Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = vitamin C transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 881 KiB  
Article
Effects of Modified Atmosphere Packaging on Postharvest Physiology and Quality of ‘Meizao’ Sweet Cherry (Prunus avium L.)
by Jianchao Cui, Xiaohui Jia, Wenhui Wang, Liying Fan, Wenshi Zhao, Limin He and Haijiao Xu
Agronomy 2025, 15(8), 1774; https://doi.org/10.3390/agronomy15081774 - 24 Jul 2025
Viewed by 414
Abstract
Sweet cherry (Prunus avium L.) is becoming increasingly popular in China, but its postharvest quality deteriorates significantly during harvest storage and transport. Here, we investigated the efficiency of different modified atmosphere packaging (MAP) treatments on the quality and physiology of ‘Meizao’ sweet [...] Read more.
Sweet cherry (Prunus avium L.) is becoming increasingly popular in China, but its postharvest quality deteriorates significantly during harvest storage and transport. Here, we investigated the efficiency of different modified atmosphere packaging (MAP) treatments on the quality and physiology of ‘Meizao’ sweet cherry during 60 days of cold storage (0 ± 0.5 °C). Fruits were sealed in four types of MAP low-density polyethylene (LDPE) liners (PE20, PE30, PE40, and PE50), with unsealed 20 μm LDPE packaging bags used as the control. Our findings demonstrated that PE30 packaging established an optimal gas composition (7.0~7.7% O2 and 3.6~3.9% CO2) that effectively preserved ‘Meizao’ sweet cherry quality. It maintained the fruit color, firmness, soluble solid content (SSC), titratable acidity (TA), and vitamin C (Vc) content while simultaneously delaying deteriorative processes such as weight loss, pedicel browning, and fruit decay. These results indicate that PE30 was the most suitable treatment for preserving the quality of ‘Meizao’ sweet cherries during cold storage. Furthermore, physiological research showed that significant inhibition of respiration rate was achieved by PE30, accompanied by maintained activities of antioxidant enzymes (CAT, POD, and SOD), which consequently led to reduced accumulations of ethanol and malondialdehyde (MDA) during cold storage. To date, no systematic studies have investigated the physiological and biochemical responses of ‘Meizao’ to different thickness-dependent LDPE-MAP conditions. These observations highlight the power of the optimized PE30 packaging as an effective method for extending the fruit storage life, delaying postharvest senescence, and maintaining fruit quality of ‘Meizao’ sweet cherry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 3057 KiB  
Article
Valproic Acid Enhances the Anticancer Effect of L-Ascorbic Acid by Upregulating Sodium-Dependent Vitamin C Transporter 2 in Colorectal Cancer
by Kawalin Kantawong, Hakim Meutia Diva, Phuong T. Ho, Ahlim Lee, Misae Kiba, Mi-Gi Lee, Hee Kang, Taek-Kyun Lee and Sukchan Lee
Antioxidants 2025, 14(7), 864; https://doi.org/10.3390/antiox14070864 - 15 Jul 2025
Viewed by 937
Abstract
Vitamin C, also known as L-ascorbic acid (AA), functions as a pro-oxidant in cancer at high doses and exerts anticancer effects by generating reactive oxygen species (ROS) and selectively inducing damage to cancer cells. However, AA at low doses promotes cancer cell proliferation. [...] Read more.
Vitamin C, also known as L-ascorbic acid (AA), functions as a pro-oxidant in cancer at high doses and exerts anticancer effects by generating reactive oxygen species (ROS) and selectively inducing damage to cancer cells. However, AA at low doses promotes cancer cell proliferation. The efficacy of high-dose AA therapy is frequently restricted by inadequate intracellular AA uptake, resulting from low expression of sodium-dependent vitamin C transporter 2 (SVCT2). In this study, we investigated whether valproic acid (VPA), a histone deacetylase inhibitor, could circumvent this constraint by increasing the expression of SVCT2 in colorectal cancer cells, including HCT-116 and DLD-1 with low SVCT2 levels. We found that VPA increased SVCT2 expression in both cell lines. Co-treatment with AA and VPA increased the number of apoptotic cells and enhanced intracellular AA uptake via VPA-upregulated SVCT2, followed by increased ROS production in both cell lines. Furthermore, the combination increased the synergistic anticancer effects and suppressed the hormetic dose response of AA in both cell lines. In a xenograft mouse model, co-treatment decreased tumor size and increased the tumor growth inhibition ratio compared to treatment with AA or VPA alone. Accordingly, VPA treatment enhanced SVCT2 expression in colorectal cancer cells, suppressed the hormetic dose-response effect of AA, and improved the potential of high-dose AA therapy as an anticancer agent. Full article
Show Figures

