Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = viral NS2B-NS3 protease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4611 KiB  
Article
Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic Flaviviridae
by Hovakim Grabski, Siranuysh Grabska and Ruben Abagyan
Viruses 2025, 17(1), 6; https://doi.org/10.3390/v17010006 - 24 Dec 2024
Viewed by 1500
Abstract
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral–host protein interactions is problematic due to the fast mutation rate and rapid emergence [...] Read more.
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral–host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development. Promising allosteric binding sites were identified in two conformationally distinct inactive states and characterized for five flaviviruses and four Dengue virus subtypes. Their shapes, druggability, inter-viral similarity, sequence variation, and susceptibility to drug-resistant mutations have been studied. Two identified allosteric inactive state pockets appear to be feasible alternatives to a larger closed pocket near the active site, and they can be targeted with specific drug-like small-molecule inhibitors. Virus-specific sequence and structure implications and the feasibility of multi-viral inhibitors are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Anti-HCV, Anti-HBV and Anti-flavivirus Agents)
Show Figures

Figure 1

18 pages, 4482 KiB  
Article
Discovery of Potent Dengue Virus NS2B-NS3 Protease Inhibitors Among Glycyrrhizic Acid Conjugates with Amino Acids and Dipeptides Esters
by Yu-Feng Lin, Hsueh-Chou Lai, Chen-Sheng Lin, Ping-Yi Hung, Ju-Ying Kan, Shih-Wen Chiu, Chih-Hao Lu, Svetlana F. Petrova, Lidia Baltina and Cheng-Wen Lin
Viruses 2024, 16(12), 1926; https://doi.org/10.3390/v16121926 - 17 Dec 2024
Cited by 2 | Viewed by 1452
Abstract
This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, [...] Read more.
This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds 11 and 17 exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153. Based on the molecular docking data, conjugates 11 with L-glutamic acid dimethyl ester, 17 with β-alanine ethyl ester, and 19 with aminoethantic acid methyl ester were further demonstrated as potent inhibitors of DENV-2 NS3 protease, with IC50 values below 1 μM, using NS3-mediated cleavage assay. Compound 11 was the most potent, with EC50 values of 0.034 μM for infectivity, 0.042 μM for virus yield, and a selective index over 2000, aligning with its strong NS3 protease inhibition. Compound 17 exhibited better NS3 protease inhibition than compound 19 but showed weaker effects on infectivity and virus yield. While all compounds strongly inhibited viral infectivity post-entry, compound 19 also blocked viral entry. This study provided valuable insights into the interactions between active GL derivatives and DENV-2 NS2B-NS3 protease, offering a comprehensive framework for identifying lead compounds for further drug optimization and design as NS2B-NS3 protease inhibitors against DENV. Full article
(This article belongs to the Special Issue Recent Advances in Anti-HCV, Anti-HBV and Anti-flavivirus Agents)
Show Figures

Figure 1

27 pages, 3285 KiB  
Review
Orthoflaviviral Inhibitors in Clinical Trials, Preclinical In Vivo Efficacy Targeting NS2B-NS3 and Cellular Antiviral Activity via Competitive Protease Inhibition
by Lorenzo Cavina, Mathijs J. Bouma, Daniel Gironés and Martin C. Feiters
Molecules 2024, 29(17), 4047; https://doi.org/10.3390/molecules29174047 - 27 Aug 2024
Cited by 1 | Viewed by 2795
Abstract
Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, [...] Read more.
Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry II)
Show Figures

