Vertical Structures and Drivers of Marine Heatwaves and Cold-Spells in the Kuroshio Extension Region. Environ. Res. Lett. 2024, 19, 054015. [Google Scholar] [CrossRef]
- Ni, Q.; Zhai, X.; Yang, Z.; Chen, D. Generation of Cold Anticyclonic Eddies and Warm Cyclonic Eddies in the Tropical Oceans. J. Phys. Oceanogr. 2023, 53, 1485–1498. [Google Scholar] [CrossRef]
- He, Q.; Zhan, H.; Cai, S. Anticyclonic Eddies Enhance the Winter Barrier Layer and Surface Cooling in the Bay of Bengal. J. Geophys. Res. Oceans 2020, 125, e2020JC016524. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.; Fu, Y.-X.; Sun, W.; Dong, J. Marine Heatwaves and Cold Spells Accompanied by Mesoscale Eddies Globally. Remote Sens. 2025, 17, 2468. https://doi.org/10.3390/rs17142468
Su S, Fu Y-X, Sun W, Dong J. Marine Heatwaves and Cold Spells Accompanied by Mesoscale Eddies Globally. Remote Sensing. 2025; 17(14):2468. https://doi.org/10.3390/rs17142468
Chicago/Turabian StyleSu, Sifan, Yu-Xuan Fu, Wenjin Sun, and Jihai Dong. 2025. "Marine Heatwaves and Cold Spells Accompanied by Mesoscale Eddies Globally" Remote Sensing 17, no. 14: 2468. https://doi.org/10.3390/rs17142468
APA StyleSu, S., Fu, Y.-X., Sun, W., & Dong, J. (2025). Marine Heatwaves and Cold Spells Accompanied by Mesoscale Eddies Globally. Remote Sensing, 17(14), 2468. https://doi.org/10.3390/rs17142468