Figure 1

15 pages, 1140 KiB  
Article
Serum Proteomic Changes in Pet Rabbits with Subclinical and Clinical Encephalitozoonosis in Thailand
by Taksaon Duangurai, Onrapak Reamtong, Tipparat Thiangtrongjit, Siriluk Jala, Peerut Chienwichai and Naris Thengchaisri
Animals 2025, 15(13), 1962; https://doi.org/10.3390/ani15131962 - 3 Jul 2025
Viewed by 507
Abstract
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits [...] Read more.
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits (30 per group) was pooled (10 samples per pool, 3 pools per group) and analyzed using one-dimensional gel electrophoresis and mass spectrometry. The proteomic analysis revealed 109, 98, and 74 proteins expressed in healthy, subclinical, and clinical groups, respectively. Of these, 50, 40, and 33 proteins were unique to the healthy, subclinical, and clinical groups, respectively, with only 10 proteins shared across all. A total of 88 proteins were differentially expressed in infected groups compared to healthy controls. Importantly, 12 proteins were consistently upregulated in both subclinical and clinical infections. These include markers related to the immune response (beta-2-microglobulin, alpha-2-HS-glycoprotein), coagulation (antithrombin-III, alpha-1-antiproteinase S-1), vitamin A transport (retinol-binding proteins), lipid metabolism (apolipoprotein C-III), cytoskeletal regulation (actin-depolymerizing factor), extracellular matrix integrity (fibrillin 2), and oxidative stress (monooxygenase DBH-like 1). Additionally, Gc-globulin and ER lipid-raft-associated 1 were linked to immune modulation and signaling. These findings identify specific serum proteins as promising biomarkers for distinguishing subclinical from clinical encephalitozoonosis in rabbits, enabling an early diagnosis and effective disease monitoring. Full article
(This article belongs to the Special Issue Advances in Exotic Pet Medicine)
Show Figures

Figure 1

19 pages, 1724 KiB  
Article
Administration of Ascorbic Acid Alleviates Neuronal Damage After Cerebral Ischemia in ODS Rats
by Naohiro Iwata, Naoto Ogawa, Tom Imai, Siti Sabirah Binti Ridzuan, Shinya Kamiuchi, Hirokazu Matsuzaki, Meiyan Xuan, Bo Yuan, Mari Okazaki and Yasuhide Hibino
Antioxidants 2025, 14(7), 773; https://doi.org/10.3390/antiox14070773 - 23 Jun 2025
Viewed by 445
Abstract
Reactive oxygen species (ROS) contribute to cerebral damage in transient cerebral ischemia, making their elimination a key therapeutic target. Osteogenic disorder Shionogi (ODS) rats, which lack endogenous L-ascorbic acid (AA) synthesis, serve as a useful model for investigating AA’s protective effects against ischemic [...] Read more.
Reactive oxygen species (ROS) contribute to cerebral damage in transient cerebral ischemia, making their elimination a key therapeutic target. Osteogenic disorder Shionogi (ODS) rats, which lack endogenous L-ascorbic acid (AA) synthesis, serve as a useful model for investigating AA’s protective effects against ischemic brain injury. ODS rats were given an AA-free diet (0% AA), 0.1% AA, or 1% AA in drinking water for two weeks before undergoing middle cerebral artery occlusion and reperfusion (MCAO/Re). The 0% AA group exhibited pronounced damage following MCAO/Re, characterized by the induction of lipid peroxidation, O2 production, inflammation-related gene expression, and extensive infarct formation. In contrast, the 1% AA group showed reductions in these markers, along with fewer TUNEL-positive cells and a smaller infarct volume. Notably, sodium-dependent vitamin C transporter 2 (SVCT2) expression increased in both two AA-supplemented groups, although the 0.1% AA group did not exhibit sufficient improvement in post-ischemic damage. A two-week intake of AA significantly alleviated MCAO/Re-mediated injuries associated with oxidative stress and inflammation in ODS rats. Sufficient AA intake is thus supposed to mitigate ischemic damage, possibly through SVCT2 upregulation and enhanced AA availability, leading to the suppression of oxidative stress and inflammation. Full article
Show Figures

