Carbon and Energy Balance in a Primary Amazonian Forest and Its Relationship with Remote Sensing Estimates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Area
2.2. Database
2.3. Remote Sensing Products
2.4. MOD15 and MOD17 Products
2.5. Data Quality Control and Outlier Detection
3. Results
3.1. Climate Variables and Energy Fluxes
3.2. Light Dependence Curves, Carbon Exchange and Vegetation Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mendes, K.R.; Campos, S.; da Silva, L.L.; Mutti, P.R.; Ferreira, R.R.; Medeiros, S.S.; Perez-Marin, A.M.; Marques, T.V.; Ramos, T.M.; Vieira, M.M.d.L.; et al. Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Sci. Rep. 2020, 10, 9454. [Google Scholar] [CrossRef]
- Campos, S.; Mendes, K.R.; da Silva, L.L.; Mutti, P.R.; Medeiros, S.S.; Amorim, L.B.; dos Santos, C.A.; Perez-Marin, A.M.; Ramos, T.M.; Marques, T.V.; et al. Closure and partitioning of the energy balance in a preserved area of a Brazilian seasonally dry tropical forest. Agric. For. Meteorol. 2019, 271, 398–412. [Google Scholar] [CrossRef]
- Marques, T.V.; Mendes, K.; Mutti, P.; Medeiros, S.; Silva, L.; Perez-Marin, A.M.; Campos, S.; Lúcio, P.S.; Lima, K.; dos Reis, J.; et al. Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agric. For. Meteorol. 2020, 287, 107957. [Google Scholar] [CrossRef]
- Silva, A.C.; Mendes, K.R.; e Silva, C.M.S.; Rodrigues, D.T.; Costa, G.B.; da Silva, D.T.C.; Mutti, P.R.; Ferreira, R.R.; Bezerra, B.G. Energy Balance, CO2 Balance, and Meteorological Aspects of Desertification Hotspots in Northeast Brazil. Water 2021, 13, 2962. [Google Scholar] [CrossRef]
- Silva, C.M.S.; Bezerra, B.G.; Mendes, K.R.; Mutti, P.R.; Rodrigues, D.T.; Costa, G.B.; de Oliveira, P.E.S.; Reis, J.; Marques, T.V.; Ferreira, R.R.; et al. Rainfall and rain pulse role on energy, water vapor and CO2 exchanges in a tropical semiarid environment. Agric. For. Meteorol. 2024, 345, 109829. [Google Scholar] [CrossRef]
- Mendes, K.R.; Marques, A.M.S.; Mutti, P.R.; Oliveira, P.E.S.; Rodrigues, D.T.; Costa, G.B.; Ferreira, R.R.; Silva, A.C.N.d.; Morais, L.F.; Lima, J.R.S.; et al. Interannual Variability of Energy and CO2 Exchanges in a Remnant Area of the Caatinga Biome under Extreme Rainfall Conditions. Sustainability 2023, 15, 10085. [Google Scholar] [CrossRef]
- Costa, G.B.; Mendes, K.R.; Viana, L.B.; Almeida, G.V.; Mutti, P.R.; Silva, C.M.S.e.; Bezerra, B.G.; Marques, T.V.; Ferreira, R.R.; Oliveira, C.P.; et al. Seasonal Ecosystem Productivity in a Seasonally Dry Tropical Forest (Caatinga) Using Flux Tower Measurements and Remote Sensing Data. Remote Sens. 2022, 14, 3955. [Google Scholar] [CrossRef]
- Bezerra, B.G.; e Silva, C.M.S.; Mendes, K.R.; Mutti, P.R.; Fernandes, L.S.; Marques, T.V.; Silva, C.L.C.; Campos, S.; de Lima Vieira, M.M.; Urbano, S.A.; et al. CO2 exchanges and evapotranspiration of a grazed pasture under tropical climate conditions. Agric. For. Meteorol. 2022, 323, 109088. [Google Scholar] [CrossRef]
- Da Silva, I.W.H.; Marques, T.V.; Urbano, S.A.; Mendes, K.R.; Oliveira, A.C.C.F.; Nascimento, F.D.S.; De Morais, L.F.; Pereira, W.; Dos, S.; Mutti, P.R.; et al. Meteorological and biophysical controls of evapotranspiration in tropical grazed pasture under rainfed conditions. Agric. Water Manag. 2024, 299, 108884. [Google Scholar] [CrossRef]
