Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = violaxanthin–zeaxanthin cycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6394 KiB  
Article
Stevia rebaudiana under a CO2 Enrichment Atmosphere: Can CO2 Enrichment Overcome Stomatic, Mesophilic and Biochemical Barriers That Limit Photosynthesis?
by Marcelo F. Pompelli, Carlos A. Espitia-Romero, Juán de Diós Jaraba-Navas, Luis Alfonso Rodriguez-Paez and Alfredo Jarma-Orozco
Sustainability 2022, 14(21), 14269; https://doi.org/10.3390/su142114269 - 1 Nov 2022
Cited by 4 | Viewed by 2190
Abstract
Due to the desire to live a healthier lifestyle, the search for nonglycosidic sweeteners has increased stevioside production in recent years. The main goal of this study was to demonstrate that S. rebaudiana grown in a CO2-enriched environment can overcome stomatic, [...] Read more.
Due to the desire to live a healthier lifestyle, the search for nonglycosidic sweeteners has increased stevioside production in recent years. The main goal of this study was to demonstrate that S. rebaudiana grown in a CO2-enriched environment can overcome stomatic, mesophilic and biochemical barriers that limit photosynthesis (AN). We show that in an environment with a CO2-enriched atmosphere (800 and 1200 µmol CO2 mol−1), the genotype 16 (G16) shows an increase of 17.5% in AN and 36.2% in stomatal conductance in plants grown in 800 µmol CO2 mol−1 when compared to non-enriched plants. In conjunction with this issue, the plants show an efficient mechanism of dissipating excess energy captured by the photosystems. Photosystem II efficiency was increased at 1200 µmol CO2 mol−1 when compared to non-enriched plants, both in genotype 4 (25.4%) and G16 (211%). In addition, a high activity of Calvin–Benson enzymes, a high production of sugars and an enhanced production of steviosides were combined with high horticultural yield. Both genotypes (G4 and G16) showed excellent physiological indicators, with high superiority in G16. Thus, our study has demonstrated that S. rebaudiana could adapt to global climate change scenarios with higher temperatures caused by higher atmospheric CO2. Full article
(This article belongs to the Special Issue Global Climate Change: What Are We Doing to Mitigate Its Effects)
Show Figures

Figure 1

23 pages, 5118 KiB  
Article
ROS-Scavengers, Osmoprotectants and Violaxanthin De-Epoxidation in Salt-Stressed Arabidopsis thaliana with Different Tocopherol Composition
by Ewa Surówka, Dariusz Latowski, Michał Dziurka, Magdalena Rys, Anna Maksymowicz, Iwona Żur, Monika Olchawa-Pajor, Christine Desel, Monika Krzewska and Zbigniew Miszalski
Int. J. Mol. Sci. 2021, 22(21), 11370; https://doi.org/10.3390/ijms222111370 - 21 Oct 2021
Cited by 9 | Viewed by 3313
Abstract
To determine the role of α- and γ-tocopherol (TC), this study compared the response to salt stress (200 mM NaCl) in wild type (WT) Arabidopsis thaliana (L.) Heynh. And its two mutants: (1) totally TC-deficient vte1; (2) vte4 accumulating γ-TC instead of [...] Read more.
To determine the role of α- and γ-tocopherol (TC), this study compared the response to salt stress (200 mM NaCl) in wild type (WT) Arabidopsis thaliana (L.) Heynh. And its two mutants: (1) totally TC-deficient vte1; (2) vte4 accumulating γ-TC instead of α-TC; and (3) tmt transgenic line overaccumulating α-TC. Raman spectra revealed that salt-exposed α-TC accumulating plants were more flexible in regulating chlorophyll, carotenoid and polysaccharide levels than TC deficient mutants, while the plants overaccumulating γ-TC had the lowest levels of these biocompounds. Tocopherol composition and NaCl concentration affected xanthophyll cycle by changing the rate of violaxanthin de-epoxidation and zeaxanthin formation. NaCl treated plants with altered TC composition accumulated less oligosaccharides than WT plants. α-TC deficient plants increased their oligosaccharide levels and reduced maltose amount, while excessive accumulation of α-TC corresponded with enhanced amounts of maltose. Salt-stressed TC-deficient mutants and tmt transgenic line exhibited greater proline levels than WT plants, lower chlorogenic acid levels, and lower activity of catalase and peroxidases. α-TC accumulating plants produced more methylated proline- and glycine- betaines, and showed greater activity of superoxide dismutase than γ-TC deficient plants. Under salt stress, α-TC demonstrated a stronger regulatory effect on carbon- and nitrogen-related metabolites reorganization and modulation of antioxidant patterns than γ-TC. This suggested different links of α- and γ-TCs with various metabolic pathways via various functions and metabolic loops. Full article
Show Figures