Graphical abstract

28 pages, 3523 KiB  
Review
Nanoliposomes as Effective Vehicles of Antioxidant Compounds in Food and Health
by Jonathan García-Morales, Diana Fimbres-Olivarría, Ricardo Iván González-Vega, Ariadna Thalía Bernal-Mercado, Santiago Pedro Aubourg-Martínez, Karla Alejandra López-Gastélum, Miguel Ángel Robles-García, José de Jesús Ornelas-Paz, Saúl Ruiz-Cruz and Carmen Lizette Del-Toro-Sánchez
Int. J. Mol. Sci. 2025, 26(12), 5523; https://doi.org/10.3390/ijms26125523 - 9 Jun 2025
Viewed by 600
Abstract
Nanoliposomes have increased exponentially since their discovery in the 1960s, primarily for encapsulating medicines or compounds that can improve human health. However, recent studies propose nanoliposomes as vehicles to protect, transport, and subsequently release compounds of various kinds to fortify the properties of [...] Read more.
Nanoliposomes have increased exponentially since their discovery in the 1960s, primarily for encapsulating medicines or compounds that can improve human health. However, recent studies propose nanoliposomes as vehicles to protect, transport, and subsequently release compounds of various kinds to fortify the properties of foods and cause a prolonged release of encapsulated substances in a specific part of the body. Among the compounds successfully encapsulated are β-carotene; α-carotene; vitamins A, C, and D; and lycopene, among others. The encapsulation of extracts with high contents of antioxidant pigments is still to be explored. Therefore, this review aims to compile the compounds that have been successfully encapsulated and have met the specific prolonged release criteria, highlighting areas of research opportunity and application such as biomedical, pharmaceutical, and nutraceutical industries. Full article
(This article belongs to the Special Issue Micro-Nano Materials for Drug Delivery and Disease Treatment)
Show Figures