- Vourlitis, G.L.; Filho, N.P.; Hayashi, M.M.S.; Nogueira, J.d.S.; Caseiro, F.T.; Campelo, J.H. Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resour. Res. 2002, 38, 1094. [Google Scholar] [CrossRef]
- Silva, J.B.; Valle Junior, L.C.G.; Faria, T.O.; Marques, J.B.; Dalmagro, H.J.; Nogueira, J.S.; Vourlitis, G.L.; Rodrigues, T.R. Temporal Variability in Evapotranspiration and Energy Partitioning over a Seasonally Flooded Scrub Forest of the Brazilian Pantanal. Agric. For. Meteorol. 2021, 308, 108559. [Google Scholar] [CrossRef]
- Rocha, H.R.; Freitas, H.C.; Rosolem, R.; Juárez, R.I.; Tannus, R.N.; Ligo, M.A.; Cabral, O.M.R.; Dias, M.A.S. Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil. Biota Neotrop. 2002, 2, 1–11. [Google Scholar] [CrossRef]
- von Randow, C.; Zeri, M.; Restrepo-Coupe, N.; Muza, M.N.; de Gonçalves, L.G.G.; Costa, M.H.; Araujo, A.C.; Manzi, A.O.; da Rocha, H.R.; Saleska, S.R.; et al. Inter-annual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models. Agric. For. Meteorol. 2013, 182, 145–155. [Google Scholar] [CrossRef]
- Araújo, A.C.; Nobre, A.D.; Kruijt, B.; Elbers, J.A.; Dallarosa, R.; Stefani, P.; Randow, C.; von Manzi, A.O.; Culf, A.D.; Gash, J.H.C.; et al. Comparative measurements of carbon dioxide fluxes from two nearby towers in a centralAmazonian rainforest: The Manaus LBA site. J. Geophys. Res. 2002, 107, 8090. [Google Scholar] [CrossRef]
- dos Santos, A.F.; Moura, F.R.T.; Seruffo, M.C.d.R.; dos Santos, W.P.; Costa, G.B.; Costa, F.A.R. The impact of meteorological changes on the quality of life regarding thermal comfort in the Amazon region. Front. Clim. 2023, 5, 1126042. [Google Scholar] [CrossRef]
- Carswell, F.E.; Costa, A.L.; Palheta, M.; Malhi, Y.; Meir, P.; Costa, J.D.P.; Ruivo, M.D.L.; Leal, L.D.S.; Costa, J.M.N.; Clement, R.J.; et al. Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest. J. Geophys. Res. 2002, 107, 16. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Munger, J.W.; Hammond-Pyle, E.; Saleska, S.R.; Restrepo-Coupe, N.; Daube, B.C.; de Camargo, P.B.; Wofsy, S.C. Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome. Agric. For. Meteorol. 2008, 148, 1266–1279. [Google Scholar] [CrossRef]
- Costa, G.; Da Rocha, H.R.; De Freitas, H.C. Fluxo De CH4 em Área de Floresta Ás Margens Do Rio Araguaia-MT. Ciência Nat. 2016, 38, 163. [Google Scholar] [CrossRef]
- Rocha, H.R.; Manzi, A.O.; Cabral, O.M.; Miller, S.D.; Goulden, M.L.; Saleska, S.R.; R.-Coupe, N.; Wofsy, S.C.; Borma, L.S.; Artaxo, P.; et al. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. 2009, 114, 8. [Google Scholar] [CrossRef]
- Costa, G.B.; Santos e Silva, C.M.; Mendes, K.R.; dos Santos, J.G.M.; Neves, T.T.A.T.; Silva, A.S.; Rodrigues, T.R.; Silva, J.B.; Dalmagro, H.J.; Mutti, P.R.; et al. WUE and CO2 Estimations by Eddy Covariance and Remote Sensing in Different Tropical Biomes. Remote Sens. 2022, 14, 3241. [Google Scholar] [CrossRef]