Figure 1

20 pages, 6138 KiB  
Article
Employing Machine Learning-Based QSAR for Targeting Zika Virus NS3 Protease: Molecular Insights and Inhibitor Discovery
by Hisham N. Altayb and Hanan Ali Alatawi
Pharmaceuticals 2024, 17(8), 1067; https://doi.org/10.3390/ph17081067 - 15 Aug 2024
Cited by 3 | Viewed by 1700
Abstract
Zika virus infection is a mosquito-borne viral disease that has become a global health concern recently. Zika virus belongs to the Flavivirus genus and is primarily transmitted by Aedes mosquitoes. Prevention of Zika virus infection involves avoiding mosquito bites by using repellent, wearing [...] Read more.
Zika virus infection is a mosquito-borne viral disease that has become a global health concern recently. Zika virus belongs to the Flavivirus genus and is primarily transmitted by Aedes mosquitoes. Prevention of Zika virus infection involves avoiding mosquito bites by using repellent, wearing protective clothing, and staying in screened areas, especially for pregnant women. Treatment focuses on managing symptoms with rest, fluids, and acetaminophen, with close monitoring for pregnant women. Currently, there is no specific antiviral treatment or vaccine for the Zika virus, highlighting the importance of prevention strategies to control its spread. Therefore, in this study, the Zika virus non-structural protein NS3 was targeted to inhibit Zika infection by identifying the novel inhibitor through an in silico approach. Here, 2864 natural compounds were screened using a machine learning-based QSAR model, and later docking was performed to select the potential target. Subsequently, Tanimoto similarity and clustering were performed to obtain the potential target. The three most potential compounds were obtained: (a) 5297, (b) 432449, and (c) 85137543. The protein–ligand complex’s stability and flexibility were then investigated by dynamic modelling. The 300 ns simulation showed that 5297 exhibited the steadiest deviation and constant creation of hydrogen bonds. Compared to the other compounds, 5297 demonstrated a superior binding free energy (ΔG = −20.81 kcal/mol) with the protein when the MM/GBSA technique was used. The study determined that 5297 showed significant therapeutic potential and justifies further experimental investigation as a possible inhibitor of the NS2B-NS3 protease target implicated in Zika virus infection. Full article
(This article belongs to the Special Issue Application of 2D and 3D-QSAR Models in Drug Design)
Show Figures

Graphical abstract

22 pages, 4072 KiB  
Review
The Inhibition of NS2B/NS3 Protease: A New Therapeutic Opportunity to Treat Dengue and Zika Virus Infection
by Josè Starvaggi, Santo Previti, Maria Zappalà and Roberta Ettari
Int. J. Mol. Sci. 2024, 25(8), 4376; https://doi.org/10.3390/ijms25084376 - 16 Apr 2024
Cited by 13 | Viewed by 4633
Abstract
In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify [...] Read more.
In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level. Full article
(This article belongs to the Special Issue Organic Compounds: Structure, Function and Drug Design)
Show Figures

Figure 1

14 pages, 24376 KiB  
Article
The Antiviral Activity of Varenicline against Dengue Virus Replication during the Post-Entry Stage
by Ching-Lin Lin, Yan-Tung Kiu, Ju-Ying Kan, Yu-Jen Chang, Ping-Yi Hung, Chih-Hao Lu, Wen-Ling Lin, Yow-Wen Hsieh, Jung-Yie Kao, Nien-Jen Hu and Cheng-Wen Lin
Biomedicines 2023, 11(10), 2754; https://doi.org/10.3390/biomedicines11102754 - 11 Oct 2023
Cited by 4 | Viewed by 2202
Abstract
Dengue virus (DENV) poses a significant global health challenge, with millions of cases each year. Developing effective antiviral drugs against DENV remains a major hurdle. Varenicline is a medication used to aid smoking cessation, with anti-inflammatory and antioxidant effects. In this study, varenicline [...] Read more.
Dengue virus (DENV) poses a significant global health challenge, with millions of cases each year. Developing effective antiviral drugs against DENV remains a major hurdle. Varenicline is a medication used to aid smoking cessation, with anti-inflammatory and antioxidant effects. In this study, varenicline was investigated for its antiviral potential against DENV. This study provides evidence of the antiviral activity of varenicline against DENV, regardless of the virus serotype or cell type used. Varenicline demonstrated dose-dependent effects in reducing viral protein expression, infectivity, and virus yield in Vero and A549 cells infected with DENV-1 and DENV-2, with EC50 values ranging from 0.44 to 1.66 μM. Time-of-addition and removal experiments demonstrated that varenicline had a stronger inhibitory effect on the post-entry stage of DENV-2 replication than on the entry stage, as well as the preinfection and virus attachment stages. Furthermore, cell-based trans-cleavage assays indicated that varenicline dose-dependently inhibited the proteolytic activity of DENV-2 NS2B-NS3 protease. Docking models revealed the formation of hydrogen bonds and van der Waals forces between varenicline and specific residues in the DENV-1 and DENV-2 NS2B-NS3 proteases. These results highlight the antiviral activity and potential mechanism of varenicline against DENV, offering valuable insights for further research and development in the treatment of DENV infection. Full article
Show Figures