Figure 1

25 pages, 340 KiB  
Review
Nutritional Value and Health Implications of Meat from Monogastric Animals Exposed to Heat Stress
by José A. M. Prates
Nutrients 2025, 17(8), 1390; https://doi.org/10.3390/nu17081390 - 21 Apr 2025
Cited by 1 | Viewed by 1669
Abstract
Heat stress (HS), driven by rising global temperatures, significantly impairs the nutritional composition and sensory quality of meat from monogastric animals, particularly swine and poultry. HS induces physiological disturbances, including reduced feed intake, oxidative stress, and endocrine disruption, which together reduce muscle protein [...] Read more.
Heat stress (HS), driven by rising global temperatures, significantly impairs the nutritional composition and sensory quality of meat from monogastric animals, particularly swine and poultry. HS induces physiological disturbances, including reduced feed intake, oxidative stress, and endocrine disruption, which together reduce muscle protein content by 10–15% and essential amino acid levels (e.g., lysine, methionine, threonine) by 15–25%. Lipid profiles are also altered, with up to 30% reductions in polyunsaturated fatty acids (PUFAs), especially omega-3s, and an increased saturated fat content. Additionally, HS reduces the retention of vitamins E, A, D, and C by 20–50% and critical minerals such as selenium, zinc, and iron, compromising antioxidant capacity, immune function, and oxygen transport. These changes diminish meat tenderness, juiciness, flavour, and colour stability, leading to reduced consumer appeal and dietary quality. The consumption of heat-stressed meat may elevate risks for cardiovascular disease, oxidative stress, and micronutrient deficiencies. Mitigation strategies, including dietary antioxidant and osmolyte supplementation, genetic selection for thermotolerance, and optimised feeding practices, can reduce oxidative damage by up to 40% and improve nutrient retention. This review synthesises the current evidence on HS-induced meat quality deterioration and explores nutritional and management strategies to protect animal productivity and human health. Full article
16 pages, 2662 KiB  
Article
Vitamin C Modulates the PI3K/AKT Pathway via Glutamate and Nitric Oxide in Developing Avian Retina Cells in Culture
by Aline T. Duarte-Silva, Ivan Domith, Isabele Gonçalves-da-Silva and Roberto Paes-de-Carvalho
Brain Sci. 2025, 15(4), 369; https://doi.org/10.3390/brainsci15040369 - 2 Apr 2025
Viewed by 730
Abstract
Background: In addition to its known antioxidant function, the reduced form of vitamin C, ascorbate, also acts as a neuromodulator in the nervous system. Previous work showed a reciprocal interaction of ascorbate with glutamate in chicken embryo retinal cultures. Ascorbate modulates extracellular glutamate [...] Read more.
Background: In addition to its known antioxidant function, the reduced form of vitamin C, ascorbate, also acts as a neuromodulator in the nervous system. Previous work showed a reciprocal interaction of ascorbate with glutamate in chicken embryo retinal cultures. Ascorbate modulates extracellular glutamate levels by inhibiting excitatory amino acid transporter 3 and promoting the activation of NMDA receptors and the consequent activation of intracellular signaling pathways involved in transcription and survival. Objective: In the present work, we investigated the regulation of AKT phosphorylation by ascorbate in chicken embryo retina cultures. Methodology: Cultures of chicken embryo retina cells were tested using Western blot, immunocytochemistry, fluorescent probe transfection, and cellular imaging techniques. Results: Our results show that ascorbate induces a concentration and time-dependent increase in AKT phosphorylation via the accumulation of extracellular glutamate, the activation of glutamate receptors, and the activation of the PI3K pathway. Ascorbate produces an increase in intracellular calcium accumulation and, accordingly, AKT phosphorylation by ascorbate is blocked by the calcium chelator BAPTA-AM. Moreover, AKT phosphorylation is also blocked by the nitric oxide synthase inhibitor 7-nitroindazole, indicating that it is mediated by calcium and nitric oxide-dependent mechanisms. Conclusions: We demonstrate that ascorbate modulates the PI3K/AKT pathway in retinal cultures through the activation of glutamate receptors and NO production in a calcium-dependent manner. Given that previous research has shown that glutamate induces ascorbate release in retinal cultures, our findings emphasize the significance of the reciprocal interactions between ascorbate and glutamate in retinal development. These findings provide further evidence supporting the role of ascorbate as a neuromodulator in retinal development. Full article
(This article belongs to the Special Issue Retinal Neurochemistry and Development)
Show Figures

Graphical abstract

17 pages, 3154 KiB  
Article
Effect of Postharvest Storage Temperature and Duration on Tomato Fruit Quality
by Xueou Li, Huofeng Huang, Lida Zhang and Lingxia Zhao
Foods 2025, 14(6), 1002; https://doi.org/10.3390/foods14061002 - 15 Mar 2025
Cited by 2 | Viewed by 2224
Abstract
Tomato (Solanum lycopersicum), a leading vegetable crop of significant economic importance, is a valuable source of nutrients and minerals in the human diet. Consumer and breeder interest focuses extensively on tomato quality attributes, including appearance, texture, flavor, and nutritional value. While [...] Read more.
Tomato (Solanum lycopersicum), a leading vegetable crop of significant economic importance, is a valuable source of nutrients and minerals in the human diet. Consumer and breeder interest focuses extensively on tomato quality attributes, including appearance, texture, flavor, and nutritional value. While moderate low temperatures are generally beneficial for preserving tomato quality during transportation and storage, the precise effects of storage temperature on these qualities remain to be fully elucidated. This study investigated the changes in quality attributes of tomato (cv. Shangjiao No.2) fruit stored at different temperatures (4 °C, 14 °C, and 24 °C) for varying durations (0, 1, 5, 9, and 15 days postharvest, dph). Results showed that low temperatures (4 °C and 14 °C) were beneficial for maintaining fruit appearance and total soluble solids (TSS) content. Furthermore, 4 °C storage effectively delayed ascorbic acid (Vitamin C) loss. Storage at both 4 °C and 14 °C similarly and significantly reduced fruit softening and water loss rate (WLR). This reduction was associated with the temperature-regulated expression of cell wall-related genes, including SlCESA6, SlCEL2, SlEXP1, and SlPL. The activities of cell wall-degrading enzymes, such as polygalacturonase (PG), β-galactosidase (β-Gal), and cellulase, were also significantly inhibited at lower storage temperatures. Additionally, storage at 24 °C caused considerable damage to plastid ultrastructure. Although temperature had a minor effect on carotenoid, the reduction in carotenoid levels was less pronounced at 4 °C. While low-temperature storage suppressed the release of some aroma compounds, it also reduced the levels of undesirable volatiles. This study provides insights for optimizing storage temperature and duration to maintain tomato fruit quality. Full article
(This article belongs to the Special Issue Postharvest Storage and Preservation of Fruits and Vegetables)
Show Figures