- Costa, G.; Silva, C.; Mendes, K.R.; Bezerra, B.; Rodrigues, T.R.; Silva, J.B.; Dalmagro, H.J.; Nunes, H.; Gomes, A.; Silva, G.; et al. The Relevance of Maintaining Standing Forests for Global Climate Balance: A Case Study in Brazilian Forests. In Tropical Forests—Ecology, Diversity and Conservation Status, 1st ed.; Carmona, E.C., Musarella, C.M., Ortiz, A.C., Eds.; InTech Open: London, UK, 2023; Volume 1, pp. 1–17. [Google Scholar] [CrossRef]
- Mendes, K.R.; Batista-Silva, W.; Dias-Pereira, J.; Pereira, M.P.S.; Souza, E.V.; Serrão, J.E.; Granja, J.A.A.; Pereira, E.C.; Gallacher, D.J.; Mutti, P.R.; et al. Leaf plasticity across wet and dry seasons in Croton blanchetianus (Euphorbiaceae) at a tropical dry forest. Sci. Rep. 2022, 12, 954. [Google Scholar] [CrossRef]
- Zhang, T.; Song, B.; Han, G.; Zhao, H.; Hu, Q.; Zhao, Y.; Liu, H. Effects of coastal wetland reclamation on soil organic carbon, total nitrogen, and total phosphorus in China: A meta-analysis. Land Degrad. Dev. 2023, 34, 3340–3349. [Google Scholar] [CrossRef]
- Zhao, Y.; Yi, J.; Yao, R.; Li, F.; Hill, R.L.; Gerke, H.H. Dimensionality and scales of preferential flow in soils of Shale Hills hillslope simulated using HYDRUS. Vadose Zone J. 2024, 23, e20367. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, W.; Zhu, Q.; Lu, Y.; Liu, Y. ECA-MobileNetV3(Large)+SegNet Model for Binary Sugarcane Classification of Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4414915. [Google Scholar] [CrossRef]
- Covey, K.; Soper, F.; Pangala, S.; Bernardino, A.; Pagliaro, Z.; Basso, L.; Cassol, H.; Fearnside, P.; Navarrete, D.; Novoa, S.; et al. Carbon and beyond: The biogeochemistry of climate in a rapidly changing Amazon. Front. For. Glob. Chang. 2021, 4, 11. [Google Scholar] [CrossRef]
- Nobre, C.A.; Sampaio, G.; Borma, L.S.; Castilla-Rubio, J.C.; Silva, J.S.; Cardoso, M. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 2016, 113, 10759–10768. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, H.; Zhang, S.; Huang, S.; Zhao, S.; Xu, X.; He, P.; Zhou, W.; Zhao, Y.; Yan, N.; et al. Carbon storage in an arable soil combining field measurements, aggregate turnover modeling and climate scenarios. Catena 2023, 220, 106708. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, C.; Zhang, H.; Zhou, X.; Zhao, D.; Wu, G.; Lin, J.; Liu, Z.; Yang, J.; Nong, X.; et al. PMT gain self-adjustment system for high-accuracy echo signal detection. Int. J. Remote Sens. 2022, 43, 7213–7235. [Google Scholar] [CrossRef]
- Wang, Y.; Quan, S.; Tang, X.; Hosono, T.; Hao, Y.; Tian, J.; Pang, Z. Organic and Inorganic Carbon Sinks Reduce Long-Term Deep Carbon Emissions in the Continental Collision Margin of the Southern Tibetan Plateau: Implications for Cenozoic Climate Cooling. J. Geophys. Res. Solid Earth 2024, 129, e2024JB028802. [Google Scholar] [CrossRef]
- Wofsy, S.C.; Harriss, R.C.; Kaplan, W.A. Carbon dioxide in the atmosphere over the Amazon Basin. J. Geophys. Res. Earth Surf. 1988, 93, 1377–1387. [Google Scholar] [CrossRef]
- Phillips, O.L.; Brienen, R.J.W.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; Vásquez Martinez, R.; et al. Carbon Uptake by Mature Amazon Forests Has Mitigated Amazon Nations’ Carbon Emissions. Carbon Balance Manag. 2017, 12, 1–9. [Google Scholar] [CrossRef]