Figure 1

20 pages, 5052 KiB  
Article
In Silico Screening of Inhibitors of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease
by Xin Hu, Elaine Morazzani, Jaimee R. Compton, Moeshia Harmon, Veronica Soloveva, Pamela J. Glass, Andres Dulcey Garcia, Juan J. Marugan and Patricia M. Legler
Viruses 2023, 15(7), 1503; https://doi.org/10.3390/v15071503 - 4 Jul 2023
Cited by 6 | Viewed by 3134
Abstract
The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.B79) is essential for viral replication. High throughput in silico/in vitro screening using a focused set of known cysteine protease inhibitors identified two epoxysuccinyl prodrugs, E64d and CA074 methyl ester [...] Read more.
The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.B79) is essential for viral replication. High throughput in silico/in vitro screening using a focused set of known cysteine protease inhibitors identified two epoxysuccinyl prodrugs, E64d and CA074 methyl ester (CA074me) and a reversible oxindole inhibitor. Here, we determined the X-ray crystal structure of the CA074-inhibited nsP2 protease and compared it with our E64d-inhibited structure. We found that the two inhibitors occupy different locations in the protease. We designed hybrid inhibitors with improved potency. Virus yield reduction assays confirmed that the viral titer was reduced by >5 logs with CA074me. Cell-based assays showed reductions in viral replication for CHIKV, VEEV, and WEEV, and weaker inhibition of EEEV by the hybrid inhibitors. The most potent was NCGC00488909-01 which had an EC50 of 1.76 µM in VEEV-Trd-infected cells; the second most potent was NCGC00484087 with an EC50 = 7.90 µM. Other compounds from the NCATS libraries such as the H1 antihistamine oxatomide (>5-log reduction), emetine, amsacrine an intercalator (NCGC0015113), MLS003116111-01, NCGC00247785-13, and MLS00699295-01 were found to effectively reduce VEEV viral replication in plaque assays. Kinetic methods demonstrated time-dependent inhibition by the hybrid inhibitors of the protease with NCGC00488909-01 (Ki = 3 µM) and NCGC00484087 (Ki = 5 µM). Rates of inactivation by CA074 in the presence of 6 mM CaCl2, MnCl2, or MgCl2 were measured with varying concentrations of inhibitor, Mg2+ and Mn2+ slightly enhanced inhibitor binding (3 to 6-fold). CA074 inhibited not only the VEEV nsP2 protease but also that of CHIKV and WEEV. Full article
(This article belongs to the Special Issue Alphaviruses)
Show Figures

Figure 1

20 pages, 8253 KiB  
Article
Structural Modifications Introduced by NS2B Cofactor Binding to the NS3 Protease of the Kyasanur Forest Disease Virus
by Shivananda Kandagalla, Bhimanagoud Kumbar and Jurica Novak
Int. J. Mol. Sci. 2023, 24(13), 10907; https://doi.org/10.3390/ijms241310907 - 30 Jun 2023
Cited by 6 | Viewed by 2356
Abstract
Kyasanur Forest Disease virus (KFDV), a neglected human pathogenic virus, is a Flavivirus that causes severe hemorrhagic fever in humans. KFDV is transmitted to humans by the bite of the hard tick (Haemaphysalis spinigera), which acts as a reservoir of KFDV. [...] Read more.
Kyasanur Forest Disease virus (KFDV), a neglected human pathogenic virus, is a Flavivirus that causes severe hemorrhagic fever in humans. KFDV is transmitted to humans by the bite of the hard tick (Haemaphysalis spinigera), which acts as a reservoir of KFDV. The recent expansion of the endemic area of KFDV is of concern and requires the development of new preventive measures against KFDV. Currently, there is no antiviral therapy against KFDV, and the existing vaccine has limited efficacy. To develop a new antiviral therapy against KFDV, we focused on the nonstructural proteins NS2B and NS3 of KFDV, which are responsible for serine protease activity. Viral proteases have shown to be suitable therapeutic targets in the development of antiviral drugs against many diseases. However, success has been limited in flaviviruses, mainly because of the important features of the active site, which is flat and highly charged. In this context, the present study focuses on the dynamics of NS2B and NS3 to identify potential allosteric sites in the NS2B/NS3 protease of KDFV. To our knowledge, there are no reports on the dynamics of NS2B and NS3 in KFDV, and the crystal structure of the NS2B/NS3 protease of KFDV has not yet been solved. Overall, we created the structure of the NS2B/NS3 protease of KFDV using AlphaFold and performed molecular dynamics simulations with and without NS2B cofactor to investigate structural rearrangements due to cofactor binding and to identify alternative allosteric sites. The identified allosteric site is promising due to its geometric and physicochemical properties and druggability and can be used for new drug development. The applicability of the proposed allosteric binding sites was verified for the best-hit molecules from the virtual screening and MD simulations. Full article
Show Figures