Figure 1

13 pages, 570 KiB  
Article
Search for Disease-Specific Genetic Markers Originated from the Vitamin D Binding Protein Gene Polymorphisms in the Multiple Sclerosis Cohort in the Latvian Population
by Jolanta Kalnina, Ilva Trapina, Samanta Plavina, Elina Leonova, Jegors Paramonovs, Nikolajs Sjakste and Natalia Paramonova
Int. J. Mol. Sci. 2025, 26(6), 2555; https://doi.org/10.3390/ijms26062555 - 12 Mar 2025
Cited by 1 | Viewed by 697
Abstract
Vitamin D is crucial for immune regulation, and its deficiency is linked to multiple sclerosis (MS). The GC gene encodes Vitamin D Binding Protein (VDBP), which regulates vitamin D transport and bioavailability. This study examines the association of GC polymorphisms (rs7041, rs4588) with [...] Read more.
Vitamin D is crucial for immune regulation, and its deficiency is linked to multiple sclerosis (MS). The GC gene encodes Vitamin D Binding Protein (VDBP), which regulates vitamin D transport and bioavailability. This study examines the association of GC polymorphisms (rs7041, rs4588) with MS susceptibility and their impact on 25-hydroxyvitamin D [25(OH)D] levels in a Latvian cohort. This case–control study included 296 MS patients and 253 healthy controls. Genotyping of rs7041 and rs4588 was conducted using restriction fragment length polymorphism analysis and validated by Sanger sequencing. Plasma 25(OH)D levels were measured in 131 MS patients using an enzyme-linked immunosorbent assay. Statistical analysis included Hardy–Weinberg equilibrium testing, Fisher’s exact test, allelic and genotypic frequency comparisons to assess MS risk, and the Kruskal–Wallis test for 25(OH)D level differences among genotypes. Our findings indicate that the rare rs7041-T and rs4588-A alleles, along with their corresponding haplotypes, exhibit a protective effect against MS (p < 0.001; OR = 0.65 for rs4588-A; p < 0.01; OR = 0.70 for rs7041-T). Conversely, the common rs7041-G and rs4588-C alleles were associated with an increased MS risk (p < 0.05). Individuals with the Gc1F/1F isotype had the highest average 25(OH)D levels (29.31 ng/mL), while Gc1S/2 carriers had the lowest (21.53 ng/mL). Our results indicate that GC polymorphisms may influence the susceptibility of Latvians to MS and vitamin D status. Full article
(This article belongs to the Special Issue The Role of Vitamin D in Human Health and Diseases 4.0)
Show Figures