- Grace, J.; Lloyd, J.; McIntyre, J.; Miranda, A.C.; Meir, P.; Miranda, H.; Moncrieff, J.M.; Massheder, J.; Wright, I.R.; Gash, J. Fluxes of carbon dioxide and water vapourover an undisturbed tropical rainforest in south-west Amazonia. Glob. Chang. Biol. 1995, 1, 1–12. [Google Scholar] [CrossRef]
- Malhi, Y.; Nobre, A.; Grace, J.; Kruijt, B.; Pereira, M.; Culf, A.; Scott, S. Carbon dioxide transfer over a Central Amazonian rain forest. J. Geophys. Res. 1998, 103, 31593–31612. [Google Scholar] [CrossRef]
- Keller, M.; Alencar, A.; Asner, G.P.; Braswell, B.; Bustamante, M.; Davidson, E.; Feldpausch, T.; Fernandes, E.; Goulden, M.; Kabat, P.; et al. Ecological research in the large-scale biosphere–atmosphere experiment in Amazonia: Early results. Ecol. Appl. 2004, 14, S3–S16. [Google Scholar] [CrossRef]
- Saleska, S.R.; Millar, S.D.; Martos, D.M.; Goulden, M.L.; Wofsy, S.C.; da Rocha, H.R.; de Camargo, P.B.; Crill, P.; Daule, B.C.; de Freitas, H.C.; et al. Carbon in Amazon forests, unexpected seasonal fluxes and disturbance-induced losses. Science 2003, 302, 1554–1557. [Google Scholar] [CrossRef]
- Miller, S.D.; Goulden, M.L.; Menton, M.C.; Da Rocha, H.R.; De Freitas, H.C.; Figueira, A.M.S.; Sousa, C.A.D. Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol. Appl. 2004, 14, S114–S126. [Google Scholar] [CrossRef]
- Espírito-Santo, F.D.; Gloor, M.; Keller, M.; Malhi, Y.; Saatchi, S.; Nelson, B.; Junior, R.C.O.; Pereira, C.; Lloyd, J.; Frolking, S.; et al. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 2014, 5, 3434. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, H.; Xu, C.; Zhou, X.; Liu, Z.; Zhao, D.; Lin, J.; Wu, G. A Real-Time Data Acquisition System for Single-Band Bathymetric LiDAR. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5702721. [Google Scholar] [CrossRef]
- Fan, X.; Hu, Z.; Zhao, Y.; Chen, J.; Wei, T.; Huang, Z. A Small-Ship Object Detection Method for Satellite Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 11886–11898. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Zheng, Y.; Wu, Z.; Fu, L. Multiscale 3-D–2-D Mixed CNN and Lightweight Attention-Free Transformer for Hyperspectral and LiDAR Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 2100116. [Google Scholar] [CrossRef]
- Chen, X.; Xie, D.; Zhang, Z.; Sharma, R.P.; Chen, Q.; Liu, Q.; Fu, L. Compatible Biomass Model with Measurement Error Using Airborne LiDAR Data. Remote Sens. 2023, 15, 3546. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Y.; Song, J.; Zhou, Q.; Rasol, J.; Ma, L. Planet craters detection based on unsupervised domain adaptation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 7140–7152. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Z.; Liu, X.; Zheng, W.; Yin, L. Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecol. Indic. 2023, 154, 110765. [Google Scholar] [CrossRef]
- Shang, K.; Xu, L.; Liu, X.; Yin, Z.; Liu, Z.; Li, X.; Yin, L.; Zheng, W. Study of Urban Heat Island Effect in Hangzhou Metropolitan Area Based on SW-TES Algorithm and Image Dichotomous Model. SAGE Open 2023, 13, 1–20. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Z.; Yang, Y.; Li, C.; Yin, Y.; Zhao, X.; Zhao, N.; Tian, J.; Li, H. Metallogenic prediction based on fractal theory and machine learning in Duobaoshan Area, Heilongjiang Province. Ore Geol. Rev. 2024, 168, 106030. [Google Scholar] [CrossRef]