Figure 1

17 pages, 2170 KiB  
Article
The Importance of Epigallocatechin as a Scaffold for Drug Development against Flaviviruses
by Mônika A. Coronado, Ian Gering, Marc Sevenich, Danilo S. Olivier, Mohammadamin Mastalipour, Marcos S. Amaral, Dieter Willbold and Raphael J. Eberle
Pharmaceutics 2023, 15(3), 803; https://doi.org/10.3390/pharmaceutics15030803 - 1 Mar 2023
Cited by 7 | Viewed by 3316
Abstract
Arboviruses such as Dengue, yellow fever, West Nile, and Zika are flaviviruses vector-borne RNA viruses transmitted biologically among vertebrate hosts by blood-taking vectors. Many flaviviruses are associated with neurological, viscerotropic, and hemorrhagic diseases, posing significant health and socioeconomic concerns as they adapt to [...] Read more.
Arboviruses such as Dengue, yellow fever, West Nile, and Zika are flaviviruses vector-borne RNA viruses transmitted biologically among vertebrate hosts by blood-taking vectors. Many flaviviruses are associated with neurological, viscerotropic, and hemorrhagic diseases, posing significant health and socioeconomic concerns as they adapt to new environments. Licensed drugs against them are currently unavailable, so searching for effective antiviral molecules is still necessary. Epigallocatechin molecules, a green tea polyphenol, have shown great virucidal potential against flaviviruses, including DENV, WNV, and ZIKV. The interaction of EGCG with the viral envelope protein and viral protease, mainly identified by computational studies, describes the interaction of these molecules with viral proteins; however, how the viral NS2B/NS3 protease interacts with epigallocatechin molecules is not yet fully deciphered. Consequently, we tested the antiviral potential of two epigallocatechin molecules (EGC and EGCG) and their derivative (AcEGCG) against DENV, YFV, WNV, and ZIKV NS2B/NS3 protease. Thus, we assayed the effect of the molecules and found that a mixture of the molecules EGC (competitive) and EGCG (noncompetitive) inhibited the virus protease of YFV, WNV, and ZIKV more effectively with IC50 values of 1.17 ± 0.2 µM, 0.58 ± 0.07 µM, and 0.57 ± 0.05 µM, respectively. As these molecules fundamentally differ in their inhibitory mode and chemical structure, our finding may open a new line for developing more effective allosteric/active site inhibitors to combat flaviviruses infection. Full article
Show Figures