Figure 1

22 pages, 4332 KiB  
Article
Vitamin D Binding Protein Gene Polymorphisms (rs4588 and rs7041) and VDBP Levels in Total Hip Replacement Outcomes
by Dominika Rozmus, Ewa Fiedorowicz, Janusz Płomiński and Anna Cieślińska
Nutrients 2025, 17(3), 378; https://doi.org/10.3390/nu17030378 - 21 Jan 2025
Viewed by 1386
Abstract
Background: Total hip replacement (THR) significantly improves patients’ quality of life; however, prosthesis loosening remains a significant complication. Vitamin D, essential for calcium homeostasis and bone mineralization, is transported and stabilized by vitamin D binding protein (VDBP). Common single nucleotide polymorphisms (SNPs) in [...] Read more.
Background: Total hip replacement (THR) significantly improves patients’ quality of life; however, prosthesis loosening remains a significant complication. Vitamin D, essential for calcium homeostasis and bone mineralization, is transported and stabilized by vitamin D binding protein (VDBP). Common single nucleotide polymorphisms (SNPs) in the VDBP gene, rs4588 and rs7041, may influence serum vitamin D levels and potentially impact THR outcomes. This study aimed to analyze the association between these SNPs, serum levels of VDBP and 25(OH)D, and their potential roles in THR outcomes. Methods: The study included three patient groups: (1) patients undergoing arthroscopy after a THR without prosthesis loosening (CA—Control Arthroplasty), (2) patients with hip prosthesis loosening (L—Loosening), and (3) a control group (C—Control). Genotyping of rs4588 and rs7041 in the VDBP gene was conducted using PCR-RFLP and TaqMan Genotyping real-time PCR. Serum levels of VDBP and 25(OH)D were measured using ELISA. Comparisons between groups were performed using statistical analyses, including odds ratios (OR) and significance testing (p-values). Results: There are significant differences in VDBP concentrations between the groups: L vs. CA (p < 0.0001), L vs. C (p = 0.0118), L vs. L + CA (p = 0.0013), CA vs. C (p < 0.0001), and CA vs. L + CA (p < 0.0001), and in 25(OH)D concentrations between groups: L vs. C (p < 0.0001), CA vs. C (p = 0.0008), and C vs. L + CA (p < 0.0001). Conclusions: The study findings suggest a protective role of 25(OH)D against prosthesis loosening in THR. The rs4588 SNP in the VDBP gene may increase the risk of loosening, while differences in VDBP and 25(OH)D concentrations between patient groups highlight their potential importance in THR outcomes. Full article
Show Figures

Figure 1

17 pages, 20035 KiB  
Article
Comparative Analysis of Ca2+/Cation Antiporter Gene Family in Rosa roxburghii and Enhanced Calcium Stress Tolerance via Heterologous Expression of RrCAX1a in Tobacco
by Tuo Zeng, Liyong Zhu, Wenwen Su, Lei Gu, Hongcheng Wang, Xuye Du, Bin Zhu, Caiyun Wang and Di Wu
Plants 2024, 13(24), 3582; https://doi.org/10.3390/plants13243582 - 22 Dec 2024
Cited by 1 | Viewed by 882
Abstract
Rosa roxburghii, a calciphilic species native to the mountainous regions of Southwest China, is renowned for its high vitamin C and bioactive components, making it valuable for culinary and medicinal uses. This species exhibits remarkable tolerance to the high-calcium conditions typical of [...] Read more.
Rosa roxburghii, a calciphilic species native to the mountainous regions of Southwest China, is renowned for its high vitamin C and bioactive components, making it valuable for culinary and medicinal uses. This species exhibits remarkable tolerance to the high-calcium conditions typical of karst terrains. However, the underlying mechanisms of this calcium resilience remain unclear. The Ca2+/cation antiporter (CaCA) superfamily plays a vital role in the transport of Ca2+ and other cations and is crucial for plant tolerance to metal stress. However, the roles and evolutionary significance of the CaCA superfamily members in R. roxburghii remain poorly understood. This study identified 22 CaCA superfamily genes in R. roxburghii, categorized into four subfamilies. The gene structures of these RrCaCAs show considerable conservation across related species. Selection pressure analysis revealed that all RrCaCAs are subject to purifying selection. The promoter regions of these genes contain numerous hormone-responsive and stress-related elements. qRT-PCR analyses demonstrated that H+/cation exchanger (CAX) RrCAX1a and RrCAX3a were highly responsive to Ca2+ stress, cation/Ca2+ exchanger (CCX) RrCCX4 to Mg2+ stress, and RrCCX11a to Na+ stress. Subcellular localization indicated that RrCAX1a is localized to the plant cell membrane, and its stable transformation in tobacco confirmed its ability to confer enhanced resistance to heavy Ca2+ stresses, highlighting its crucial role in the high-calcium tolerance mechanisms of R. roxburghii. This research establishes a foundation for further molecular-level functional analyses of the adaptation mechanisms of R. roxburghii to high-calcium environments. Full article
Show Figures