- Myneni, R.B.; Yang, W.; Nemani, R.R.; Huete, A.R.; Dickinson, R.E.; Knyazikhin, Y.; Didan, K.; Fu, R.; Juárez, R.I.N.; Saatchi, S.S.; et al. Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl. Acad. Sci. USA 2007, 104, 4820–4823. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Shimabukuro, Y.E.; Ratana, P.; Saleska, S.R.; Hutyra, L.R.; Yang, W.; Nemani, R.R.; Myneni, R. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Silva, R.M.D.; Costa, J.M.N.D.; Ruivo, M.D.L.P.; Costa, A.C.L.D.; Almeida, S.S. Influence of meteorological variables in the litterfall production in the Ferreira Penna Scientific Station, Caxiuanã, Pará, Brazil. Acta Amaz. 2009, 39, 573–582. [Google Scholar] [CrossRef]
- Costa, A.C.L.; Metcalfe, D.B.; Doughty, C.E.; de Oliveira, A.A.R.; Neto, G.F.C.; da Costa, M.C.; Silva Junior, J.D.A.; Aragão, L.E.O.C.; Almeida, S.; Galbraith, D.R.; et al. Ecosystem respiration and net primary productivity after 8–10 years of experimental through-fall reduction in an eastern Amazon forest. Plant Ecol. Divers. 2014, 7, 7–24. [Google Scholar] [CrossRef]
- Baldocchi, D.; Chu, H.; Reichstein, M. Inter-Annual Variability of Net and Gross Ecosystem Carbon Fluxes: A Review. Agric. For. Meteorol. 2018, 249, 520–533. [Google Scholar] [CrossRef]
- Hu, Z.M.; Piao, S.L.; Knapp, A.K.; Wang, X.H.; Peng, S.S.; Yuan, W.P.; Running, S.; Mao, J.F.; Shi, X.Y.; Ciais, P.; et al. Decoupling of greenness and gross primary productivity as aridity decreases. Remote Sens. Environ. 2022, 279, 10. [Google Scholar] [CrossRef]
- da Silva Ataide, W.L.; de Oliveira, F.D.A.; Pinto, C.A.D. Balance of radiation, energy and balance closure in a pristine forest in the eastern Amazon. Rev. Bras. Geogr. Física 2020, 13, 2603–2627. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World-Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- da Costa, A.C.L.; Galbraith, D.; Almeida, S.; Portela, B.T.T.; da Costa, M.; de Athaydes Silva Junior, J.; Braga, A.P.; de Gonçalves, P.H.; de Oliveira, A.A.; Fisher, R.; et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. N. Phytol. 2010, 187, 579–591. [Google Scholar] [CrossRef]
- Souza Filho, J.D.C.; Ribeiro, A.; Cohen, J.C.P. Seasonal variation of radiation in a tropical forest in northeastern Amazonia. Rev. Bras. Meteorol. 2006, 21, 318–330. [Google Scholar]
- Hutyra, L.R.; Munger, J.W.; Saleska, S.R.; Gottlieb, E.; Daube, B.C.; Dunn, A.L.; Amaral, D.F.; de Camargo, P.B.; Wofsy, S.C. Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J. Geophys. Res. 2007, 112, 1–16. [Google Scholar]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef]