Figure 1

19 pages, 2522 KiB  
Article
Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses
by Katarina Z. Doctor, Elizabeth Gilmour, Marilyn Recarte, Trinity R. Beatty, Intisar Shifa, Michaela Stangel, Jacob Schwisow, Dagmar H. Leary and Patricia M. Legler
Viruses 2023, 15(2), 542; https://doi.org/10.3390/v15020542 - 15 Feb 2023
Cited by 4 | Viewed by 2999
Abstract
Within the viral genome, short stretches of homologous host pathogen sequences (SSHHPS) span the protease cleavage sites. To identify host proteins that may be cleaved during infection, we searched the human proteome for viral protease cleavage sites (~20 amino acids). We developed a [...] Read more.
Within the viral genome, short stretches of homologous host pathogen sequences (SSHHPS) span the protease cleavage sites. To identify host proteins that may be cleaved during infection, we searched the human proteome for viral protease cleavage sites (~20 amino acids). We developed a sequence-to-symptom tool, automating the search and pairing process. We used the viral protein sequence, PHI-BLAST, and UniProt database for gene ontologies and disease relationships. We applied the tool to nine neuroinvasive viruses: Venezuelan and Eastern Equine encephalitis virus (VEEV, EEEV); severe acute respiratory syndrome (SARS, SARS-CoV-2); Middle East respiratory syndrome (MERS); EV-71; Japanese encephalitis virus (JEV); West Nile (WNV); and Zika (ZIKV). A comparison of the hits identified a protein common to all nine viruses called ADGRA2 (GPR124). ADGRA2 was a predicted hit of the 3CL main protease and papain-like protease (PLpro) of SARS-CoV-2. ADGRA2 is an adhesion G protein-coupled receptor and a key endothelial regulator of brain-specific angiogenesis. It is a Wnt7A/Wnt7B specific coactivator of beta-catenin signaling and is essential for blood–brain barrier (BBB) integrity in central nervous system (CNS) diseases. We show the cleavage of the predicted sequences in MYOM1, VWF by the SARS-CoV-2 PLpro; DNAH8 (dynein) by the MERS PLpro; ADGRA2 by the alphaviral VEEV nsP2 protease; and POT1 by the SARS-CoV-2 and MERS PLpro. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Graphical abstract

22 pages, 10971 KiB  
Article
Structural Insights into Plasticity and Discovery of Flavonoid Allosteric Inhibitors of Flavivirus NS2B–NS3 Protease
by Marielena Vogel Saivish, Gabriela de Lima Menezes, Vivaldo Gomes da Costa, Liliane Nebo, Gislaine Celestino Dutra da Silva, Carolina Colombelli Pacca, Rafael Elias Marques, Maurício Lacerda Nogueira and Roosevelt Alves Da Silva
Biophysica 2023, 3(1), 71-92; https://doi.org/10.3390/biophysica3010006 - 1 Feb 2023
Cited by 3 | Viewed by 3569
Abstract
Flaviviruses are among the most critical pathogens in tropical regions; they cause various severe diseases in developing countries but are not restricted to these countries. The development of antiviral therapeutics is crucial for managing flavivirus outbreaks. Ten proteins are encoded in the flavivirus [...] Read more.
Flaviviruses are among the most critical pathogens in tropical regions; they cause various severe diseases in developing countries but are not restricted to these countries. The development of antiviral therapeutics is crucial for managing flavivirus outbreaks. Ten proteins are encoded in the flavivirus RNA. The N2B–NS3pro protein complex plays a fundamental role in flavivirus replication and is a promising drug target; however, no flavivirus protease inhibitors have progressed to the preclinical stage. This study analyzed the structural models and plasticity of the NS2B–NS3pro protein complex of five medically important non-dengue flaviviruses (West Nile, Rocio, Ilhéus, yellow fever, and Saint Louis encephalitis). The flavonoids amentoflavone, tetrahydrorobustaflavone, and quercetin were selected for their exceptional binding energies as potential inhibitors of the NS2B–NS3pro protein complex. AutoDock Vina results ranged from −7.0 kcal/mol to −11.5 kcal/mol and the compounds preferentially acted non-competitively. Additionally, the first structural model for the NS2B–NS3pro protein complex was proposed for Ilhéus and Rocio viruses. The NS2B–NS3pro protease is an attractive molecular target for drug development. The three identified natural flavonoids showed great inhibitory potential against the viral species. Nevertheless, further in silico and in vitro studies are required to obtain more information regarding NS2B–NS3pro inhibition by these flavonoids and their therapeutic potential. Full article
(This article belongs to the Special Issue Molecular Structure and Simulation in Biological System)
Show Figures