Graphical abstract

22 pages, 3325 KiB  
Article
Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae Nephroselmis sp
by Noémie Coulombier, Elodie Nicolau, Loïc Le Déan, Vanille Barthelemy, Nathalie Schreiber, Pierre Brun, Nicolas Lebouvier and Thierry Jauffrais
Mar. Drugs 2020, 18(9), 453; https://doi.org/10.3390/md18090453 - 29 Aug 2020
Cited by 43 | Viewed by 4838
Abstract
Nephroselmis sp. was previously identified as a species of interest for its antioxidant properties owing to its high carotenoid content. In addition, nitrogen availability can impact biomass and specific metabolites’ production of microalgae. To optimize parameters of antioxidant production, Nephroselmis sp. was cultivated [...] Read more.
Nephroselmis sp. was previously identified as a species of interest for its antioxidant properties owing to its high carotenoid content. In addition, nitrogen availability can impact biomass and specific metabolites’ production of microalgae. To optimize parameters of antioxidant production, Nephroselmis sp. was cultivated in batch and continuous culture conditions in stirred closed photobioreactors under different nitrogen conditions (N-repletion, N-limitation, and N-starvation). The aim was to determine the influence of nitrogen availability on the peroxyl radical scavenging activity (oxygen radical absorbance capacity (ORAC) assay) and carotenoid content of Nephroselmis sp. Pigment analysis revealed a specific and unusual photosynthetic system with siphonaxanthin-type light harvesting complexes found in primitive green algae, but also high lutein content and xanthophyll cycle pigments (i.e., violaxanthin, antheraxanthin, and zeaxanthin), as observed in most advanced chlorophytes. The results indicated that N-replete conditions enhance carotenoid biosynthesis, which would correspond to a higher antioxidant capacity measured in Nephroselmis sp. Indeed, peroxyl radical scavenging activity and total carotenoids were higher under N-replete conditions and decreased sharply under N-limitation or starvation conditions. Considering individual carotenoids, siphonaxanthin, neoxanthin, xanthophyll cycle pigments, and lycopene followed the same trend as total carotenoids, while β-carotene and lutein stayed stable regardless of the nitrogen availability. Carotenoid productivities were also higher under N-replete treatment. The peroxyl radical scavenging activity measured with ORAC assay (63.6 to 154.9 µmol TE g−1 DW) and the lutein content (5.22 to 7.97 mg g−1 DW) were within the upper ranges of values reported previously for other microalgae. Furthermore, contents of siphonaxanthin ere 6 to 20% higher than in previous identified sources (siphonous green algae). These results highlight the potential of Nephroselmis sp. as a source of natural antioxidant and as a pigment of interest. Full article
(This article belongs to the Special Issue Marine Natural Product of the South Pacific Area)
Show Figures

Figure 1

15 pages, 1366 KiB  
Article
Kaolin Reduces ABA Biosynthesis through the Inhibition of Neoxanthin Synthesis in Grapevines under Water Deficit
by Tommaso Frioni, Sergio Tombesi, Paolo Sabbatini, Cecilia Squeri, Nieves Lavado Rodas, Alberto Palliotti and Stefano Poni
Int. J. Mol. Sci. 2020, 21(14), 4950; https://doi.org/10.3390/ijms21144950 - 13 Jul 2020
Cited by 27 | Viewed by 3875
Abstract
In many viticulture regions, multiple summer stresses are occurring with increased frequency and severity because of warming trends. Kaolin-based particle film technology is a technique that can mitigate the negative effects of intense and/or prolonged drought on grapevine physiology. Although a primary mechanism [...] Read more.
In many viticulture regions, multiple summer stresses are occurring with increased frequency and severity because of warming trends. Kaolin-based particle film technology is a technique that can mitigate the negative effects of intense and/or prolonged drought on grapevine physiology. Although a primary mechanism of action of kaolin is the increase of radiation reflection, some indirect effects are the protection of canopy functionality and faster stress recovery by abscisic acid (ABA) regulation. The physiological mechanism underlying the kaolin regulation of canopy functionality under water deficit is still poorly understood. In a dry-down experiment carried out on grapevines, at the peak of stress and when control vines zeroed whole-canopy net CO2 exchange rates/leaf area (NCER/LA), kaolin-treated vines maintained positive NCER/LA (~2 µmol m−2 s−1) and canopy transpiration (E) (0.57 µmol m−2 s−1). Kaolin-coated leaves had a higher violaxanthin (Vx) + antheraxanthin (Ax) + zeaxanthin (Zx) pool and a significantly lower neoxanthin (Nx) content (VAZ) when water deficit became severe. At the peak of water shortage, leaf ABA suddenly increased by 4-fold in control vines, whereas in kaolin-coated leaves the variation of ABA content was limited. Overall, kaolin prevented the biosynthesis of ABA by avoiding the deviation of the VAZ epoxidation/de-epoxidation cycle into the ABA precursor (i.e., Nx) biosynthetic direction. The preservation of the active VAZ cycle and transpiration led to an improved dissipation of exceeding electrons, explaining the higher resilience of canopy functionality expressed by canopies sprayed by kaolin. These results point out the interaction of kaolin with the regulation of the VAZ cycle and the active mechanism of stomatal conductance regulation. Full article
Show Figures