- Hilker, T.; Galvão, L.S.; Aragão, L.E.; de Moura, Y.M.; Amaral, C.H.D.; Lyapustin, A.I.; Wu, J.; Albert, L.P.; Ferreira, M.J.; Anderson, L.O.; et al. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 278–287. [Google Scholar] [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006 [Data Set]. NASA EOSDIS Land Processes DAAC; NASA: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Yang, W.; Tan, B.; Huang, D.; Rautiainen, M.; Shabanov, N.; Wang, Y.; Privette, J.; Huemmrich, K.; Fensholt, R.; Sandholt, I.; et al. MODIS leaf area index products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1885–1898. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747. [Google Scholar] [CrossRef]
- Boudriki Semlali, B.E.; El Amrani, C. Satellite Big Data Ingestion for Environmentally Sustainable Development. In Emerging Trends in ICT for Sustainable Development: The Proceedings of NICE 2020 International Conference; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 269–284. [Google Scholar]
- Boudriki Semlali, B.; El Amrani, C.; Ortiz, G.; Boubeta-Puig, J.; Garcia-De-Prado, A. SAT-CEP-monitor: An air quality monitoring software architecture combining complex event processing with satellite remote sensing. Comput. Electr. Eng. 2021, 93, 107257. [Google Scholar] [CrossRef]
- Restrepo-Coupe, N.; da Rocha, H.R.; Hutyra, L.R.; da Araujo, A.C.; Borma, L.S.; Christoffersen, B.; Cabral, O.M.R.; de Camargo, P.B.; Cardoso, F.L.; da Costa, A.C.L.; et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. For. Meteorol. 2013, 819, 128–144. [Google Scholar] [CrossRef]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Giulmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Malhi, Y.; Meir, P. An international network to understand the biomass and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. Adv. Plant Community Ecol. 2002, 13, 439–450. [Google Scholar]
- Fitzjarrald, D.R.; Sakai, R.K.; Moraes, O.L.L.; De Oliveira, R.C.; Acevedo, O.C.; Czikowsky, M.J.; Beldini, T. Spatial and temporal rainfall variability near the amazon-tapajós confluence. J. Geophys. Res. Biogeosci. 2008, 113, G00B11. [Google Scholar] [CrossRef]
- Fonseca, L.D.M.; Dalagnol, R.; Malhi, Y.; Rifai, S.W.; Costa, G.B.; Silva, T.S.F.; Da Rocha, H.R.; Tavares, I.B.; Borma, L.S. Phenology and Seasonal Ecosystem Productivity in an Amazonian Floodplain Forest. Remote Sens. 2019, 11, 1530. [Google Scholar] [CrossRef]
- Goulden, M.L.; Miller, S.D.; Da Rocha, H.R.; Menton, M.C.; de Freitas, H.C.; e Silva Figueira, A.M.; de Sousa, C.A. Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl. 2004, 14, 42–54. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Yu, R.; Gamon, J.; Hmimina, G.; Filella, I.; Balzarolo, M.; Stocker, B.; Peñuelas, J. Monitoring Spatial and Temporal Variabilities of Gross Primary Production Using MAIAC MODIS Data. Remote Sens. 2019, 11, 874. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855–3862. [Google Scholar] [CrossRef]
- Artaxo, P.; Rizzo, L.V.; Brito, J.F.; Barbosa, H.M.J.; Arana, A.; Sena, E.T.; Cirino, G.G.; Bastos, W.; Martin, S.T.; Andreae, M.O. Atmospheric aerosols in Amazonia and land use change: From natural biogenic to biomass burning conditions. Faraday Discuss. 2013, 165, 203–235. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Yoon, J.H.; St Croix, K.J.; Takle, E.S. Suppressing impacts of the Amazonian deforestation by the global circulation change. Bull. Amer. Met. Soc. 2001, 82, 2209–2215. [Google Scholar] [CrossRef]