Figure 1

15 pages, 4965 KiB  
Article
Identification of NS2B-NS3 Protease Inhibitors for Therapeutic Application in ZIKV Infection: A Pharmacophore-Based High-Throughput Virtual Screening and MD Simulations Approaches
by Hafiz Muzzammel Rehman, Muhammad Sajjad, Muhammad Akhtar Ali, Roquyya Gul, Muhammad Irfan, Muhammad Naveed, Munir Ahmad Bhinder, Muhammad Usman Ghani, Nadia Hussain, Amira S. A. Said, Amal H. I. Al Haddad and Mahjabeen Saleem
Vaccines 2023, 11(1), 131; https://doi.org/10.3390/vaccines11010131 - 5 Jan 2023
Cited by 30 | Viewed by 3557
Abstract
Zika virus (ZIKV) pandemic and its implication in congenital malformations and severe neurological disorders had created serious threats to global health. ZIKV is a mosquito-borne flavivirus which spread rapidly and infect a large number of people in a shorter time-span. Due to the [...] Read more.
Zika virus (ZIKV) pandemic and its implication in congenital malformations and severe neurological disorders had created serious threats to global health. ZIKV is a mosquito-borne flavivirus which spread rapidly and infect a large number of people in a shorter time-span. Due to the lack of effective therapeutics, this had become paramount urgency to discover effective drug molecules to encounter the viral infection. Various anti-ZIKV drug discovery efforts during the past several years had been unsuccessful to develop an effective cure. The NS2B-NS3 protein was reported as an attractive therapeutic target for inhibiting viral proliferation, due to its central role in viral replication and maturation of non-structural viral proteins. Therefore, the current in silico drug exploration aimed to identify the novel inhibitors of Zika NS2B-NS3 protease by implementing an e-pharmacophore-based high-throughput virtual screening. A 3D e-pharmacophore model was generated based on the five-featured (ADPRR) pharmacophore hypothesis. Subsequently, the predicted model is further subjected to the high-throughput virtual screening to reveal top hit molecules from the various small molecule databases. Initial hits were examined in terms of binding free energies and ADME properties to identify the candidate hit exhibiting a favourable pharmacokinetic profile. Eventually, molecular dynamic (MD) simulations studies were conducted to evaluate the binding stability of the hit molecule inside the receptor cavity. The findings of the in silico analysis manifested affirmative evidence for three hit molecules with −64.28, −55.15 and −50.16 kcal/mol binding free energies, as potent inhibitors of Zika NS2B-NS3 protease. Hence, these molecules holds the promising potential to serve as a prospective candidates to design effective drugs against ZIKV and related viral infections. Full article
Show Figures

Figure 1

31 pages, 5504 KiB  
Review
Inhibitory Potential of Chromene Derivatives on Structural and Non-Structural Proteins of Dengue Virus
by Babitha Thekkiniyedath Dharmapalan, Raja Biswas, Sathianarayanan Sankaran, Baskar Venkidasamy, Muthu Thiruvengadam, Ginson George, Maksim Rebezov, Gokhan Zengin, Monica Gallo, Domenico Montesano, Daniele Naviglio and Mohammad Ali Shariati
Viruses 2022, 14(12), 2656; https://doi.org/10.3390/v14122656 - 28 Nov 2022
Cited by 11 | Viewed by 6491
Abstract
Dengue fever is a mosquito-borne viral disease that has become a serious health issue across the globe. It is caused by a virus of the Flaviviridae family, and it comprises five different serotypes (DENV-1 to DENV-5). As there is no specific medicine or [...] Read more.
Dengue fever is a mosquito-borne viral disease that has become a serious health issue across the globe. It is caused by a virus of the Flaviviridae family, and it comprises five different serotypes (DENV-1 to DENV-5). As there is no specific medicine or effective vaccine for controlling dengue fever, there is an urgent need to develop potential inhibitors against it. Traditionally, various natural products have been used to manage dengue fever and its co-morbid conditions. A detailed analysis of these plants revealed the presence of various chromene derivatives as the major phytochemicals. Inspired by these observations, authors have critically analyzed the anti-dengue virus potential of various 4H chromene derivatives. Further, in silico, in vitro, and in vivo reports of these scaffolds against the dengue virus are detailed in the present manuscript. These analogues exerted their activity by interfering with various stages of viral entry, assembly, and replications. Moreover, these analogues mainly target envelope protein, NS2B-NS3 protease, and NS5 RNA-dependent RNA polymerase, etc. Overall, chromene-containing analogues exerted a potent activity against the dengue virus and the present review will be helpful for the further exploration of these scaffolds for the development of novel antiviral drug candidates. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 1983 KiB  
Article
Genomic Determinants Potentially Associated with Clinical Manifestations of Human-Pathogenic Tick-Borne Flaviviruses
by Artem N. Bondaryuk, Nina V. Kulakova, Ulyana V. Potapova, Olga I. Belykh, Anzhelika V. Yudinceva and Yurij S. Bukin
Int. J. Mol. Sci. 2022, 23(21), 13404; https://doi.org/10.3390/ijms232113404 - 2 Nov 2022
Cited by 4 | Viewed by 2672
Abstract
The tick-borne flavivirus group contains at least five species that are pathogenic to humans, three of which induce encephalitis (tick-borne encephalitis virus, louping-ill virus, Powassan virus) and another two species induce hemorrhagic fever (Omsk hemorrhagic fever virus, Kyasanur Forest disease virus). To date, [...] Read more.
The tick-borne flavivirus group contains at least five species that are pathogenic to humans, three of which induce encephalitis (tick-borne encephalitis virus, louping-ill virus, Powassan virus) and another two species induce hemorrhagic fever (Omsk hemorrhagic fever virus, Kyasanur Forest disease virus). To date, the molecular mechanisms responsible for these strikingly different clinical forms are not completely understood. Using a bioinformatic approach, we performed the analysis of each amino acid (aa) position in the alignment of 323 polyprotein sequences to calculate the fixation index (Fst) per site and find the regions (determinants) where sequences belonging to two designated groups were most different. Our algorithm revealed 36 potential determinants (Fst ranges from 0.91 to 1.0) located in all viral proteins except a capsid protein. In an envelope (E) protein, most of the determinants were located on the virion surface regions (domains II and III) and one (absolutely specific site 457) was located in the transmembrane region. Another 100% specific determinant site (E63D) with Fst = 1.0 was located in the central hydrophilic domain of the NS2b, which mediates NS3 protease activity. The NS5 protein contains the largest number of determinants (14) and two of them are absolutely specific (T226S, E290D) and are located near the RNA binding site 219 (methyltransferase domain) and the extension structure. We assume that even if not absolutely, highly specific sites, together with absolutely specific ones (Fst = 1.0) can play a supporting role in cell and tissue tropism determination. Full article
(This article belongs to the Special Issue Genetics and Genomics of Vector-Borne Disease Pathogens)
Show Figures