Figure 1

17 pages, 3720 KiB  
Article
Effects of Different Stocking Densities on Snail Bellamya purificata Foot Muscle Nutritional Quality and Metabolic Function
by Yingyue Lou, Rui Jia, Bing Li, Linjun Zhou, Jian Zhu and Yiran Hou
Animals 2024, 14(24), 3618; https://doi.org/10.3390/ani14243618 - 15 Dec 2024
Viewed by 1129
Abstract
Snail Bellamya purificata is not only useful for bioremediation, purifying aquaculture environments, but it is also a commercially valuable and nutritionally rich aquatic product. To analyze the effect of various stocking densities on the muscle nutritional quality and metabolic functions of B. purificata [...] Read more.
Snail Bellamya purificata is not only useful for bioremediation, purifying aquaculture environments, but it is also a commercially valuable and nutritionally rich aquatic product. To analyze the effect of various stocking densities on the muscle nutritional quality and metabolic functions of B. purificata. The transcriptome and metabolome were analyzed and set up three different density groups—low (LD, 234.38 g/m2), medium (MD, 468.75 g/m2), and high (HD, 937.5 g/m2). The results of the study showed that the weight gain (WG) and specific growth rate (SGR) of B. purificata in the MD and HD groups were significantly lower compared to the LD group. High stocking density significantly reduced the oleic acid (C18:1n9c), linoleic acid (C18:2n6c), alpha-linolenic acid (C18:3n3), eicosadienoic acid (C20:2), erucic acid (C22:1n9), docosahexaenoic acid (DHA, C22:6n3), and lignoceric acid (C24:0) levels within snail foot muscle. Most of the identified differentially expressed genes (DEGs) were categorized as Signal transduction, according to the Kyoto Encyclopedia of Genes and Genomes (KEGG); these genes were categorized into Transport and catabolism, Endocrine system, and Immune system. A total of 11 upregulated DEGs and 19 downregulated DEGs were identified and confirmed to be associated with density stress. The identified metabolites were mainly enriched in the Metabolism category, with 620 differential metabolites identified in positive ion (POS) mode and 265 differential metabolites identified in the negative ion (NEG) mode among different stocking density groups. The differential metabolites affected by stocking density were primarily amino acids, nucleic acids, vitamins, and lipid metabolites. There were 8 upregulated differential metabolites and 14 downregulated differential metabolites identified and confirmed to be associated with density stress. These findings elucidated the response mechanisms of B. purificata to adverse stocking density conditions and provide data and a theoretical basis for selecting appropriate stocking densities for B. purificata. Full article
(This article belongs to the Special Issue Recent Research on Shellfish Aquaculture and Reproduction)
Show Figures