- Hilker, T.; Lyapustin, A.I.; Tucker, C.J.; Hall, F.G.; Myneni, R.B.; Wang, Y.; Bi, J.; de Moura, Y.M.; Sellers, P.J. Vegetation dynamicsand rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 2014, 111, 1604116046. [Google Scholar] [CrossRef]
- Almeida, C.T.; Delgado, R.C.; Galvão, L.S.; de Oliveira Cruz e Aragão, L.E.; Ramos, M.C. Improvements of the MODIS Gross Primary Productivity Model Based on a Comprehensive Uncertainty Assessment over the Brazilian Amazonia. ISPRS J. Photogramm. Remote Sens. 2018, 145, 268–283. [Google Scholar] [CrossRef]
- Nagai, S.; Saigusa, N.; Muraoka, H.; Nasahara, K.N. What makes the satellitebased EVI-GPP relationship unclear in a deciduous broad-leaved forest? Ecol. Res. 2010, 25, 359–365. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, H.; Lin, A.; Zou, L.; Qin, W.; Du, Q. Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data. Remote Sens. 2017, 9, 418. [Google Scholar] [CrossRef]
- Gilmanov, T.G.; Aires, L.; Barcza, Z.; Baron, V.S.; Belelli, L.; Beringer, J.; Billesbach, D.; Bonal, D.; Bradford, J.; Ceschia, E.; et al. Productivity, Respiration, and LightResponse Parameters of World Grassland and Agroecosystems Derived from FluxTower Measurements. Rangel. Ecol. Manag. 2010, 63, 16–39. [Google Scholar] [CrossRef]
- Zhu, X.; Pei, Y.; Zheng, Z.; Dong, J.; Zhang, Y.; Wang, J.; Chen, L.; Doughty, R.; Zhang, G.; Xiao, X. Underestimates of Grassland Gross Primary Production in MODIS Standard Products. Remote Sens. 2018, 10, 1771. [Google Scholar] [CrossRef]
- Wang, J.; Dong, J.; Liu, J.; Huang, M.; Li, G.; Running, S.W.; Smith, W.K.; Harris, W.; Saigusa, N.; Kondo, H.; et al. Comparison of gross primary productivity derived from GIMMS NDVI3g, GIMMS, and MODIS in southeast Asia. Remote Sens. 2014, 6, 2108–2133. [Google Scholar] [CrossRef]
- Germano, M.F.; Vitorino, M.I.; Cohen, J.C.P.; Costa, G.B.; Souto, J.I.O.; Rebelo, M.T.C.; Sousa, A.M.L. Analysis of the breeze circulations in eastern Amazon: An observational study. Atmos. Sci. Lett. 2017, 18, 67–75. [Google Scholar] [CrossRef]
- Zeri, M.; Sá, L.D.A. The Impact of Data Gaps and Quality Control Filtering on the Balances of Energy and Carbon for a Southwest Amazon Forest. Agric. For. Meteorol. 2010, 150, 1543–1552. [Google Scholar] [CrossRef]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Menzer, O.; Reichstein, M. Basic and ExtensiblePost-Processing of Eddy Covariance Flux Data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef]
- Lucas-Moffat, A.M. Multiple Gap-Filling for Eddy Covariance Datasets. Agric. For. Meteorol. 2022, 325, 109114. [Google Scholar] [CrossRef]
Measurements/Sampling Rate/Averaging Period/Spatial Resolution | Data Source |
---|---|
Direction (°) and Wind Speed (m/s); Eddy Covariance: Turbulent Fluxes of Latent Heat (W m−2), Sensible Heat (W m−2) and CO2 (μmol m−2 s−1)/5 Hz/30 min/55 m. | Three-dimensional sonic anemometer (Solent, Gill Instruments, Lymington, UK); Li-7500 infrared gas analyzer (LICOR, Lincoln, NE, USA) |
Incident and Reflected Photosynthetically Active Radiation (μmol m−2 s−1)/1 min/30 min/52 m. | Skye quantum sensor (Skye Instruments, Powys, UK) |