Figure 1

28 pages, 5989 KiB  
Article
Dengue Virus NS4b N-Terminus Disordered Region Interacts with NS3 Helicase C-Terminal Subdomain to Enhance Helicase Activity
by Satyamurthy Kundharapu and Tirumala Kumar Chowdary
Viruses 2022, 14(8), 1712; https://doi.org/10.3390/v14081712 - 3 Aug 2022
Cited by 4 | Viewed by 4009
Abstract
Dengue virus replicates its single-stranded RNA genome in membrane-bound complexes formed on the endoplasmic reticulum, where viral non-structural proteins (NS) and RNA co-localize. The NS proteins interact with one another and with the host proteins. The interaction of the viral helicase and protease, [...] Read more.
Dengue virus replicates its single-stranded RNA genome in membrane-bound complexes formed on the endoplasmic reticulum, where viral non-structural proteins (NS) and RNA co-localize. The NS proteins interact with one another and with the host proteins. The interaction of the viral helicase and protease, NS3, with the RNA-dependent RNA polymerase, NS5, and NS4b proteins is critical for replication. In vitro, NS3 helicase activity is enhanced by interaction with NS4b. We characterized the interaction between NS3 and NS4b and explained a possible mechanism for helicase activity modulation by NS4b. Our bacterial two-hybrid assay results showed that the N-terminal 57 residues region of NS4b is enough to interact with NS3. The molecular docking of the predicted NS4b structure onto the NS3 structure revealed that the N-terminal disordered region of NS4b wraps around the C-terminal subdomain (CTD) of the helicase. Further, NS3 helicase activity is enhanced upon interaction with NS4b. Molecular dynamics simulations on the NS4b-docked NS3 crystal structure and intrinsic tryptophan fluorescence studies suggest that the interaction results in NS3 CTD domain motions. Based on the interpretation of our results in light of the mechanism explained for NS3 helicase, NS4b–NS3 interaction modulating CTD dynamics is a plausible explanation for the helicase activity enhancement. Full article
(This article belongs to the Special Issue Host Cell–Virus Interaction 2.0)
Show Figures

Figure 1

Back to TopTop