Figure 1

19 pages, 6611 KiB  
Article
Mathematical Modeling of Goat Meat Drying Kinetics with Thermal Oscillations
by Valeria Carrillo Luis, Diego Beristain Rios, Omar Augusto Hernández-Flores, Carolina Romero-Salazar and Sadoth Sandoval-Torres
Foods 2024, 13(23), 3836; https://doi.org/10.3390/foods13233836 - 28 Nov 2024
Cited by 1 | Viewed by 962
Abstract
Goat meat has a high nutritional value, since it contains up to 29% protein, as well as iron, potassium and vitamin B12. To prolong the shelf life of this food, a drying process can be applied; however, there is scarce information on the [...] Read more.
Goat meat has a high nutritional value, since it contains up to 29% protein, as well as iron, potassium and vitamin B12. To prolong the shelf life of this food, a drying process can be applied; however, there is scarce information on the kinetics and drying parameters for this food material. The objective of this work was to characterize the thermal drying process of goat meat, through the mathematical modeling of convective drying kinetics, and its validation with experimental data obtained in a drying tunnel. The experiments were carried out with samples of loin (Longissumus dorsi) of Boer goat meat from the Mixteca region of Oaxaca (Mexico). Meat samples were subjected to air convection drying at 40, 50, 60 and 70 °C (with temperature oscillation), with air velocities of 1 and 2 m/s. Drying kinetics, air and meat temperature profiles, relative humidity and air flow velocity were recorded. Four models were analyzed: two-term, Midilli’s model, Wang and Singh’s model and a heuristic model with temperature dependence. The proposed mathematical models represented drying kinetics with an accurate fitting of experimental data, with standard errors (RMSE) in the range of 0.004–0.029. The estimated diffusion coefficients are consistent with the transport properties in biomaterials. The heuristic model was based on the solution of the effective diffusion equation considering the linearization of the temperature-dependent diffusion coefficient, showing a standard error in the range of 0.007–0.028, satisfactorily representing the temperature oscillations that allows a moisture diffusion reorganization, mainly when drastic temperature changes occur. Full article
Show Figures

Figure 1

37 pages, 7538 KiB  
Review
Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review
by Innokenty M. Mokhosoev, Dmitry V. Astakhov, Alexander A. Terentiev and Nurbubu T. Moldogazieva
Cells 2024, 13(23), 1958; https://doi.org/10.3390/cells13231958 - 26 Nov 2024
Cited by 10 | Viewed by 4930
Abstract
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that [...] Read more.
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug–drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. Conclusions: The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Tumor Pathogenesis)
Show Figures

Figure 1

17 pages, 2918 KiB  
Article
Enhanced Bioavailability and Immune Benefits of Liposome-Encapsulated Vitamin C: A Combination of the Effects of Ascorbic Acid and Phospholipid Membranes
by Sage V. McGarry, Dina Cruickshank, Ifeanyi Iloba and Gitte S. Jensen
Nutraceuticals 2024, 4(4), 626-642; https://doi.org/10.3390/nutraceuticals4040034 - 12 Nov 2024
Cited by 3 | Viewed by 7888
Abstract
The bioavailability of vitamin C, or ascorbic acid, depends on limiting transport mechanisms that may be bypassed by liposome-encapsulation. The goal for this study was to evaluate the uptake, antioxidant, and immune-modulating effects of liposome-encapsulated vitamin C (LEC) using Lypo-Spheric® technology, compared [...] Read more.
The bioavailability of vitamin C, or ascorbic acid, depends on limiting transport mechanisms that may be bypassed by liposome-encapsulation. The goal for this study was to evaluate the uptake, antioxidant, and immune-modulating effects of liposome-encapsulated vitamin C (LEC) using Lypo-Spheric® technology, compared to three controls: ascorbic acid (AA), the phospholipid fraction composing the liposome, and placebo. A double-blinded placebo-controlled cross-over study design involved twelve healthy participants attending four clinic visits. At each visit, a baseline blood draw was performed, followed by consumption of 1 g LEC, 1 g AA, the phospholipid component of LEC, or placebo. Additional blood draws were performed at 2, 4, and 6 h. Consuming LEC and AA increased blood levels of vitamin C; the levels were significantly higher after consuming LEC at all timepoints when compared to AA (p < 0.01). LEC consumption increased serum antioxidant capacity (p < 0.01 at 2 h) and protection. Consuming LEC increased IFN-γ levels at 6 h, while consuming the phospholipid fraction rapidly decreased inflammatory cytokines IL-6, MCP-1, and MIP-1α at 2 h. Consuming LEC provided enhanced vitamin C bioavailability and antioxidant protection compared to AA. Consuming the phospholipids had anti-inflammatory effects. The results suggest that LEC provides antioxidant and immune benefits above AA, useful in preventive medicine. Full article
(This article belongs to the Special Issue Nutraceuticals and Their Anti-inflammatory Effects)
Show Figures

Figure 1

Back to TopTop