Radiation Balance (W m−2)/1 min/30 min/45.5 m. | 1 radiometer balance (CNR1, Kipp & Zonen, Delft, The Netherlands) |
Temperature (°C) and Relative Humidity (%)/1 min/30 min/53 m. | HMP45 AC (Campbell Scientific, Leicester, UK) |
Rainfall (mm)/1 min/30 min/53 m. | Bucket rainfall gauge (CS700, Campbell Scientific, Loughborough, UK) |
MODIS GPP (g C m−2 day−1)/8 days/500 m. (mean in 8 days) | MOD17A2H-MODIS/Terra Gross Primary Productivity |
NDVI and EVI/16 days/250 m. (mean in 16 days) | MOD13Q1-MODIS/Terra Vegetation Indices |
LAI/8 days/500 m. (mean in 8 days) | MCD15A2H–MODIS/Terra + Aqua |
Variable | Dry Season | Wet Season | ||||
---|---|---|---|---|---|---|
Mean | Sd | Max | Mean | Sd | Max | |
Tair (°C) | 27.3 | ±3.0 | 31.9 | 23.3 | ±1.6 | 35.31 |
PPFD (μmol m−2 s−1) | 772.5 | ±391.0 | 1667.5 | 9.1 | ±70.6 | 1391.9 |
Rainfall (mm) | 3.3 | ±8.2 | 77.7 | 10.2 | ±14.7 | 113.4 |
ET (mm) | 1.5 | ±0.46 | 3.0 | 1.2 | ±0.56 | 2.5 |
Rn (W m−2) | 328.1 | ±208.6 | 802.0 | 12.0 | ±24.1 | 151.2 |
LE (W m−2) | 202.0 | ±132.9 | 745.0 | 5.1 | ±11.7 | 160.1 |
H (W m−2) | 67.7 | ±58.7 | 417.9 | 12.4 | ±11.6 | 267.9 |
NDVI | 0.83 | ±0.02 | 0.88 | 0.80 | ±0.04 | 0.86 |
EVI | 0.51 | ±0.07 | 0.64 | 0.46 | ±0.07 | 0.70 |
GPP (μmol m−2 s−1) | 12.4 | ±3.1 | 19.4 | 13.3 | ±5.11 | 1.12 |
NEE (μmol m−2 s−1) | −1.14 | ±1.8 | 4.1 | −2.4 | ±2.9 | 6.7 |
RECO (μmol m−2 s−1) | 10.13 | ±3.4 | 18.8 | 8.5 | ±3.0 | 15.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, M.P.; da Silva, R.B.C.; Silva, C.M.S.e.; Bezerra, B.G.; Rêgo Mendes, K.; Marinho, L.A.; Barbosa, M.L.; Nunes, H.G.G.C.; Dos Santos, J.G.M.; Neves, T.T.d.A.T.; et al. Carbon and Energy Balance in a Primary Amazonian Forest and Its Relationship with Remote Sensing Estimates. Remote Sens. 2024, 16, 3606. https://doi.org/10.3390/rs16193606
Alves MP, da Silva RBC, Silva CMSe, Bezerra BG, Rêgo Mendes K, Marinho LA, Barbosa ML, Nunes HGGC, Dos Santos JGM, Neves TTdAT, et al. Carbon and Energy Balance in a Primary Amazonian Forest and Its Relationship with Remote Sensing Estimates. Remote Sensing. 2024; 16(19):3606. https://doi.org/10.3390/rs16193606
Chicago/Turabian StyleAlves, Mailson P., Rommel B. C. da Silva, Cláudio M. Santos e Silva, Bergson G. Bezerra, Keila Rêgo Mendes, Larice A. Marinho, Melahel L. Barbosa, Hildo Giuseppe Garcia Caldas Nunes, José Guilherme Martins Dos Santos, Theomar Trindade de Araújo Tiburtino Neves, and et al. 2024. "Carbon and Energy Balance in a Primary Amazonian Forest and Its Relationship with Remote Sensing Estimates" Remote Sensing 16, no. 19: 3606. https://doi.org/10.3390/rs16193606
APA StyleAlves, M. P., da Silva, R. B. C., Silva, C. M. S. e., Bezerra, B. G., Rêgo Mendes, K., Marinho, L. A., Barbosa, M. L., Nunes, H. G. G. C., Dos Santos, J. G. M., Neves, T. T. d. A. T., Santana, R. A., Peres, L. V., da Silva, A. S., Oliveira, P., Moutinho, V. H. P., Machado, W. B., Reis, I. M. S., Seruffo, M. C. d. R., Gaspar, A. B. d. S., ... Brito-Costa, G. (2024). Carbon and Energy Balance in a Primary Amazonian Forest and Its Relationship with Remote Sensing Estimates. Remote Sensing, 16(19), 3606. https://doi.org/10.3390/rs16193606