Figure 1

14 pages, 2216 KiB  
Article
Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers
by Yun Ji Park, Soo-Yun Park, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi, Hyung-geun Ahn, Jae Kwang Kim and Sang Un Park
Molecules 2017, 22(2), 313; https://doi.org/10.3390/molecules22020313 - 18 Feb 2017
Cited by 47 | Viewed by 7964
Abstract
Species of Tagetes, which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes [...] Read more.
Species of Tagetes, which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula. In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA) facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) results provided a clear discrimination between T. erecta and T. patula. Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids. Full article
(This article belongs to the Section Metabolites)
Show Figures

Figure 1

35 pages, 2377 KiB  
Review
Photosynthetic Pigments in Diatoms
by Paulina Kuczynska, Malgorzata Jemiola-Rzeminska and Kazimierz Strzalka
Mar. Drugs 2015, 13(9), 5847-5881; https://doi.org/10.3390/md13095847 - 16 Sep 2015
Cited by 326 | Viewed by 26151
Abstract
Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which [...] Read more.
Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. Full article
(This article belongs to the Special Issue Metabolites in Diatoms)
Show Figures

Figure 1

22 pages, 834 KiB  
Article
Efficient Heterologous Transformation of Chlamydomonas reinhardtii npq2 Mutant with the Zeaxanthin Epoxidase Gene Isolated and Characterized from Chlorella zofingiensis
by Inmaculada Couso, Baldo F. Cordero, María Ángeles Vargas and Herminia Rodríguez
Mar. Drugs 2012, 10(9), 1955-1976; https://doi.org/10.3390/md10091955 - 12 Sep 2012
Cited by 26 | Viewed by 8043
Abstract
In the violaxanthin cycle, the violaxanthin de-epoxidase and zeaxanthin epoxidase catalyze the inter-conversion between violaxanthin and zeaxanthin in both plants and green algae. The zeaxanthin epoxidase gene from the green microalga Chlorella zofingiensis (Czzep) has been isolated. This gene encodes [...] Read more.
In the violaxanthin cycle, the violaxanthin de-epoxidase and zeaxanthin epoxidase catalyze the inter-conversion between violaxanthin and zeaxanthin in both plants and green algae. The zeaxanthin epoxidase gene from the green microalga Chlorella zofingiensis (Czzep) has been isolated. This gene encodes a polypeptide of 596 amino acids. A single copy of Czzep has been found in the C. zofingiensis genome by Southern blot analysis. qPCR analysis has shown that transcript levels of Czzep were increased after zeaxanthin formation under high light conditions. The functionality of Czzep gene by heterologous genetic complementation in the Chlamydomonas mutant npq2, which lacks zeaxanthin epoxidase (ZEP) activity and accumulates zeaxanthin in all conditions, was analyzed. The Czzep gene was adequately inserted in the pSI105 vector and expressed in npq2. The positive transformants were able to efficiently convert zeaxanthin into violaxanthin, as well as to restore their maximum quantum efficiency of the PSII (Fv/Fm). These results show that Chlamydomonas can be an efficient tool for heterologous expression and metabolic engineering for biotechnological applications. Full article
Show Figures

Figure 1

Back to TopTop